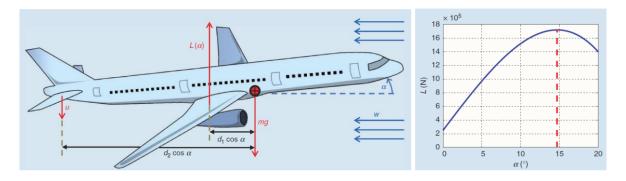
Prova 1

29 de outubro de 2018

Considere o avião da figura abaixo. $L(\alpha)$ é a força de sustentação gerada pelas asas, sendo α o ângulo de ataque.



1) (1 ponto) Encontre a equação dinâmica para o ângulo de ataque, considerando o momento de inércia do avião igual a *J*.

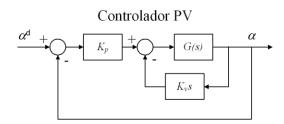
2) (2 pontos) Considere que:

- A força de sustentação gerada pelas asas é dada por: $L(\alpha) = l_0 + l_1 \alpha$ $l_2 \alpha^3$ (veja figura acima).
- O ângulo de ataque assume valores pequenos, ou seja, $\cos(\alpha) \cong 1$ e $\alpha^3 \cong 0$.

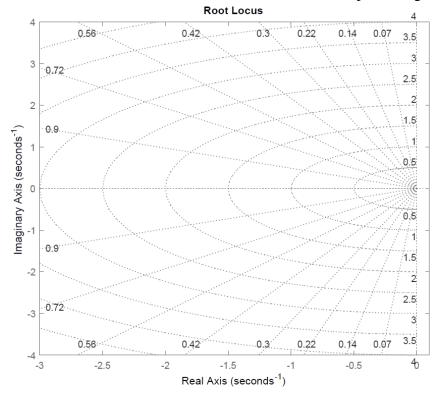
Encontre a função transferência relacionado o ângulo de ataque α (saída) e uma ação de controle auxiliar ν (entrada). Dica: defina uma ação de controle u que compense o efeito de l_0 e crie uma ação de controle auxiliar ν , fornecendo um ganho unitário ao sistema.

Considere os valores: $J = 4.5 \times 10^6 \text{ Nm}^2$, $d_1 = 4 \text{ m e } l_1 = 9 \times 10^5 \text{ N/rad}$.

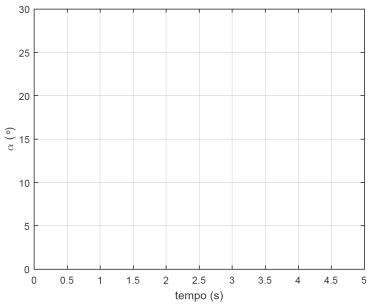
- 3) (1 ponto) Mostre que um controlador do tipo C(s) = K não garante a estabilidade do sistema de controle do ângulo de ataque. Esboce o Lugar das Raízes na figura abaixo.
- 4) (1 ponto) Para garantir estabilidade ao sistema, considere o controlador PV mostrado na figura abaixo:



Qual a influência dos ganhos K_p e K_v na resposta do sistema em malha fechada ao degrau unitário? Analise considerando a freqüência natural (ω_n) , o fator de amortecimento (ζ) , o tempo de subida (t_r) e o sobressinal (M_p) .



- 5) (1 ponto) Defina especificações de desempenho, tempo de subida (entre 0,5 e 2 s) e sobressinal, para o controle do ângulo de ataque.
- 6) (1 ponto) Encontre o controlador PV que satisfaça as especificações definidas acima.
- 7) (2 pontos) Esboce o Lugar das Raízes na figura acima, considerando K_v variável e K_p fixo no valor encontrado acima. Identifique o ponto correspondente às especificações definidas no item 5.
- 8) (1 ponto) Esboce na figura abaixo a resposta para uma entrada degrau que garanta a maior força de sustentação. Identifique o tempo de subida e o sobressinal.



SEM 536 - SISTEMAS DE CONTROLE I

Prova 1 - 2018 - Resolução

1. Modelo do sistema. Aplicando a Lei de Newton-Euler, somatória de momentos em torno do centro de massa é igual ao momento de inércia vezes a aceleração angular, $\ddot{\alpha}$:

$$J\ddot{\alpha} = ud_2cos(\alpha) - (l_0 + l_1\alpha - l_2\alpha^3)d_1cos(\alpha).$$

2. Assumindo $cos(\alpha) = 1$ e $\alpha^3 = 0$:

$$J\ddot{\alpha} = ud_2 - l_0d_1 - l_1d_1\alpha,$$

$$J\ddot{\alpha} + l_1 d_1 \alpha = u d_2 - l_0 d_1.$$

Definindo uma ação de controle u que compense o efeito de l_0 e crie uma ação de controle auxiliar v, fornecendo um ganho unitário ao sistema:

$$u = \frac{l_0 d_1}{d_2} + \frac{l_1 d_1}{d_2} v.$$

Assim:

$$J\ddot{\alpha} + l_1 d_1 \alpha = l_1 d_1 v.$$

A Função Transferência de Malha Aberta, G(s), é obtida aplicando-se a Transformada de Laplace:

$$G(s) = \frac{\alpha(s)}{v(s)} = \frac{l_1 d_1}{Js^2 + l_1 d_1}.$$

Considerando os valores dados:

$$G(s) = \frac{\alpha(s)}{v(s)} = \frac{0.8}{s^2 + 0.8}.$$

3. A Função Transferência Malha Fechada considerando um controlador do tipo C(s) = K é dada por:

$$T(s) = \frac{\alpha(s)}{\alpha^d(s)} = \frac{0.8K}{s^2 + 0.8 + 0.8K}.$$

Desta forma, os polos de Malha Fechada são dados por: $p_1 = \sqrt{0,8+0,8K}j$ e $p_1 = -\sqrt{0,8+0,8K}j$.

Ou seja, os polos são imaginários para qualquer valor de ganho K_p , resultando em um sistema marginalmente instável (oscilante).

Esboçando o Lugar das Raízes (LR) para G(s), mostrado na Figura 3, observa-se que os ramos do LR estão sempre no eixo imaginário.

No Matlab:

4. Controlador PV:

A Função Transferência Malha Fechada para o Controlador PV é dada por:

$$T(s) = \frac{\alpha(s)}{\alpha^d(s)} = \frac{0.8K_P}{s^2 + 0.8K_V s + (0.8 + 0.8K_P)}.$$

Comparando o denominador da Função Transferência Malha Fechada com o denominador de um sistema de segunda ordem padrão, temos:

$$\omega_n = \sqrt{0, 8 + 0, 8K_P},$$

$$\zeta = \frac{0, 8K_V}{2\sqrt{0, 8 + 0, 8K_P}}.$$

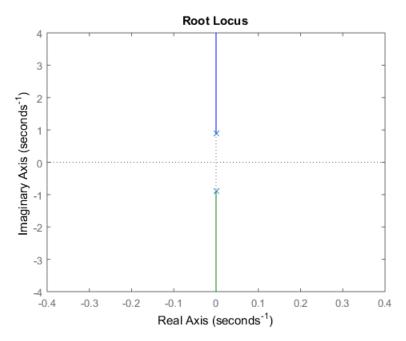


Fig. 1. Lugar das Raízes da planta G(s).

Ou seja, quando se aumenta o ganho K_P , o valor de ω_n aumenta e o valor de ζ diminui. Quando se aumenta o ganho K_V , o valor de ω_n não se altera e o valor de ζ aumenta.

Considerando:

 $t_r = \frac{1.8}{\omega_n}$

e

$$M_p = e^{-(\zeta/\sqrt{1-\zeta^2})\pi},$$

quando se aumenta o ganho K_P , o valor de t_r diminui e o valor de M_P aumenta. Quando se aumenta o ganho K_V , o valor de t_r não se altera e o valor de M_P diminui.

5. Definindo tempo de subida igual a 2 s e sobressinal igual a 5%:

$$\omega_n = \frac{1.8}{2} = 0,9$$

 \mathbf{e}

$$\zeta = 0, 7.$$

6. Utilizando as equações da questão 4 e as especificações da questão 5, os valores dos ganhos são $K_P = 0,0125$ e $K_V = 1,575$.

7. Lugar das Raízes variando K_P e $K_V=1,575$:

$$1 + K_P \frac{0.8}{s^2 + 1.26s + 0.8} = 1 + K_P G_P(s).$$

Lugar das Raízes variando K_V e $K_P=0,0125$:

$$1 + K_V \frac{0.8s}{s^2 + 0.81}.$$

No Matlab:

```
n = 0.8;
d = [1 1.26 0.8];
G_P = tf(n,d);
rlocus(G_P)
hold on
n = [0.8 0];
d = [1 0 0.81];
G_V = tf(n,d);
rlocus(G_V)
```

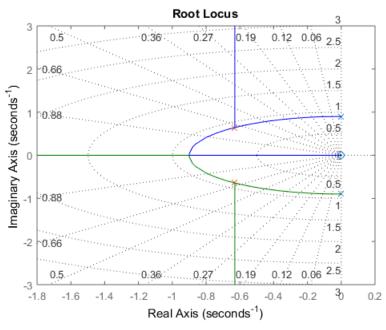


Fig. 2. Lugar das Raízes

8. Resposta do sistema em Malha Fechada para entrada de referência degrau igual a 15 graus (máxima sustentação).

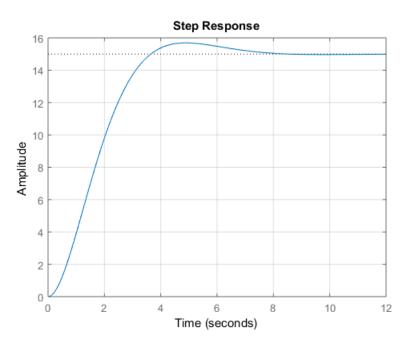


Fig. 3. Resposta ao degrau.