appendix

mmmmmmmm  \X/ave Equations

The propagation of electromagnetic waves is governed by the following Maxwell’s
equations:

VD - (D.1)

V.B = 0 (D.2)

vxE = B (D.3)
a1

VxH = yﬁ% (D.4)

Here, p is the charge density, and J is the current density. We assume that there are
no free charges in the medium so that p = 0. For such a medium, J = ¢ E, where o
is the conductivity of the medium. Since the conductivity of silica is extremely low
(o ~ 0), we assume that J = 0; this amounts to assuming a lossless medium.

In any medium, we also have, from (2.5) and (2.6),

D = ¢E + P,
where P is the electric polarization of the medium and
B =puyH+M),

where M is the magnetic polarization of the medium. Since silica is a nonmagnetic
material, we set M = 0.
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Using these relations, we can eliminate the flux densities from Maxwell’s curl
equations (D.3) and (D.4) and write them only in terms of the field vectors E and H,
and the electric polarization P. For example,

9’E a%p

VxVxE=—ue— — pto—.
Ho€o Mo 3

o (D.5)

To solve this equation for E, we have to relate P to E. If we neglect nonlinear
effects, we can assume the linear relation between P and E given by (2.7) and further,
because of the homogeneity assumption, we can write x (¢) for x(r, t). We relax this
assumption when we discuss nonlinear effects in Section 2.5.

We can solve (D.5) for E most conveniently by using Fourier transforms. The
Fourier transform E of E is defined by (2.4); P and H are defined similarly. It follows
from the properties of Fourier transforms that

E(r,t) = % /00 E(r, w) exp(—iwt)dw.

—00

By differentiating this equation with respect to ¢, we obtain the Fourier transform of
9E/dt as —iwE.
Taking the Fourier transform of (D.5), we get

VxVxE= Moeowzﬁ + Moa)zf’.
Using (2.8) to express P in terms of E, this reduces to
V x V x E = poeow’E + poeow’ 5 E.

We denote ¢ = 1/,/;o€o; ¢ is the speed of light in a vacuum. When losses are
neglected, as we have neglected them, j is real, and we can write n(w) = /1 + ¥ (w),
where n is the refractive index. Note that this is the same as (2.9), which we used as
the definition for the refractive index. With this notation,

w?n? .

E. (D.6)

VxVxE= 3
c

By using the identity,
V xVxE=V(V-E)- V°E,

(D.6) can be rewritten as

2.2
V2E + wC—ZE — V(V-E). (D.7)
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Because of our assumption of a homogeneous medium (x independent of r) and
using (D.1) and (2.9), we get

0=V-D=¢V-1+5)E=en’V-E. (D.8)

This enables us to simplify (D.7) and obtain the wave equation (2.10) for E. Following
similar steps, the wave equation (2.11) can be derived for H.
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