Quantum Theory of Many-Body systems in Condensed Matter (4302112) 2020

Prof. Luis Gregório Dias
luisdias@if.usp.br

Today's class: Matsubara formalism - Imaginary-time GFs

- Imaginary-time evolution of operators.
- Imaginary-time ordered Green's functions.
- Sum over Matsubara frequencies.
- Feynman diagrams for Matsubara Green's functions.

Imaginary time evolution

Correlation functions at finite temperatures.

$$
\left\langle\hat{a}_{k}(t) \hat{a}_{k^{\prime}}^{\dagger}\left(t^{\prime}\right)\right\rangle=\frac{1}{\mathcal{Z}} \operatorname{Tr}\left(e^{-\beta \hat{H}} e^{i \hat{H} t} \hat{a}_{k} e^{-i \hat{H}\left(t-t^{\prime}\right)} \hat{a}_{k^{\prime}}^{\dagger} e^{-i \hat{H} t^{\prime}}\right)
$$

"Imaginary time"

$$
t \rightarrow-i \tau \Rightarrow e^{-\beta \hat{H}} e^{i \hat{H} t}=e^{\hat{H}(\tau-\beta)}
$$

$$
\hat{A}_{H}(\tau) \equiv e^{\hat{H} \tau} \hat{A} e^{-\hat{H} \tau}
$$ Heisenberg picture

Interaction picture :

$$
\hat{U}\left(\tau, \tau_{0}\right)=e^{\hat{H}_{0} \tau} e^{-\hat{H}\left(\tau-\tau_{0}\right)} e^{-\hat{H}_{0} \tau_{0}}
$$

$$
\hat{A}_{I}(\tau) \equiv e^{\hat{H}_{0} \tau} \hat{A} e^{-\hat{H}_{0} \tau}
$$

Interaction picture

Easy to show: $\left\{\begin{array}{l}\hat{A}_{H}(\tau)=\hat{U}(0, \tau) \hat{A}_{I}(\tau) \hat{U}(\tau, 0) \\ e^{-\beta \hat{H}}=e^{-\beta \hat{H}_{0}} \hat{U}(\beta, 0)\end{array}\right.$

Matsubara Green's functions

$$
\left.\begin{array}{l}
\mathcal{G}_{\sigma \sigma^{\prime}}\left(\vec{r}, \tau ; \vec{r}^{\prime}, \tau^{\prime}\right)=-\left\langle\mathcal{T}_{\tau}\left[\hat{\psi}_{\sigma}(\vec{r}, \tau) \hat{\psi}_{\sigma^{\prime}}^{\dagger}\left(\vec{r}^{\prime}, \tau^{\prime}\right)\right]\right\rangle \\
\mathcal{G}_{k k^{\prime}}\left(\tau-\tau^{\prime}\right)=-\left\langle\mathcal{T}_{\tau}\left[\hat{a}_{k}(\tau) \hat{a}_{k^{\prime}}^{\dagger}\left(\tau^{\prime}\right)\right]\right\rangle
\end{array}\right\}
$$

Imaginary-time correlation functions

- Imaginary time ordering: $\quad \mathcal{T}_{\tau}\left[\hat{a}_{k}(\tau) \hat{a}_{k^{\prime}}^{\dagger}\left(\tau^{\prime}\right)\right]=\{$

$$
\begin{aligned}
& \hat{a}_{k}(\tau) \hat{a}_{k^{\prime}}^{\dagger}\left(\tau^{\prime}\right) \text { if } \tau>\tau^{\prime} \\
\pm & \hat{a}_{k^{\prime}}^{\dagger}\left(\tau^{\prime}\right) \hat{a}_{k}(\tau) \text { if } \tau^{\prime}>\tau
\end{aligned}
$$

Free propagator.

$$
\hat{H}_{0}=\sum_{k} \epsilon_{k} \hat{a}_{k}^{\dagger} \hat{a}_{k}
$$

+: Bosons -: Fermions
$\mathcal{G}_{k k}^{(0)}\left(\tau-\tau^{\prime}\right)=-\left[\theta\left(\tau-\tau^{\prime}\right)\left(1 \pm n_{B(F)}\left(\epsilon_{k}, \beta\right)\right) \mp \theta\left(\tau^{\prime}-\tau\right) n_{B(F)}\left(\epsilon_{k}, \beta\right)\right] e^{-\epsilon_{k}\left(\tau-\tau^{\prime}\right)}$

$$
\mathcal{G}_{k k}^{(0)}\left(i \omega_{m}\right)=\frac{1}{i \omega_{m}-\epsilon_{k}} \Rightarrow e^{i \omega_{m} \beta}=\mp 1 \Rightarrow \omega_{m}=\left\{\begin{array}{cc}
2 m \pi / \beta & \text { Bosons } \\
(2 m+1) \pi / \beta & \text { Fermions }
\end{array}\right.
$$

Interaction picture

Using $\quad \hat{A}_{H}(\tau)=\hat{U}(0, \tau) \hat{A}_{I}(\tau) \hat{U}(\tau, 0) \quad$ and $e^{-\beta \hat{H}}=e^{-\beta \hat{H}_{0}} \hat{U}(\beta, 0)$:

$$
\begin{aligned}
& \mathcal{G}_{k k^{\prime}}\left(\tau, \tau^{\prime}\right)=-\frac{\operatorname{Tr}\left\{e^{-\beta \hat{H}_{0}} U(\beta, \tau)\left(\hat{a}_{k}\right)_{I}(\tau) U\left(\tau, \tau^{\prime}\right)\left(\hat{a}_{k^{\prime}}^{\dagger}\right)_{I}\left(\tau^{\prime}\right) U\left(\tau^{\prime}, 0\right)\right\}}{\operatorname{Tr}\left\{e^{-\beta \hat{H}_{0}} U(\beta, 0)\right\}} \\
& \mathcal{G}_{k k^{\prime}}\left(\tau, \tau^{\prime}\right)=-\frac{\left\langle U(\beta, \tau)\left(\hat{a}_{k}\right)_{I}(\tau) U\left(\tau, \tau^{\prime}\right)\left(\hat{a}_{k^{\prime}}^{\dagger}\right)_{I}\left(\tau^{\prime}\right) U\left(\tau^{\prime}, 0\right)\right\rangle_{0}}{\langle U(\beta, 0)\rangle_{0}}
\end{aligned}
$$

The thermal averages involve non-interacting states only!

Perturbative expansion: Feynman diagrams

Perturbative expansion in the interaction (quartic) term:

$$
\begin{aligned}
& \mathcal{G}_{k k^{\prime}}\left(\tau, \tau^{\prime}\right)=-\frac{\left\langle\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{\beta} d \tau_{1} \ldots d \tau_{n} \mathcal{T}_{\tau}\left[\hat{H}_{1}\left(\tau_{1}\right) \ldots \hat{H}_{1}\left(\tau_{n}\right)\left(\hat{a}_{k}\right)_{I}(\tau)\left(\hat{a}_{m}^{\dagger}\right)_{I}\left(\tau^{\prime}\right)\right]\right\rangle_{0}}{\left\langle\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{\beta} d \tau_{1} \ldots d \tau_{n} \mathcal{T}_{\tau}\left[\hat{H}_{1}\left(\tau_{1}\right) \ldots \hat{H}_{1}\left(\tau_{n}\right)\right]\right\rangle_{0}} \\
& \int \hat{H}_{0}=\sum_{k} \epsilon_{k} \hat{a}_{k}^{\dagger} \hat{a}_{k} \\
& \hat{H}_{1}=\frac{1}{2} \sum_{\substack{k m m \\
k^{\prime} m^{\prime}}} V_{k \rightarrow m} k_{k^{\prime}} \hat{a}_{k}^{\dagger} \hat{a}_{m}^{\dagger} \hat{a}_{m^{\prime}} \hat{a}_{k^{\prime}}
\end{aligned}
$$

Rules for Feynman diagrams

$$
\mathcal{G}_{k k^{\prime}}\left(\tau, \tau^{\prime}\right)=-\frac{\left\langle\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{\beta} d \tau_{1} \ldots d \tau_{n} \mathcal{T}_{\tau}\left[\hat{H}_{1}\left(\tau_{1}\right) \ldots \hat{H}_{1}\left(\tau_{n}\right)\left(\hat{a}_{k}\right)_{I}(\tau)\left(\hat{a}_{m}^{\dagger}\right)_{I}\left(\tau^{\prime}\right)\right]\right\rangle_{0}}{\left\langle\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{\beta} d \tau_{1} \ldots d \tau_{n} \mathcal{T}_{\tau}\left[\hat{H}_{1}\left(\tau_{1}\right) \ldots \hat{H}_{1}\left(\tau_{n}\right)\right]\right\rangle_{0}}
$$

To evaluate the n-th order term in the expansion:

- Draw all connected, topologically distinct diagrams with n interaction lines beginning at ($k^{\prime}, \tau^{\prime}$) and ending at (k, τ).
- Associate indices [($\left.\mathrm{k}^{\prime}, \mathrm{k}^{\prime \prime}\right),\left(\mathrm{m}^{\prime}, \mathrm{m}^{\prime \prime}\right)$, etc.] to all interaction $2 n$ vertices.
- To every continuous line from $\left(\mathrm{k}_{2}, \tau_{2}\right) \rightarrow\left(\mathrm{k}_{1}, \tau_{1}\right)$ associate $\mathcal{G}_{k_{1} k_{2}}^{(0)}\left(\tau_{1}, \tau_{2}\right)$
- To every interaction like, associate $-V_{\substack{k^{\prime} \\ k^{\prime} \\ k^{\prime} \\ m^{\prime}}}$
- Sum over internal indices and integrate over $\tau_{\mathrm{n}}(=0$ to $\beta)$.
- Multiply each diagram by $(-1)^{F}$ where $F=$ no. of fermionic closed loops.
- Multiply by $\frac{1}{n!}$

Rules for Feynman diagrams in ($\mathbf{k}, \boldsymbol{i} \omega_{\mathrm{m}}$)

$$
\mathcal{G}\left(\vec{k}, i \omega_{m}\right)
$$

To evaluate the n-th order term in the expansion:

- Draw all connected, topologically distinct diagrams with n interaction lines.
- Associate ($\left.\mathbf{k}_{\mathrm{i}}, \mathrm{i} \omega_{\mathrm{m}}\right)$ to propagating lines and $\left(\mathbf{q}, \mathrm{i}_{\mathrm{n}}\right)$ to interaction lines.
- To every continuous line associate $\frac{1}{\beta V_{\mathrm{r}}} \mathcal{G}^{(0)}\left(\vec{k}_{i}, i \omega_{m_{i}}\right)$
- To every interaction like, associate $-V\left(\vec{q}, i q_{n}\right)$ (iq $\mathrm{iq}_{n} \rightarrow$ bosonic).
- To every equal time propagator associate $e^{i \omega_{m_{i}} \eta}$ with $\eta \rightarrow 0^{+}$
- Apply conservation of qadri-momenta ($\mathbf{k}_{\mathrm{i}}, \mathrm{i} \omega_{\mathrm{mi}}$) in each vertex.
- Integrate over internal momenta and sum over Matsubara frequencies.
- Multiply each diagram by $(-1)^{\text {F }}$ where $F=n o$. of fermionic closed loops.
- Multiply by $\frac{1}{n!}$

