

PME 3531 – Mecânica dos Fluidos Aplicada a Sistemas Vasculares

Modelagem do Sistema Térmico Humano

Modelo de Wissler (1961)

Hipóteses:

-Regime permanente;

-Transferência de calor entre sangue e tecido segue o modelo de Pennes;

-Transferência de calor contracorrente entre artérias e veias;

-Condições de metabolismo basal;

-Condições ambientais próximas à neutralidade térmica;

-Transferência de calor no trato respiratório.

$$k_i \left(\frac{d^2 T_i}{dr^2} + \frac{1}{r}\frac{dT_i}{dr}\right) + \omega_{bi}\rho_b c_b \left(T_{ar,i} - T_i\right) + \dot{q}_i = 0$$

- k_i = condutividade térmica do elemento *i*;
- T_i = temperatura do elemento *i*;
- \dot{q}_i = metabolismo específico do elemento *i*;
- ω_{bi} = perfusão sanguínea do elemento *i*;
- ρ_{b} = massa específica do sangue;
- c_b = calor específico do sangue;
- $T_{ar,i}$ = temperatura do sangue arterial que entra no leito capilar do elemento *i*.

$$-k_i \frac{dT_i}{dr}\Big|_i = h_{ef,i} \left(T_{s,i} - T_{ef}\right) \qquad \qquad \frac{dT_i}{dr}\Big|_{r=0} = 0$$

 $h_{ef,i}$ = coeficiente efetivo de transferência de calor na superfície do elemento *i*; T_{ef} = temperatura efetiva do ambiente; R_i = raio externo do elemento *i*.

Perfil de temperatura em um cilindro:

$$\theta_{i} = \left[\frac{\dot{q}_{i}}{\omega_{bi}\rho_{b}c_{b}} + \theta_{ar,i}\right] \left[1 - \frac{Bi_{i}}{c_{i}R_{i}I_{1}(c_{i}R_{i}) + Bi_{i}I_{0}(c_{i}R_{i})}I_{0}(c_{i}r)\right]$$
(1)

Com:

 $\theta_{i} = T_{i} - T_{ef}$ $\theta_{ar,i} = T_{ar,i} - T_{ef}$ $c_{i}^{2} = \frac{\omega_{bi}\rho_{b}c_{b}}{k_{i}}$ $Bi_{i} = \frac{h_{ef,i}R_{i}}{k_{i}}$

Perfil de temperatura em um cilindro:

$$\theta_{i} = \left[\frac{\dot{q}_{i}}{\omega_{bi}\rho_{b}c_{b}} + \theta_{ar,i}\right] \left[1 - \frac{Bi_{i}}{c_{i}R_{i}I_{1}(c_{i}R_{i}) + Bi_{i}I_{0}(c_{i}R_{i})}I_{0}(c_{i}r)\right]$$

Temperatura superficial:

$$\theta_{s,i} = \left[\frac{\dot{q}_i}{\omega_{bi}\rho_b c_b} + \theta_{ar,i}\right] B_i \qquad (2)$$

Relação entre Tar,i e Tve,i

1^a Lei (relação entre
$$T_{ar,i} \in T_{ve,i}$$
):
 $\dot{m}_{in}c_b T_{ar,i} - \dot{m}_{out}c_b T_{ve,i} + \dot{q}_i \pi R_i^2 L_i - h_{ef,i} 2\pi R_i L_i (T_{s,i} - T_{ef}) = 0$
 $\dot{m}c_b (T_{ar,i} - T_{ve,i}) + \dot{q}_i \pi R_i^2 L_i - h_{ef,i} 2\pi R_i L_i (T_{s,i} - T_{ef}) = 0$
 $\rho_b \omega_{bi} \pi R_i^2 L_i c_b (T_{ar,i} - T_{ve,i}) + \dot{q}_i \pi R_i^2 L_i - h_{ef,i} 2\pi R_i L_i (T_{s,i} - T_{ef}) = 0$
 $\rho_b \omega_{bi} c_b (T_{ar,i} - T_{ve,i}) + \dot{q}_i - \frac{2h_{ef,i}}{R_i} (T_{s,i} - T_{ef}) = 0$
 $\rho_b \omega_{bi} c_b (\theta_{ar,i} - \theta_{ve,i}) + \dot{q}_i - \frac{2h_{ef,i}}{R_i} \theta_{s,i} = 0$
 $\theta_{ar,i} - \theta_{ve,i} = \frac{2h_{ef,i}}{\rho_b \omega_{bi} c_b R_i} \theta_{s,i} - \frac{\dot{q}_i}{\rho_b \omega_{bi} c_b}$ (3)

(5)

Escola Politécnica da Universidade de São Paulo

1^a Lei (em torno do trocador):

$$\theta_{ar} - \theta_{ar,i} = \theta_{ve,out,i} - \theta_{ve,i} \quad \Longrightarrow \quad \theta_{ar} - \theta_{ve,out,i} = \theta_{ar,i} - \theta_{ve,i}$$
(4)

$$\begin{split} q_{i} &= U_{i}A_{i} \Bigg(\frac{\theta_{ar} + \theta_{ar,i}}{2} - \frac{\theta_{ve,out,i} + \theta_{ve,i}}{2} \Bigg) \\ q_{i} &= U_{i}A_{i} \Bigg(\frac{\theta_{ar} - \theta_{ve,out,i} + \theta_{ar,i} - \theta_{ve,i}}{2} \Bigg) \\ q_{i} &= U_{i}A_{i} \Bigg(\frac{\theta_{ar} - \theta_{ve,out,i} + \theta_{ar,i} - \theta_{ve,i}}{2} \Bigg) \end{split}$$

$$q_{i} = \dot{m}_{i}c_{b}\left(\theta_{ar} - \theta_{ar,i}\right) = \rho_{b}\omega_{bi}\pi R_{i}^{2}L_{i}c_{b}\left(\theta_{ar} - \theta_{ar,i}\right)$$
$$\theta_{ar} - \theta_{ar,i} = \frac{U_{i}A_{i}}{\rho_{b}\omega_{bi}\pi R_{i}^{2}L_{i}c_{b}}\left(\theta_{ar} - \theta_{ve,out,i}\right)$$

1^a Lei (pulmão + coração):

Sistema de equações

$$\boldsymbol{\theta}_{s,i} = \left[\frac{\dot{q}_i}{\boldsymbol{\omega}_{bi} \boldsymbol{\rho}_b \boldsymbol{c}_b} + \boldsymbol{\theta}_{ar,i} \right] \boldsymbol{B}_i \tag{2}$$

$$\theta_{ar,i} - \theta_{ve,i} = \frac{2h_{ef,i}}{\rho_b \omega_{bi} c_b R_i} \theta_{s,i} - \frac{\dot{q}_i}{\rho_b \omega_{bi} c_b}$$
(3)

$$\theta_{ar} - \theta_{ve,out,i} = \theta_{ar,i} - \theta_{ve,i} \tag{4}$$

$$\theta_{ar} - \theta_{ar,i} = \frac{U_i A_i}{\rho_b \omega_{bi} \pi R_i^2 L_i c_b} \Big(\theta_{ar} - \theta_{ve,out,i} \Big)$$
(5)

$$\sum_{i=1}^{6} \rho_b \omega_{bi} \pi R_i^2 L_i c_b \left(\theta_{ar} - \theta_{ve,out,i} \right) = -h_{resp} \theta_{ar} \tag{6}$$

$$\theta_{ar} = \frac{\sum_{i=1}^{6} \frac{R_{i}^{2} L_{i} \dot{q}_{i} - 2R_{i} L_{i} h_{ef,i} B_{i} / (\rho_{b} \omega_{bi} c_{b})}{1 + \frac{2U_{i} A_{i} h_{ef,i} B_{i}}{\pi R_{i}^{3} (\rho_{b} \omega_{bi} c_{b})^{2} L_{i}}}$$
(7)
$$\theta_{ar} = \frac{\frac{h_{resp}}{\pi} + \sum_{i=1}^{6} \frac{2R_{i} L_{i} h_{ef,i} B_{i}}{1 + \frac{2U_{i} A_{i} h_{ef,i} B_{i}}{\pi R_{i}^{3} (\rho_{b} \omega_{bi} c_{b})^{2} L_{i}}}$$
(7)

$$(6) \to \theta_{ar} - \theta_{ve,out,i}$$

$$(5) \to \theta_{ar,i}$$

Resultado

Modelagem do Sistema Térmico Humano

Modelo Ferreira e Yanagihara (2001)

Modelo geométrico

Escola Politécnica da Universidade de São Paulo

Antebraço

Perna

Tronco

Modelo geométrico

Escola Politécnica da Universidade de São Paulo

15 cilindros de seção elíptica

Modelo geométrico do tronco

Eq. da condução de calor com o termo de perfusão:

$$\nabla \cdot \left(k\nabla T\right) + \omega_b \rho_b c_b \left(T_{ar} - T\right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$$

Condições de contorno

convecção e radiação

$$C + R = \frac{T_s - T_o}{R_{cl} + \frac{1}{f_{cl}h}}$$

respiração $E_{ex} = \dot{m}\lambda(\omega_{ex} - \omega_{a}) + \dot{m}c_{a}(T_{ex} - T_{a})$ evaporação

$$E = w \frac{P_{w,s} - \phi_a P_{w,a}}{R_{e,cl} + \frac{1}{f_{cl}h_e}}$$

$$\begin{cases} \omega_{ex} - \omega_a = 0,0277 + 6,5 \cdot 10^{-5} T_a - 0,8 \,\omega_a \\ T_{ex} = 32,6 + 0,066 \,T_a + 32 \,\omega_a \end{cases}$$

Temperatura dos reservatórios de sangue

Reservatório arterial:

$$m_{ar,i}c_b\frac{dT_{ar,i}}{dt} = \omega_b\rho_bc_b\left(T_{ar,i}^{in} - T_{ar,i}\right) + H_{av,i}\left(T_{ve,i} - T_{ar,i}\right)$$

Reservatório venoso:

$$m_{ve,i}c_b\frac{dT_{ve,i}}{dt} = \omega_b\rho_bc_b\left(T_{ve,i}^{in} - T_{ve,i}\right) - H_{av,i}\left(T_{ve,i} - T_{ar,i}\right) + \int_{\forall}\omega_b\rho_bc_b\left(T - T_{ve,i}\right)d\forall$$

Reservatório central:

$$m_{bl}c_b\frac{dT_{ar}}{dt} = \sum \omega_b \rho_b c_b \left(T_{ve,i} - T_{ar}\right) + \int_{\forall} \omega_b \rho_b c_b \left(T - T_{ve,i}\right) d\forall$$

Modelagem do sistema termorregulador

Escola Politécnica da Universidade de São Paulo

Mecanismo vasomotor

$$\Delta \omega_{b,i} = K_1 \Big(T_{hy} - T_{hy,0} \Big) + K_2 \Big(\overline{T}_s - \overline{T}_{s,0} \Big) \qquad \qquad K_1 = 10K_2$$

Mecanismo sudomotor

$$E_{sw,i} = \left[K_3 \left(T_{hy} - T_{hy,0} \right) + K_4 \left(\overline{T}_s - \overline{T}_{s,0} \right) \right] e^{\frac{\overline{T}_{s,i} - \overline{T}_{s,0}}{10}} \qquad K_3 = 9K_4$$
$$w = 0,06 + 0,94 \frac{E_{sw}}{E}$$

Calafrios

$$\Delta M_{sh} = K_5 \left(T_{ty} - T_{ty,0} \right) + K_6 \left(\overline{T}_s - \overline{T}_{s,0} \right) + K_7 \Delta Q_{sup} \qquad \qquad K_5 = 5K_6$$

Resultados

Escola Politécnica da Universidade de São Paulo

Neutralidade térmica: $30 \circ C$ 50 % v < 0,10 m / s

Resultados: regime transitório

Resultados: regime transitório

Referências

WISSLER, E.H. Steady-state temperature distribution in man. Journal of AppliedPhysiology, v.16, p.734-40, 1961.

FANGER, P.O. Calculation of thermal comfort: introduction of a basic comfort equation.**ASHRAE Transactions**, **v.73**, **n.2**, **p.III.4.1-20**, **1967**.

WISSLER, E.H. Mathematical simulation of human thermal behavior using whole body models. In: Heat transfer in medicine and biology. SHITZER, A.; EBERHART, R.C., New York, Plenum Press, 1985. v.1, p.325-73.

WERNER, J.; BUSE, M. Temperature profiles with respect to inhomogeneity and geometry of the human body. **Journal of Applied Physiology**, v.65, p.1110-18, 1988.

TAKEMORI, T.; NAKAJIMA, T.; SHOJI, Y. A fundamental model of the human thermal system for prediction of thermal comfort. **Transactions of the Japan Society of Mechanical Engineers. v. 61**, **p.1513-20**, **1995**.

FIALA, D.; LOMAS, K.J.; STOHRER, M. A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. **Journal of Applied Physiology, v.87, p. 1957-72, 1999.**

FERREIRA, M.S., 2001, "A Model of the Human Thermal System," PhD thesis, University of Sao Paulo.

M. AL-OTHMANI, N. GHADDAR, K. GHALI, A multi-segmented human bioheat model for transient and asymmetric radiative environments, International Journal of Heat and Mass Transfer 51 (23-24) (2008) 5522-5533.

Apêndice

Dedução da temperatura do sangue arterial

Temperatura do sangue arterial

$$\boldsymbol{\theta}_{s,i} = \left[\frac{\dot{q}_i}{\boldsymbol{\omega}_{bi} \boldsymbol{\rho}_b \boldsymbol{c}_b} + \boldsymbol{\theta}_{ar,i} \right] \boldsymbol{B}_i \qquad (2)$$

$$\theta_{ar,i} - \theta_{ve,i} = \frac{2h_{ef,i}}{\rho_b \omega_{bi} c_b R_i} \theta_{s,i} - \frac{\dot{q}_i}{\rho_b \omega_{bi} c_b}$$
(3)

$$\theta_{ar} - \theta_{ve,out,i} = \theta_{ar,i} - \theta_{ve,i} \tag{4}$$

$$\theta_{ar} - \theta_{ar,i} = \frac{U_i A_i}{\rho_b \omega_{bi} \pi R_i^2 L_i c_b} \Big(\theta_{ar} - \theta_{ve,out,i} \Big)$$
(5)

$$\sum_{i=1}^{6} \rho_b \omega_{bi} \pi R_i^2 L_i c_b \left(\theta_{ar} - \theta_{ve,out,i} \right) = -h_{resp} \theta_{ar}$$
(5)

$$(2) + (3): \quad \theta_{ar,i} - \theta_{ve,i} = \frac{2h_{ef,i}B_i}{\rho_b \omega_{bi} c_b R_i} \left[\frac{\dot{q}_i}{\omega_{bi} \rho_b c_b} + \theta_{ar,i} \right] - \frac{\dot{q}_i}{\rho_b \omega_{bi} c_b} \tag{8}$$

$$(8) + (4): \quad \theta_{ar} - \theta_{ve,out,i} = \frac{2h_{ef,i}B_i}{\rho_b \omega_{bi} c_b R_i} \left[\frac{\dot{q}_i}{\omega_{bi} \rho_b c_b} + \theta_{ar,i} \right] - \frac{\dot{q}_i}{\rho_b \omega_{bi} c_b} \tag{9}$$

$$(9) + (5): \quad \frac{\rho_b \omega_{bi} \pi R_i^2 L_i c_b}{U_i A_i} \Big(\theta_{ar} - \theta_{ar,i} \Big) = \frac{2h_{ef,i} B_i}{\rho_b \omega_{bi} c_b R_i} \left[\frac{\dot{q}_i}{\omega_{bi} \rho_b c_b} + \theta_{ar,i} \right] - \frac{\dot{q}_i}{\rho_b \omega_{bi} c_b} \tag{10}$$

(5) + (6):
$$\sum_{i=1}^{6} \frac{\left(\rho_{b}\omega_{bi}c_{b}\right)^{2} \pi^{2}R_{i}^{4}L_{i}^{2}}{U_{i}A_{i}} \left(\theta_{ar} - \theta_{ar,i}\right) = -h_{resp}\theta_{ar}$$
(11)

 $(10) + (11) \rightarrow \Theta_{ar}$

$$\theta_{ar} = \frac{\frac{6}{\sum_{i=1}^{6} \frac{R_{i}^{2} L_{i} \dot{q}_{i} - 2R_{i} L_{i} h_{ef,i} B_{i} / (\rho_{b} \omega_{bi} c_{b})}{1 + \frac{2U_{i} A_{i} h_{ef,i} B_{i}}{\pi R_{i}^{3} (\rho_{b} \omega_{bi} c_{b})^{2} L_{i}}}$$
(7)
$$\theta_{ar} = \frac{\frac{h_{resp}}{\pi} + \sum_{i=1}^{6} \frac{2R_{i} L_{i} h_{ef,i} B_{i}}{1 + \frac{2U_{i} A_{i} h_{ef,i} B_{i}}{\pi R_{i}^{3} (\rho_{b} \omega_{bi} c_{b})^{2} L_{i}}}$$
(7)