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where h1 and h2 are nonnegative constants. If we apply the method of separation of variables
to the problem consisting of equations (1), (3), and (44), we find that X ( x) must be a solution
of

X ′′ + λX = 0, X ′(0) − h1X (0) = 0, X ′( L) + h2X ( L) = 0, (45)

where λ is the separation constant. Once again, it is possible to show that nontrivial solutions
can exist only for certain nonnegative real values of λ , the eigenvalues, but these values are not
given by a simple formula (see Problem 20). It is also possible to show that the corresponding
solutions of equations (45), the eigenfunctions, satisfy an orthogonality relation and that we
can satisfy the initial condition (3) by superposing solutions of equations (45). However, the
resulting series is not included in the discussion of this chapter. There is a more general theory
that covers such problems, and it is outlined in Chapter 11.

Problems
In each of Problems 1 through 8, find the steady-state solution of the
heat conduction equation α 2uxx = ut that satisfies the given set of
boundary conditions.
1. u(0, t) = 10, u(50, t) = 40
2. u(0, t) = 30, u(40, t) = −20
3. ux (0, t) = 0, u( L , t) = 0
4. ux (0, t) = 0, u( L , t) = T

5. u(0, t) = 0, ux ( L , t) = 0
6. u(0, t) = T , ux ( L , t) = 0
7. ux (0, t) − u(0, t) = 0, u( L , t) = T

8. u(0, t) = T , ux ( L , t) + u( L , t) = 0
9. Let an aluminum rod of length 20 cm be initially at the uniform
temperature of 25◦C. Suppose that at time t = 0, the end x = 0 is
cooled to 0◦C while the end x = 20 is heated to 60◦C, and both are
thereafter maintained at those temperatures.

a. Find the temperature distribution in the rod at any time t .
G b. Plot the initial temperature distribution, the final (steady-
state) temperature distribution, and the temperature distributions
at two representative intermediate times on the same set of axes.
G c. Plot u versus t for x = 5, 10, and 15.
N d. Estimate how much time must elapse before the
temperature at x = 5 cm comes (and remains) within 1% of
its steady-state value.

10. a. Let the ends of a copper rod 100 cm long be maintained
at 0◦C. Suppose that the center of the bar is heated to 100◦C
by an external heat source and that this situation is maintained
until a steady-state results. Find this steady-state temperature
distribution.
b. At a time t = 0 (after the steady-state of part a has been
reached), let the heat source be removed. At the same instant, let
the end x = 0 be placed in thermal contact with a reservoir at
20◦C, while the other end remains at 0◦C. Find the temperature
as a function of position and time.
G c. Plot u versus x for several values of t . Also plot u versus
t for several values of x .
N d. What limiting value does the temperature at the center of
the rod approach after a long time? How much time must elapse
before the center of the rod cools to within 1◦C of its limiting
value?

11. Consider a rod of length 30 for which α 2 = 1. Suppose the
initial temperature distribution is given by u( x , 0) = x(60 − x)/30
and that the boundary conditions are u(0, t) = 30 and u(30, t) = 0.

a. Find the temperature in the rod as a function of position and
time.
G b. Plot u versus x for several values of t . Also plot u versus
t for several values of x .
G c. Plot u versus t for x = 12. Observe that u initially
decreases, then increases for a while, and finally decreases to
approach its steady-state value. Explain physically why this
behavior occurs at this point.

12. Consider a uniform rod of length L with an initial temperature
given by u( x , 0) = sin(π x/L) , 0 ≤ x ≤ L . Assume that both ends
of the bar are insulated.

a. Find the temperature u( x , t) .
b. What is the steady-state temperature as t → ∞?
G c. Let α 2 = 1 and L = 40. Plot u versus x for several values
of t . Also plot u versus t for several values of x .
d. Describe briefly how the temperature in the rod changes as
time progresses.

13. Consider a bar of length 40 cmwhose initial temperature is given
by u( x , 0) = x(60 − x)/30. Suppose that α 2 = 1/4 cm2/s and that
both ends of the bar are insulated.

a. Find the temperature u( x , t) .
G b. Plot u versus x for several values of t . Also plot u versus
t for several values of x .
c. Determine the steady-state temperature in the bar.
N d. Determine how much time must elapse before the
temperature at x = 40 comes within 1◦C of its steady-state value.

14. Consider a bar 30 cm long that is made of a material for
which α 2 = 1 and whose ends are insulated. Suppose that the initial
temperature is zero except for the interval 5 < x < 10, where the
initial temperature is 25◦C.

a. Find the temperature u( x , t) .
G b. Plot u versus x for several values of t . Also plot u versus
t for several values of x .
G c. Plot u(4, t) and u(11, t) versus t . Observe that the points
x = 4 and x = 11 are symmetrically located with respect to
the initial temperature pulse, yet their temperature plots are
significantly different. Explain physically why this is so.
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15. Consider a uniform bar of length L having an initial temperature
distribution given by f ( x) , 0 ≤ x ≤ L . Assume that the temperature
at the end x = 0 is held at 0◦C, while the end x = L is insulated so
that no heat passes through it.

a. Show that the fundamental solutions of the partial differential
equation and boundary conditions are

un( x , t) = e−(2n−1)2π 2α2t/4L2 sin
(
(2n − 1)π x

2L

)
,

n = 1, 2, 3, . . . .

b. Find a formal series expansion for the temperature u( x , t)

u( x , t) =
∞∑

n=1
cnun( x , t)

that also satisfies the initial condition u( x , 0) = f ( x) .
Hint: Even though the fundamental solutions involve only the
odd sines, it is still possible to represent f by a Fourier series
involving only these functions. See Problem 39 of Section 10.4.

16. In the bar of Problem 15, suppose that L = 30, α 2 = 1, and the
initial temperature distribution is f ( x) = 30− x for 0 < x < 30.

a. Find the temperature u( x , t) .
G b. Plot u versus x for several values of t . Also plot u versus
t for several values of x .
c. How does the location xm of the warmest point in the bar
change as t increases? Draw a graph of xm versus t .
G d. Plot the maximum temperature in the bar versus t .

17. Suppose that the conditions are as in Problems 15 and 16 except
that the boundary condition at x = 0 is u(0, t) = 40.

a. Find the temperature u( x , t) .
G b. Plot u versus x for several values of t . Also plot u versus
t for several values of x .
c. Compare the plots you obtained in this problem with those
from Problem 16. Explain how the change in the boundary
condition at x = 0 causes the observed differences in the
behavior of the temperature in the bar.

18. Consider the boundary value problem
X ′′ + λX = 0, X ′(0) = 0, X ′( L) = 0. (46)

Let λ = µ2, where µ = ν + iσ with ν and σ real. Show that if
σ &= 0, then the only solution of equations (46) is the trivial solution
X ( x) = 0. Hint: Use an argument similar to that in Problem 23 of
Section 10.1.
19. The right end of a bar of length a with thermal conductivity κ1
and cross-sectional area A1 is joined to the left end of a bar of thermal
conductivity κ2 and cross-sectional area A2. The composite bar has a
total length L . Suppose that the end x = 0 is held at temperature zero,
while the end x = L is held at temperature T . Find the steady-state
temperature in the composite bar, assuming that the temperature and
rate of heat flow are continuous at x = a. Hint: See equation (2) of
Appendix A.
20. Consider the problem

α 2uxx = ut , 0 < x < L , t > 0;
u(0, t) = 0, ux ( L , t) + γu( L , t) = 0, t > 0;
u( x , 0) = f ( x) , 0 ≤ x ≤ L .

(47)

a. Let u( x , t) = X ( x)T ( t) , and show that

X ′′ + λX = 0, X (0) = 0, X ′( L) + γ X ( L) = 0, (48)

and

T ′ + λα 2T = 0,

where λ is the separation constant.
b. Assume that λ is real, and show that problem (48) has no
nontrivial solutions if λ ≤ 0.
c. If λ > 0, let λ = µ2 with µ > 0. Show that problem (48)
has nontrivial solutions only if µ is a solution of the equation

µ cos(µL) + γ sin(µL) = 0. (49)

d. Rewrite equation (49) as tan(µL) = −µ/γ . Then, by
drawing the graphs of y = tan(µL) and y = −µ/γ for
µ > 0 on the same set of axes, show that equation (49) is
satisfied by infinitely many positive values of µ ; denote these
by µ1, µ2, . . . , µn , . . . , ordered in increasing size.
e. Determine the set of fundamental solutions un( x , t)
corresponding to the values µn found in part d.

An External Heat Source. Consider the heat conduction problem in
a bar that is in thermal contact with an external heat source or sink.
Then the modified heat conduction equation is

ut = α 2uxx + s( x) , (50)

where the term s( x) describes the effect of the external agency; s( x) is
positive for a source and negative for a sink. Suppose that the boundary
conditions are

u(0, t) = T1, u( L , t) = T2 (51)

and the initial condition is

u( x , 0) = f ( x) . (52)

Problems 21 through 23 deal with this kind of problem.
21. Write u( x , t) = v( x) + w( x , t) , where v and w are the
steady-state and transient parts of the solution, respectively. State the
boundary value problems that v( x) and w( x , t) , respectively, satisfy.
Observe that the problem for w is the fundamental heat conduction
problem discussed in Section 10.5, with a modified initial temperature
distribution.
22. a. Suppose that α 2 = 1 and s( x) = k, a constant, in equation

(50). Find v( x) .
b. Assume that T1 = 0, T2 = 0, L = 20, k = 1/5, and that
f ( x) = 0 for 0 < x < L . Determine w( x , t) .
G c. Plot u( x , t) versus x for several values of t ; on the same
axes.
G d. Plot the steady-state part of the solution v( x) .

23. a. Let α 2 = 1 and s( x) = kx/L , where k is a constant, in
equation (50). Find v( x) .
b. Assume that T1 = 10, T2 = 30, L = 20, k = 1/2, and that
f ( x) = 0 for 0 < x < L . Determine w( x , t) .
G c. Plot u( x , t) versus x for several values of t ; on the same
axes.
G d. Plot the steady-state part of the solution v( x) .
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