Problems

1. a. Find the solution $u(x, y)$ of Laplace's equation in the rectangle $0<x<a, 0<y<b$, that satisfies the boundary conditions

$$
\begin{array}{lll}
u(0, y)=0, & u(a, y)=0, & 0<y<b \\
u(x, 0)=0, & u(x, b)=g(x), & 0<x<a
\end{array}
$$

b. Find the solution if

$$
g(x)=\left\{\begin{array}{lr}
x, & 0 \leq x \leq a / 2, \\
a-x, & a / 2 \leq x \leq a
\end{array}\right.
$$

G c. For $a=3$ and $b=1$, plot u versus x for several values
3. a. Find the solution $u(x, y)$ of Laplace's equation in the rectangle $0<x<a, 0<y<b$, that satisfies the boundary conditions

$$
\begin{array}{lll}
u(0, y)=0, & u(a, y)=f(y), & 0<y<b \\
u(x, 0)=h(x), & u(x, b)=0, & 0<x<a
\end{array}
$$

Hint: Consider the possibility of adding the solutions of two problems, one with homogeneous boundary conditions except for $u(a, y)=f(y)$, and the other with homogeneous boundary conditions except for $u(x, 0)=h(x)$.
b. Find the solution if $h(x)=(x / a)^{2}$ and $f(y)=1-y / b$.

G c. Let $a=2$ and $b=2$. Plot the solution in several ways: u versus x (for a uniform sample of y values), u versus y (for a uniform sample of x values), u versus both x and y, and a contour plot.
4. Show how to find the solution $u(x, y)$ of Laplace's equation in the rectangle $0<x<a, 0<y<b$, that satisfies the boundary conditions

$$
\begin{aligned}
& u(0, y)=k(y), \quad u(a, y)=f(y), \quad 0<y<b, \\
& u(x, 0)=h(x), \quad u(x, b)=g(x), \quad 0<x<a .
\end{aligned}
$$

Hint: See Problem 3

5. Find the solution $u(r, \theta)$ of Laplace's equation

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad r>a, \quad 0<\theta<2 \pi
$$

outside the circle $r=a$, that satisfies the boundary condition

$$
u(a, \theta)=f(\theta), \quad 0 \leq \theta<2 \pi
$$

on the circle. Assume that $u(r, \theta)$ is single-valued and bounded for $r>a$.
6. a. Find the solution $u(r, \theta)$ of Laplace's equation in the semicircular region $r<a, 0<\theta<\pi$, that satisfies the boundary conditions

$$
\begin{aligned}
u(r, 0) & =0, \quad u(r, \pi)=0, & & 0<r<a \\
u(a, \theta) & =f(\theta), & & 0<\theta<\pi
\end{aligned}
$$

Assume that u is single-valued and bounded in the given region.
b. Find the solution if $f(\theta)=\theta(\pi-\theta)$.
(G) c. Let $a=2$ and plot the solution in several ways: u versus r, u versus θ, u versus both r and θ, and a contour plot.
7. Find the solution $u(r, \theta)$ of Laplace's equation in the circular sector $0<r<a, 0<\theta<\alpha$, that satisfies the boundary conditions

$$
\begin{array}{rlrl}
u(r, 0) & =0, \quad u(r, \alpha)=0, & 0<r<a \\
u(a, \theta) & =f(\theta), & & 0<\theta<\alpha
\end{array}
$$

Assume that u is single-valued and bounded in the sector and that $0<\alpha<2 \pi$.
8. a. Find the solution $u(x, y)$ of Laplace's equation in the semiinfinite strip $0<x<a, y>0$, that satisfies the boundary conditions

$$
\begin{gathered}
u(0, y)=0, \quad u(a, y)=0, \quad y>0 \\
u(x, 0)=f(x), \quad 0<x<a
\end{gathered}
$$

and the additional condition that $u(x, y) \rightarrow 0$ as $y \rightarrow \infty$.
b. Find the solution if $f(x)=x(a-x)$.
of y and also plot u versus y for several values of x. (Use enough terms in the Fourier series to accurately approximate the nonhomogeneous boundary condition.)
G d. Plot u versus both x and y in three dimensions. Also draw a contour plot showing several level curves of $u(x, y)$ in the $x y$ plane.
2. Find the solution $u(x, y)$ of Laplace's equation in the rectangle $0<x<a, 0<y<b$, that satisfies the boundary conditions

$$
\begin{array}{ll}
u(0, y)=0, & u(a, y)=0, \\
u(x, 0)=h(x), & u(x, b)=0, \\
0<x<a
\end{array}
$$

(N c. Let $a=5$. Find the smallest value of y_{0} for which $u(x, y) \leq 0.1$ for all $y \geq y_{0}$.
9. Show that equation (24) has periodic solutions only if λ is real. Hint: Let $\lambda=-\mu^{2}$, where $\mu=\nu+i \sigma$ with ν and σ real.
10. Consider the problem of finding a solution $u(x, y)$ of Laplace's equation in the rectangle $0<x<a, 0<y<b$, that satisfies the boundary conditions

$$
\begin{array}{ll}
u_{x}(0, y)=0, \quad u_{x}(a, y)=f(y), & 0<y<b \\
u_{y}(x, 0)=0, & u_{y}(x, b)=0,
\end{array} 0<x<a
$$

This is an example of a Neumann problem.
a. Show that Laplace's equation and the homogeneous boundary conditions determine the fundamental set of solutions

$$
\begin{aligned}
& u_{0}(x, y)=c_{0} \\
& u_{n}(x, y)=c_{n} \cosh \left(\frac{n \pi x}{b}\right) \cos \left(\frac{n \pi y}{b}\right), \quad n=1,2,3, \ldots
\end{aligned}
$$

b. By superposing the fundamental solutions of part (a), formally determine a function u satisfying the nonhomogeneous boundary condition $u_{x}(a, y)=f(y)$. Note that when $u_{x}(a, y)$ is calculated, the constant term in $u(x, y)$ is eliminated, and there is no condition from which to determine c_{0}. Furthermore, it must be possible to express f by means of a Fourier cosine series of period $2 b$, which does not have a constant term. This means that

$$
\int_{0}^{b} f(y) d y=0
$$

is a necessary condition for the given problem to be solvable. Finally, note that c_{0} remains arbitrary, and hence the solution is determined only up to this additive constant. This is a property of all Neumann problems.
11. Find a solution $u(r, \theta)$ of Laplace's equation inside the circle $r=a$ that satisfies the boundary condition on the circle

$$
u_{r}(a, \theta)=g(\theta), \quad 0<\theta<2 \pi
$$

Note that this is a Neumann problem and that its solution is determined only up to an arbitrary additive constant. State a necessary condition on $g(\theta)$ for this problem to be solvable by the method of separation of variables (see Problem 10).
12. a. Find the solution $u(x, y)$ of Laplace's equation in the rectangle $0<x<a, 0<y<b$, that satisfies the boundary conditions

$$
\begin{array}{cll}
u(0, y)=0, & u(a, y)=0, & 0<y<b \\
u_{y}(x, 0)=0, & u(x, b)=g(x), & 0<x<a
\end{array}
$$

Note that this is neither a Dirichlet nor a Neumann problem, but a mixed problem in which u is prescribed on part of the boundary and its normal derivative on the rest.
b. Find the solution if

$$
g(x)=\left\{\begin{array}{lrl}
x, & 0 & \leq x \leq a / 2 \\
a-x, & a / 2 & \leq x \leq a
\end{array}\right.
$$

G c. Let $a=3$ and $b=1$. By drawing suitable plots, compare this solution with the solution of Problem 1.
13. a. Find the solution $u(x, y)$ of Laplace's equation in the rectangle $0<x<a, 0<y<b$, that satisfies the boundary conditions

$$
\begin{array}{lll}
u(0, y)=0, & u(a, y)=f(y), & 0<y<b \\
u(x, 0)=0, & u_{y}(x, b)=0, & 0<x<a
\end{array}
$$

Hint: Eventually, it will be necessary to expand $f(y)$ in a series that makes use of the functions $\sin (\pi y / 2 b), \sin (3 \pi y / 2 b)$, $\sin (5 \pi y / 2 b), \ldots$ (see Problem 39 of Section 10.4).
b. Find the solution if $f(y)=y(2 b-y)$.

G c. Let $a=3$ and $b=2$; plot several different views of the solution.
14. a. Find the solution $u(x, y)$ of Laplace's equation in the rectangle $0<x<a, 0<y<b$, that satisfies the boundary conditions

$$
\begin{array}{rlrl}
u_{x}(0, y) & =0, & u_{x}(a, y) & =0, \\
& & 0<y<b, \\
u(x, 0) & =0, & u(x, b) & =g(x), \\
& 0<x<a .
\end{array}
$$

b. Find the solution if $g(x)=1+x^{2}(x-a)^{2}$.
© c. Let $a=3$ and $b=2$; plot several different views of the solution.
15. Show that Laplace's equation in polar coordinates is

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 .
$$

Hint: Use $x=r \cos \theta$ and $y=r \sin \theta$ and the chain rule.
16. Show that Laplace's equation in cylindrical coordinates is

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}+u_{z z}=0
$$

Hint: Use $x=r \cos \theta, y=r \sin \theta, z=z$, and the chain rule.
17. Show that Laplace's equation in spherical coordinates is

$$
u_{\rho \rho}+\frac{2}{\rho} u_{\rho}+\frac{1}{r^{2}} u_{\theta \theta}+\frac{1}{\rho^{2} \sin ^{2} \phi} u_{\theta \theta}+\frac{\cot \phi}{r^{2}} u_{\phi}=0
$$

Hint: Use $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \theta$, and the chain rule.
18. a. Laplace's equation in cylindrical coordinates was found in Problem 15. Show that axially symmetric solutions (i.e., solutions that do not depend on θ) satisfy

$$
u_{r r}+\frac{1}{r} u_{r}+u_{z z}=0 .
$$

b. Assuming that $u(r, z)=R(r) Z(z)$, show that R and Z satisfy the equations

$$
r R^{\prime \prime}+R^{\prime}+\lambda^{2} r R=0, \quad Z^{\prime \prime}-\lambda^{2} Z=0
$$

Note: The equation for R is Bessel's equation of order zero with independent variable λr.
19. Flow in an Aquifer. Consider the flow of water in a porous medium, such as sand, in an aquifer. The flow is driven by the hydraulic head, a measure of the potential energy of the water above the aquifer. Let $R: 0<x<a, 0<z<b$ be a vertical section of an aquifer. In a uniform, homogeneous medium, the hydraulic head $u(x, z)$ satisfies Laplace's equation

$$
\begin{equation*}
u_{x x}+u_{z z}=0 \quad \text { in } R \tag{39}
\end{equation*}
$$

If water cannot flow through the sides and bottom of R, then the boundary conditions there are

$$
\begin{align*}
& u_{x}(0, z)=0, \quad u_{x}(a, z)=0, \quad 0<z<b \tag{40}\\
& u_{z}(x, 0)=0, \quad 0<x<a \tag{41}
\end{align*}
$$

Finally, suppose that the boundary condition at $z=b$ is

$$
\begin{equation*}
u(x, b)=b+\alpha x, \quad 0<x<a \tag{42}
\end{equation*}
$$

where α is the slope of the water table.
a. Solve the given boundary value problem for $u(x, z)$.
(G) Let $a=1000, b=500$, and $\alpha=0.1$. Draw a contour plot of the solution in R; that is, plot some level curves of $u(x, z)$.
(G) c. Water flows along paths in R that are orthogonal to the level curves of $u(x, z)$ in the direction of decreasing u. Plot some of the flow paths.

