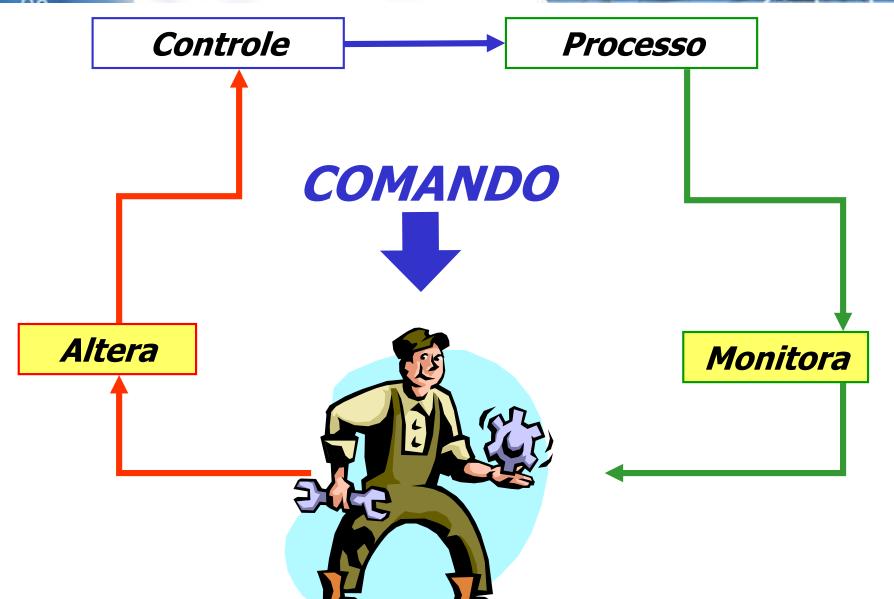
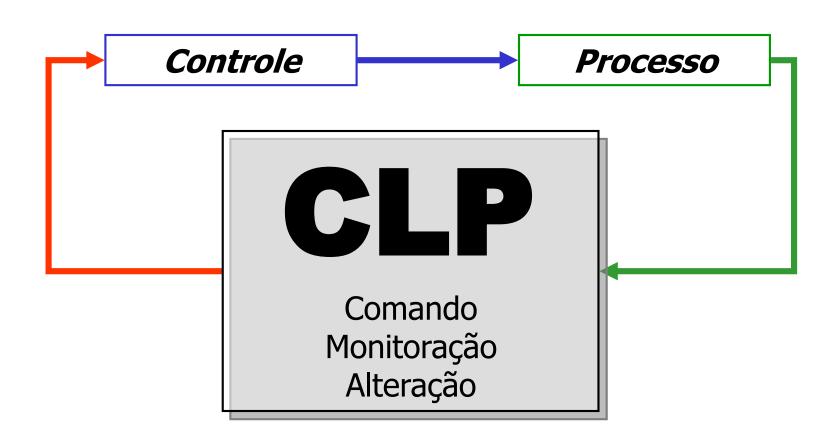
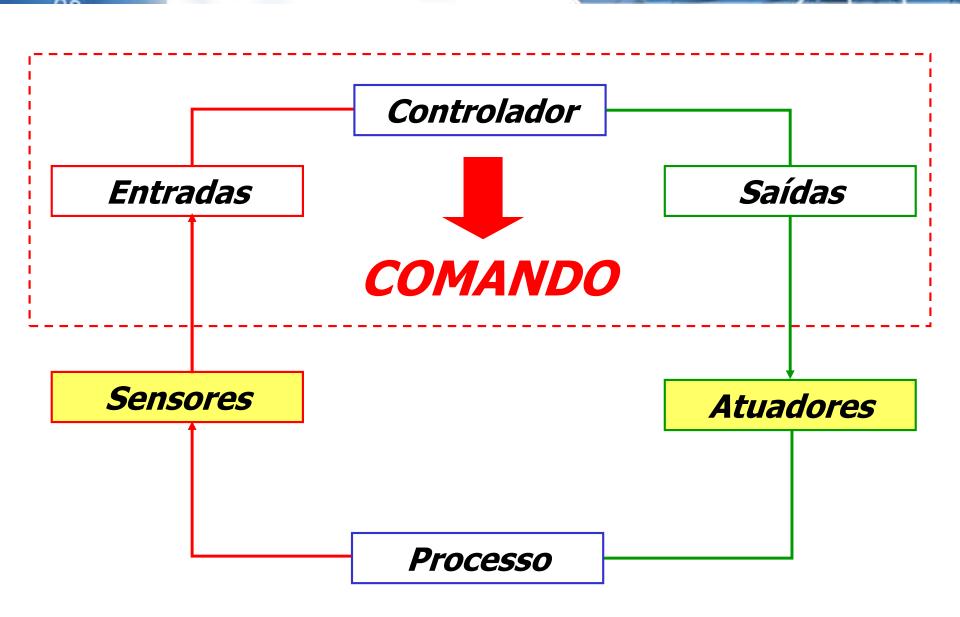


MICRO CLP



- O controlador lógico programável, ou simplesmente CLP, tem revolucionado os comandos e controles industriais desde o seu surgimento na década de 70.
- Inicialmente projetados para substituirem os sistemas de controle por relés, os CLP's limitavam-se a aplicações denvolvendo máquinas e processos de operações repetitivas.


- Com o advento e a consequente evolução tecnológica dos microprocessadores, os CLP's tiveram suas funções ampliadas, aumentando consideravelmente sua capacidade e flexibilidade operacional.
- O que no seu surgimento era executado com componentes discretos, hoje se utiliza de microprocessadores e microcontroladores de última geração, usando técnicas de processamento paralelo, redes de comunicação, etc.



COMO FUNCIONA O CLP?

Leitura das Entradas

Execução do Programa

Também conhecido como a lógica ou intertravamento.

Atualização das Saídas

É um sinal que o CLP envia para o sistema/máquina.

ENTRADAS E SAÍDAS

∠ Entradas Digitais

PNP

K NPN

∠ Entradas Analógicas

∠ 0 a 10V

∠ 4 a 20mA

∠ 0 a 20mA

∠ Saídas Digitais

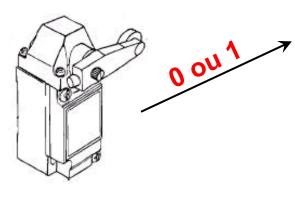
∠ Relé

∠ Transistor

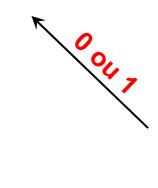
∠ Saídas Analógicas

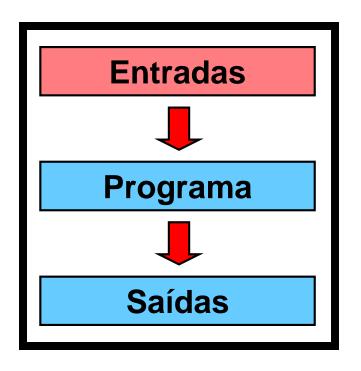
∠ 0 a 10V

∠ 4 a 20mA


∠ 0 a 20mA

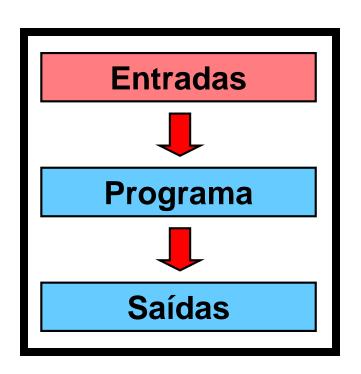
EXEMPLOS DE ENTRADA DIGITAL


Chave fim de curso



Botões e chaves de comando

ENTRADAS

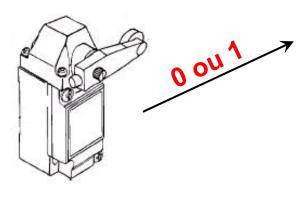


Pode ser dividido em duas categorias:

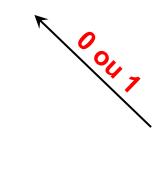
- Entrada digital
- Entrada analógica

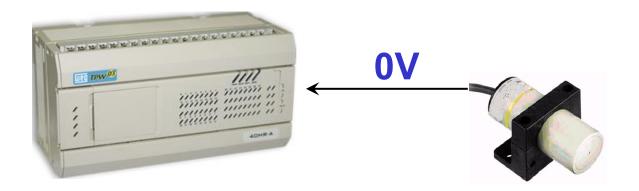
ENTRADA DIGITAL

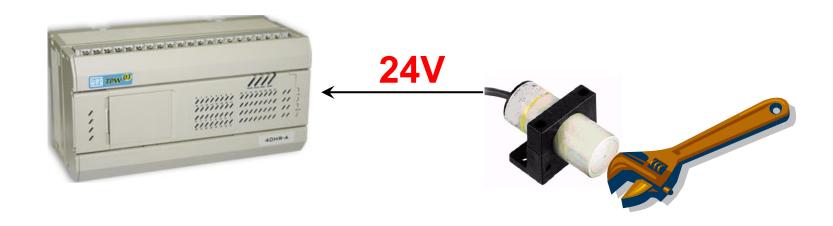
∠ Ligado (1)


∠Desligado (0)

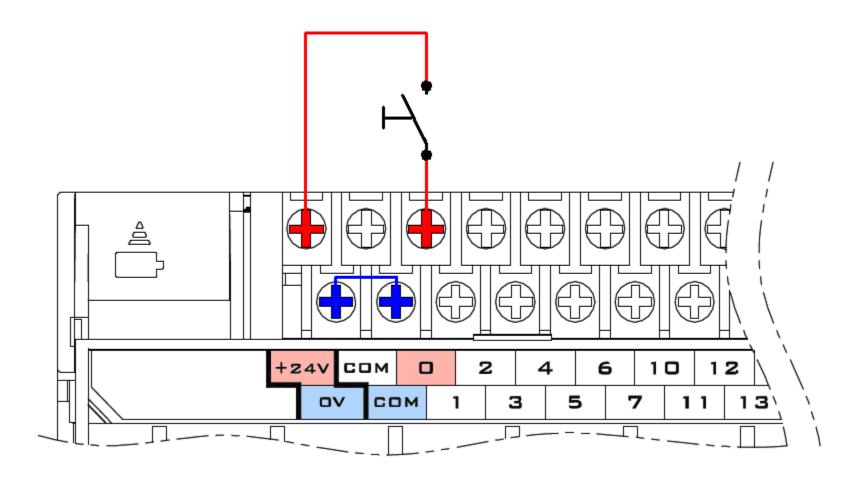
EXEMPLOS DE ENTRADA DIGITAL

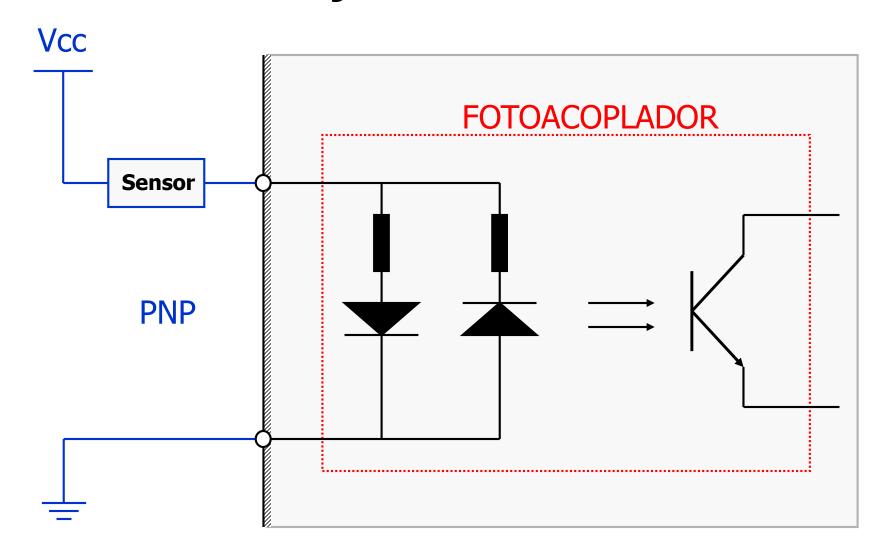

Chave fim de curso



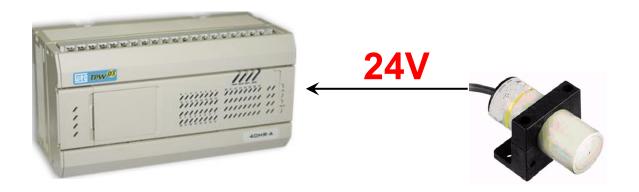


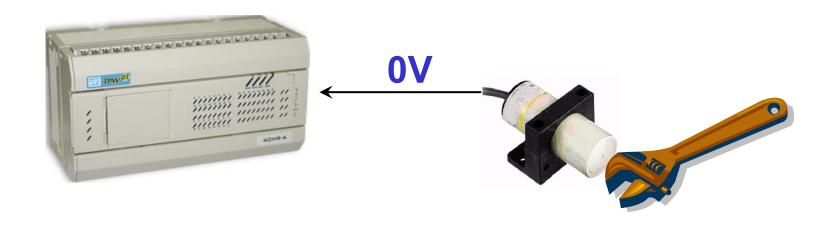
Botões e chaves de comando

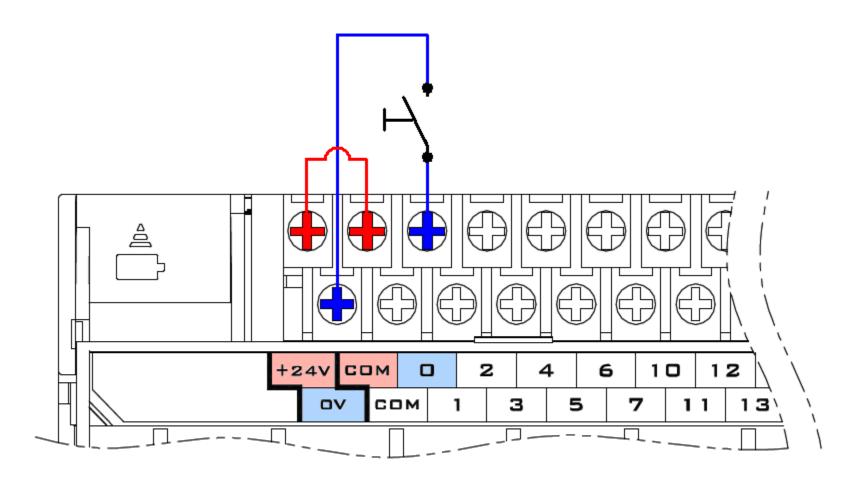

Sensor Tipo "PNP"

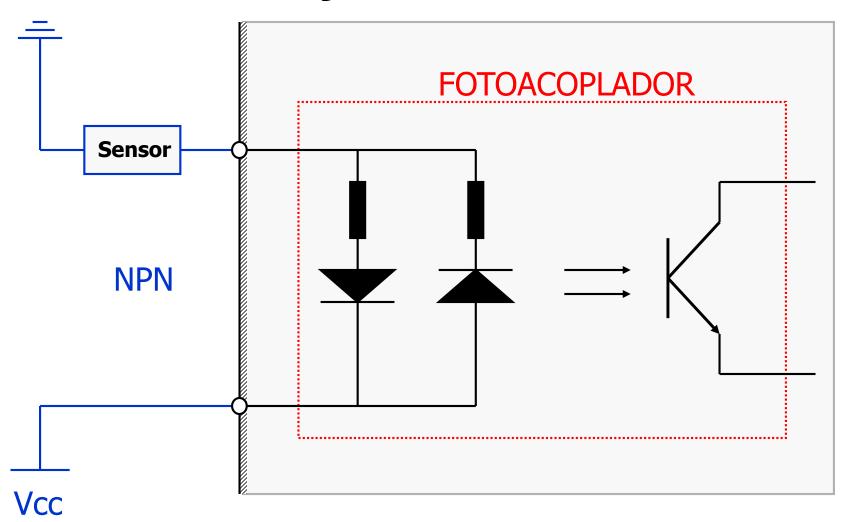


LIGAÇÃO TIPO "PNP"

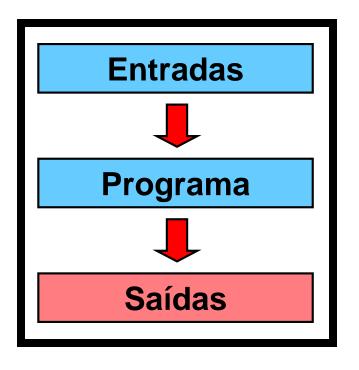



LIGAÇÃO TIPO "PNP"


Sensor Tipo "NPN"

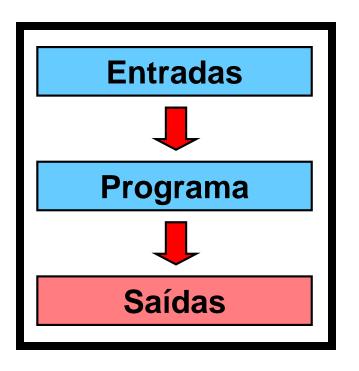


LIGAÇÃO TIPO "NPN"



LIGAÇÃO TIPO "NPN"

SAÍDAS



Pode ser dividido em duas categorias:

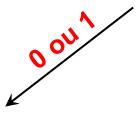
- Saída digital
- Saída analógica

SAÍDA DIGITAL

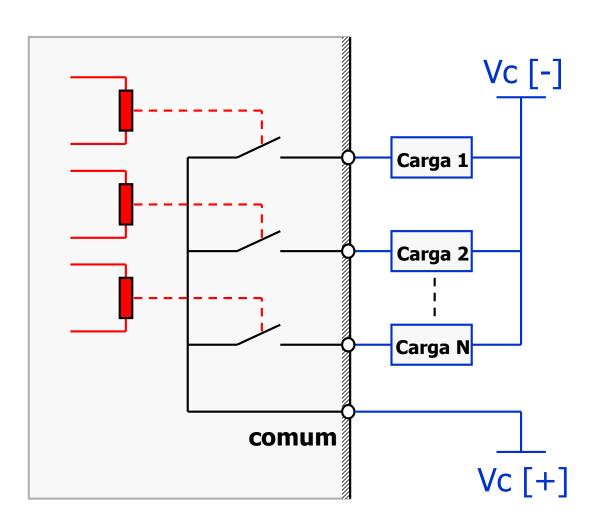
Este sinal pode ter duas condições:

∠ Ligado (1)

∠Desligado (0)


EXEMPLOS DE SAÍDA DIGITAL

Contatores

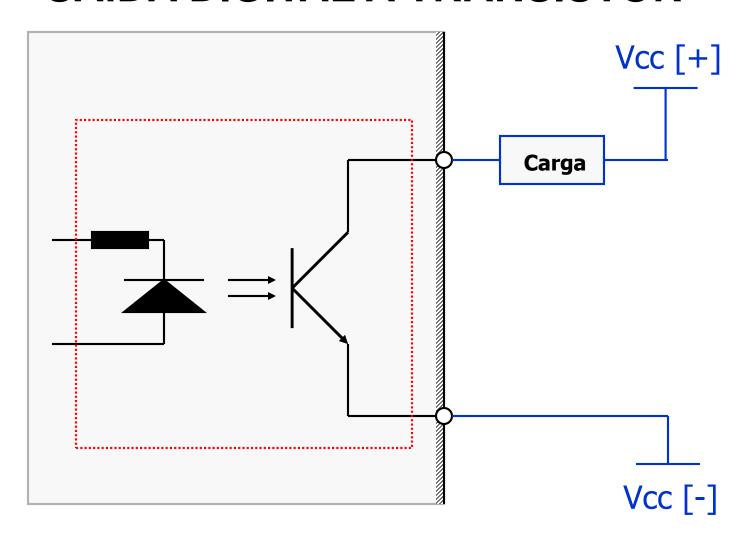


Atuadores Hidráulicos e pneumáticos

SAÍDA DIGITAL A RELÉ

SAÍDA DIGITAL A RELÉ

VANTAGENS


- Maior capacidade de condução de corrente;
 - TPW-03 2A, carga resistiva
 - Clic02 8A, carga resistiva
- Acionamento de cargas sem a necessidade de interface a rele externo.
- ∠ Aceita tensões de até 250Vca

DESVANTAGENS

- Desgaste dos contatos ao longo do tempo;
- Freqüência de comutação baixa, não sendo possível utilizá-la como saída rápida ou PWM.

SAÍDA DIGITAL A TRANSISTOR

SAÍDA DIGITAL A TRANSISTOR

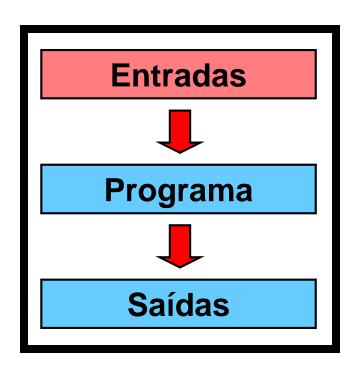
VANTAGENS

- ∠ Saída "eletrônica", não há desgastes;
- Alta velocidade de comutação, podendo ser utilizada como saída pulsada ou PWM

DESVANTAGENS

Menor capacidade de condução de corrente comparado às saídas a relé;

TPW-03 0,3A em carga resistiva


Clic02 0,5A em carga resistiva

Necessidade de utilizar uma <u>interface a relé</u> externa para o acionamento de cargas.

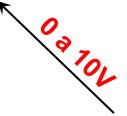
∠ Tensão de trabalho única, normalmente 24Vcc (NPN).

ENTRADA ANALÓGICA

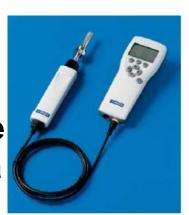
∠ Este sinal tem vários níveis, ou seja, apresenta-se como um valor numa faixa pré-estabelecida.

∠ Na indústria, os sinais analógicos mais utilizados são:

- 0 a 10V ou 1 a 5V
- 0 a 20mA ou 4 a 20mA


EXEMPLOS DE ENTRADA ANALÓGICA

4 a 20mA



Potenciômetro

Sensores de pressão

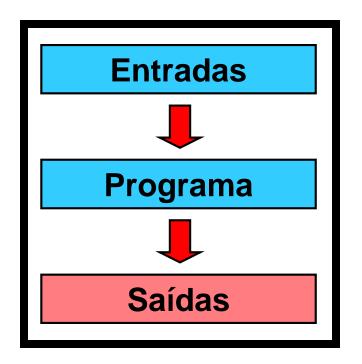
Sensores de temperatura

ENTRADA ANALÓGICA

Potenciômetro

Conversor Analógico-Digital (AD)

8 bits: 0 a 255


10 bits: 0 a 1024

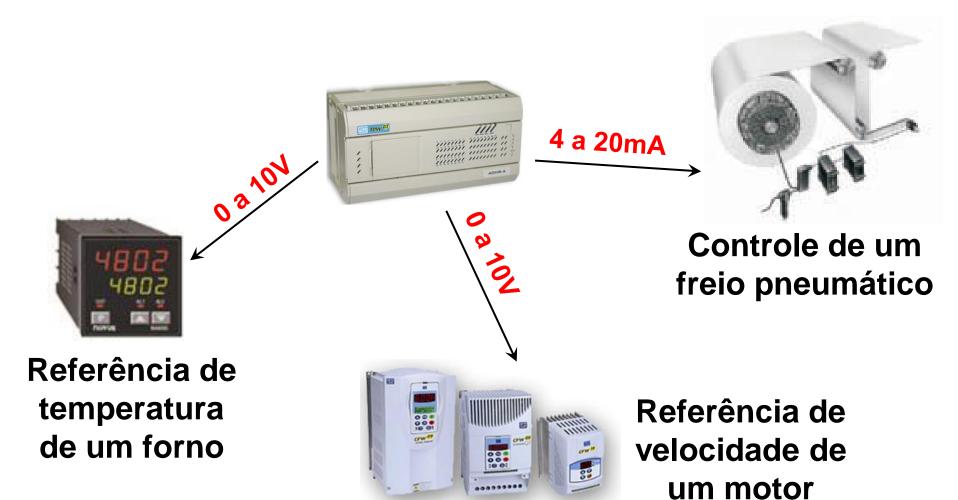
12 bits: 0 a 4095

CPU

SAÍDA ANALÓGICA

∠ Este sinal tem vários níveis, ou seja, apresenta-se como um valor numa faixa pré-estabelecida.

∠ Na indústria, os sinais analógicos mais utilizados são:


- 0 a 10V ou 1 a 5V
- 0 a 20mA ou 4 a 20mA

Introducão

EXEMPLOS DE SAÍDA ANALÓGICA

SAÍDA ANALÓGICA

Conversor Digital-Analógico (DA)

0 a 70 V

8 bits: 0 a 255

10 bits: 0 a 1024

12 bits: 0 a 4095

CPU

Interfaces Especiais

Entradas para temperatura : Recebem sinais diretamente dos sensores (termopares - J,K,L,R,S, T, e termoresistências PT100);

Entradas Rápidas: Detecta pulsos mais rápidos que o ciclo de scan (interrupções);

Permitem leitura direta de encoders;

Módulos de Rede : Permite estabelecer comunicação entre CP's e outros equipamentos inteligentes;

Relógio de Tempo Real : Permite que sejam tomadas ações em função de um relógio permanente;

Periféricos

Terminais Inteligentes

Microcomputadores

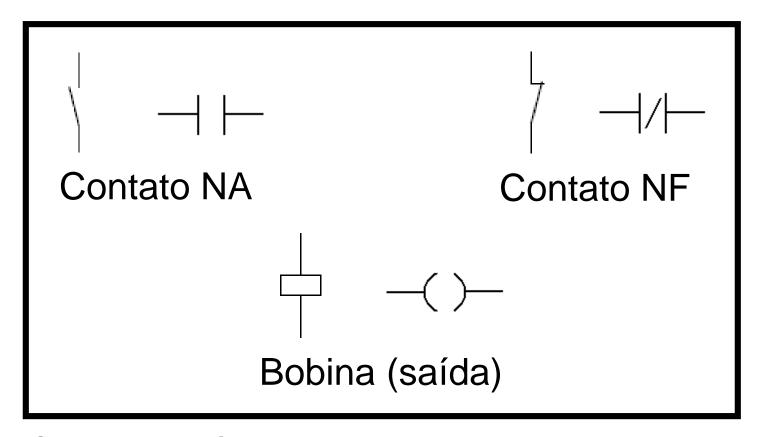
Programadores dedicados

Edição, Alteração, Monitoração do programa aplicativo

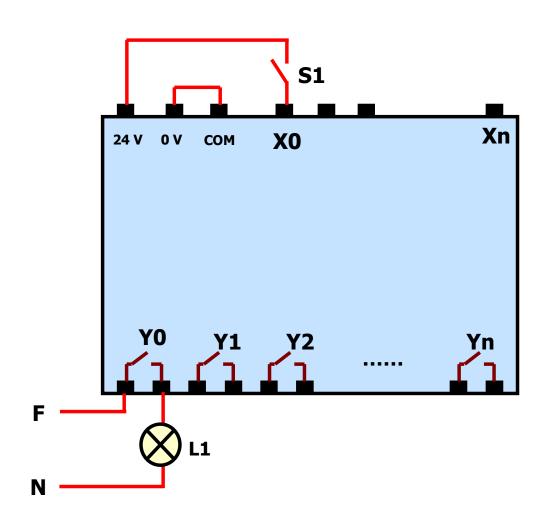
Interface Homem-Máquina

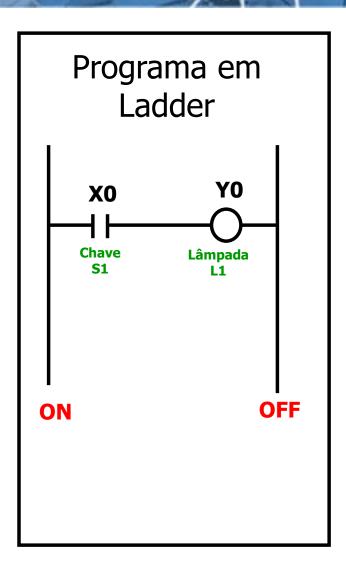
IHM Touch Screen

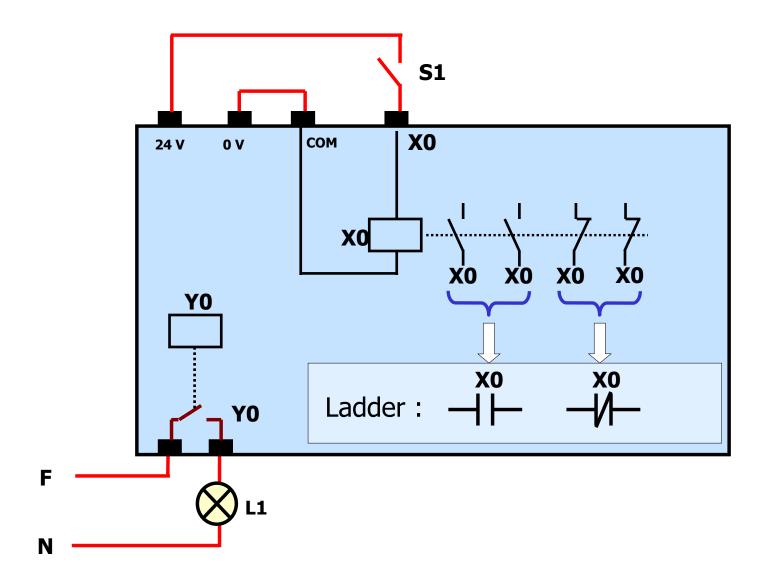
Impressoras



PROGRAMAÇÃO EM LADDER



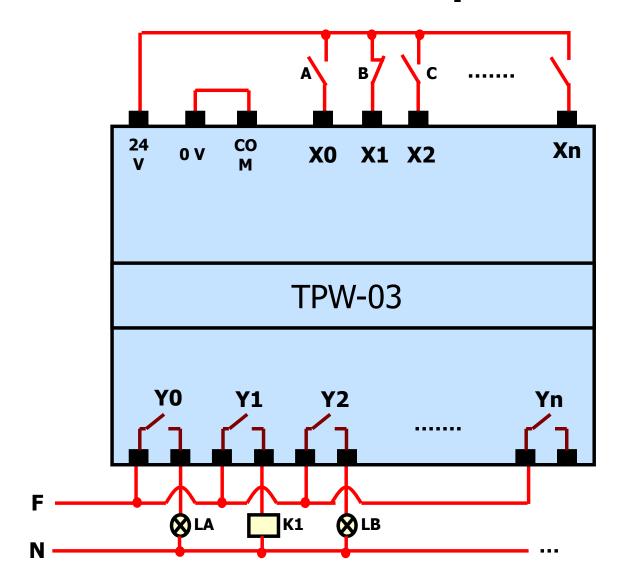

COMANDOS BÁSICOS

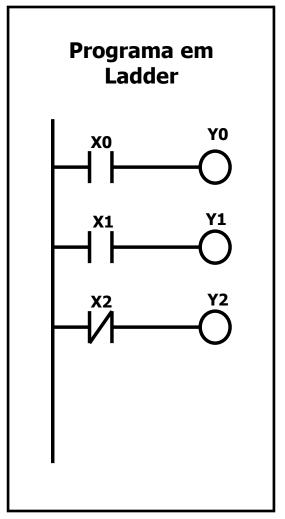

Comandos básicos para programação em ladder

Regra Geral

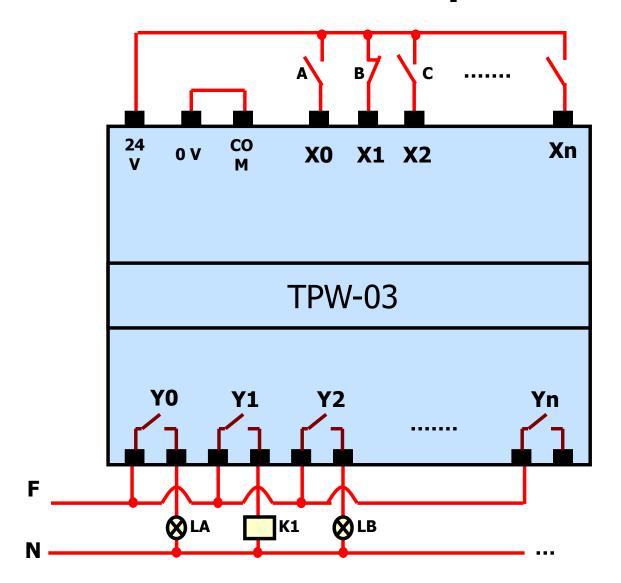
Contato X0 —					
Chave no campo	Estado de X0 no Ladder				
	OFF				
7	ON				

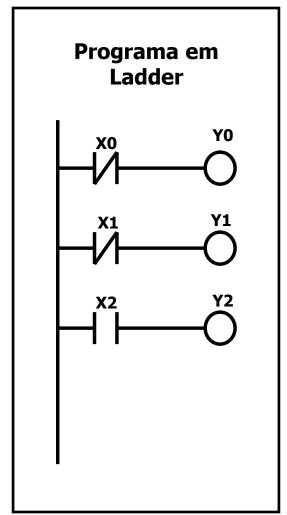
Contato X0 —//—				
Chave no campo	Estado de X0 no Ladder			
\	ON			
7	OFF			

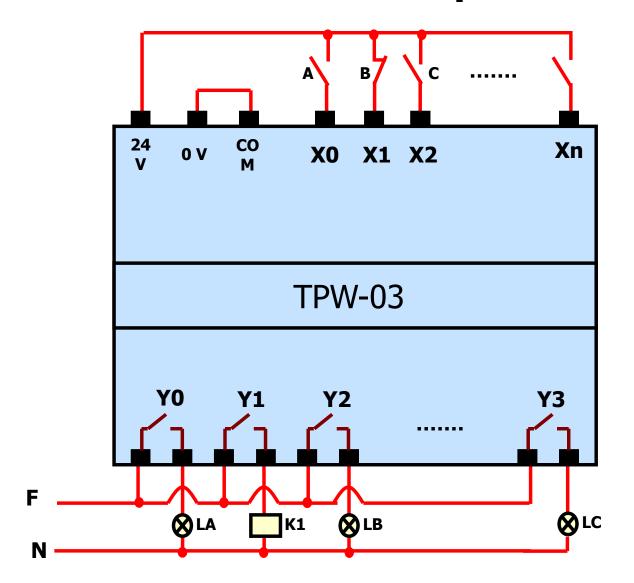

Regra Geral

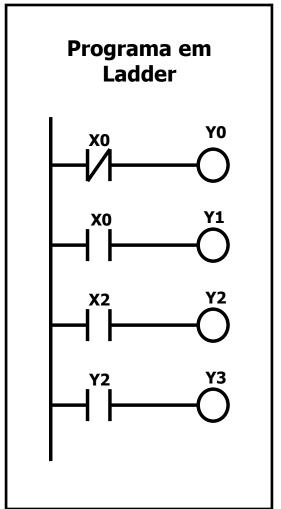

Para Ligar					
No campo	No Ladder				
\	L T				
7	→				

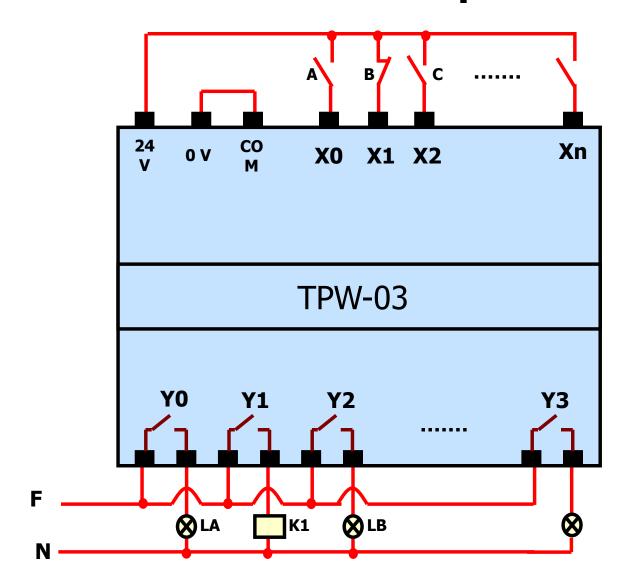
Para Desligar					
No campo No Ladder					
\	→				
Y	—				

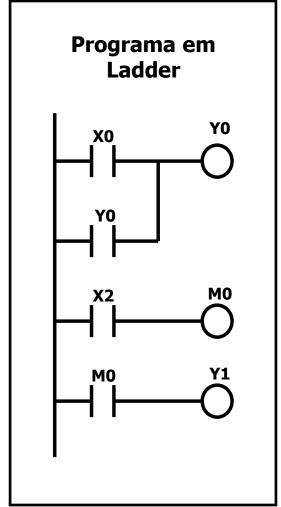












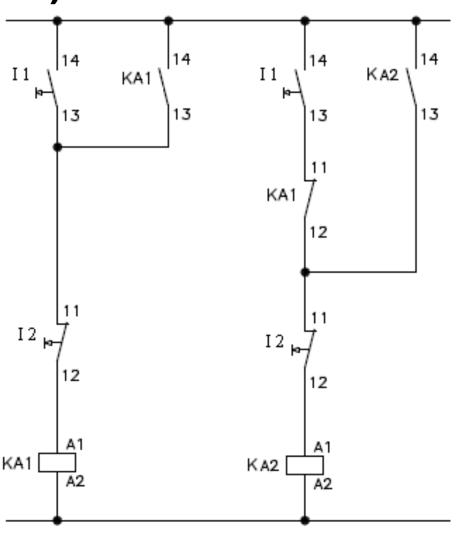
VARREDURA & SCAN

VARREDURA

- ✔ Sentido e direção em que é feito a leitura do programa.
 - As varreduras mais utilizadas são:
 - Horizontal (esquerda para direita)
 - Vertical (cima para baixo)

SCAN

Representa uma varredura completa no programa

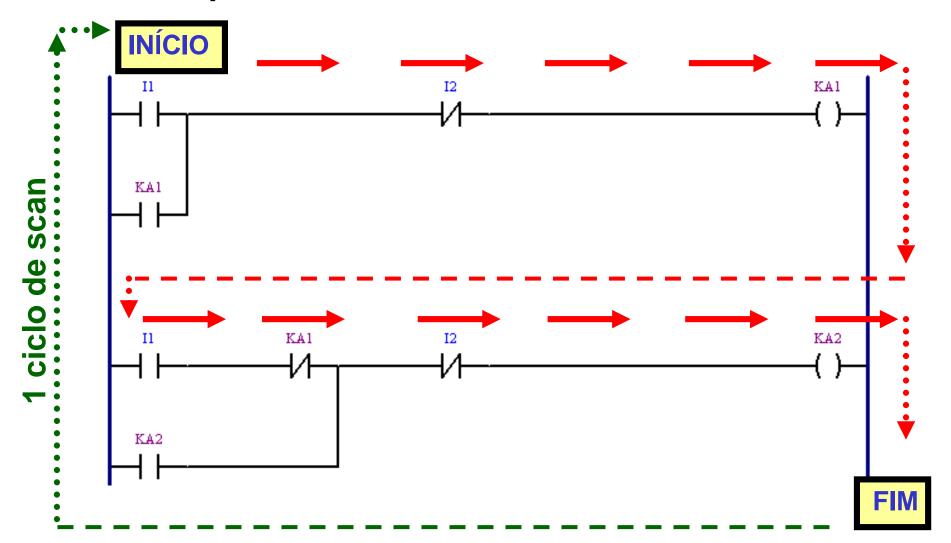


KA2 ACIONARÁ AO PRESSIONAR O BOTÃO 11?

- 1-) COMANDO ELÉTRICO CONVENCIONAL
- 2-) CLP COM VARREDURA HORIZONTAL
- 3-) CLP COM VARREDURA VERTICAL

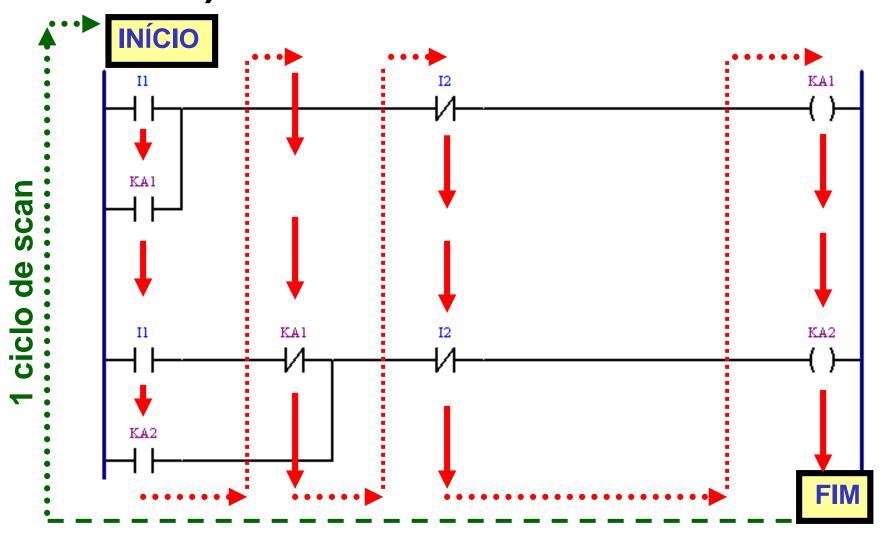
1-) COMANDO ELÉTRICO CONVENCIONAL

I1 – Botão liga


12 - Botão desliga

KA1 – Contator auxiliar 1

KA2 – Contator auxiliar 2



2-) VARREDURA HORIZONTAL

3-) VARREDURA VERTICAL

KA2 SERÁ ACIONADO AO PRESSIONAR O BOTÃO I1?

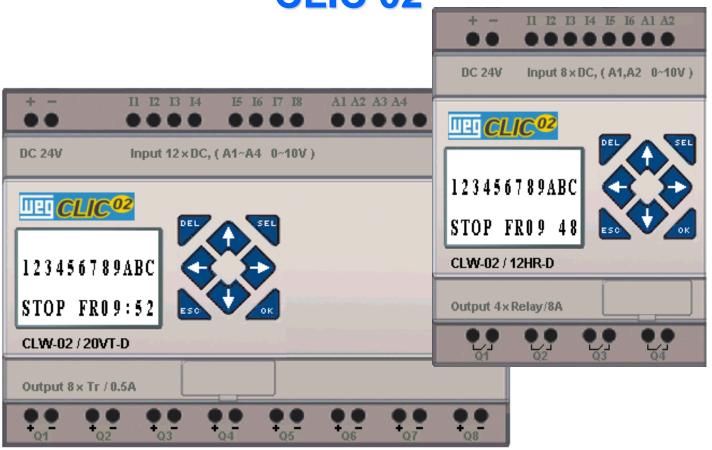
1-) COMANDO ELÉTRICO CONVENCIONAL

R: ORA SIM, ORA NÃO. NÃO DEPENDE DA LÓGICA E SIM DO TEMPO DE MANOBRA DE KA1 E KA2. (em geral, 5 a 50ms).

2-) CLP COM VARREDURA HORIZONTAL

R: NÃO SERÁ ACIONADO.

3-) CLP COM VARREDURA VERTICAL


R: SIM, SERÁ ACIONADO.

MICRO CONTROLADOR
CLIC 02

Características Clic 02

Nova capacidade I/O

•CPU com 10, 12 e 20 pontos

Capacidade Máxima de 44 pontos, utilizando 3 módulos de expansão

Certificações

- •CE, UL, and c-UL certified
- ·IEC
- •International Communication Bus

Fácil Operação

- Linguagem Universal de Programação : Ladder e FBD
- Display LCD com Back-light (Sete idiomas)

Novas Funções

•Contadores Rápidos (1K Hz), Saída PWM, Comunicação Mod Bus, Comunicação em rede com outros Clic´s, RTC incluindo "dia/mês/ano"

Clic 02 - Modelo 10/12 pontos

- 200/99(Lad/FBD)
- 36 Max. I/O

Clic 02 - Modelo 20 pontos

- 200/99(Lad/FBD)
- I/O Link , Remote I/O .
- 44Max. I/O

ITEM	10 pontos		12 pontos		20 pontos	
Alimentação	AC100- 250V	DC 24V	AC100- 250V	DC24V	AC100-250V	DC12/24V
Entrada de Contagem Rápida	-	2 CH	-	2 CH	-	2 CH
Saída Trem de Pulso(PWM)	-	-	-	O(Trans.)	-	O(Trans.)
Relógio de Tempo Real	•	0	•	0	0	0
Entradas	AC100- 250V	DC24V	AC100- 250V	DC24V	AC100-250V	DC12/24V
Saídas	Relé/Trans	Relé/Trans	Relé/Trans	Relé/Trans	Relé/Trans	Relé/Trans

Codificação

CLW - 02 / 10 H R - A

Clic WEG Série 02

Numero de Pontos de Controle (Entradas + Saídas)

Acessórios:

H = Admitem Expansão (máx. 3 Módulos)

V = Idem ao H, porém com comunicação em alta velocidade e Modbus incorporado.

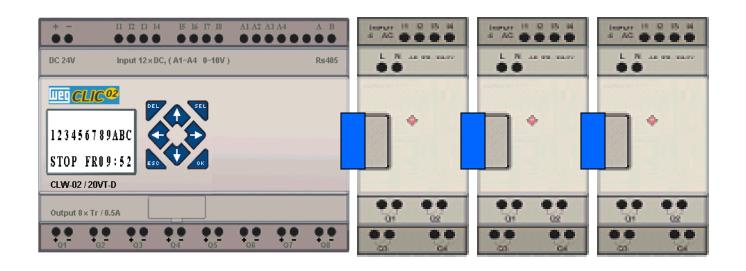
E = Expansão de Entradas e Saídas

Saídas Digitais e relé: R = Relé

T = Transistor

Tensão de Alimentação: A = 110/220 Vca

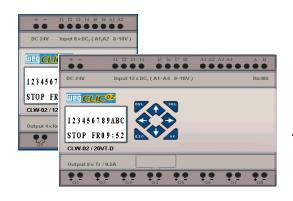
D = 24 Vcc


12D = 12 Vcc

Nova capacidade de I/O

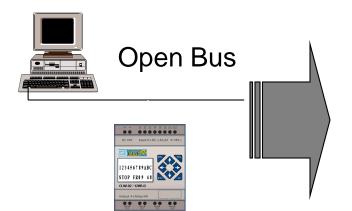
Capacidade Máxima: 24 Entradas Digitais / 20 Saídas Digitais

Padrão Mundial


CE, UL, c-UL

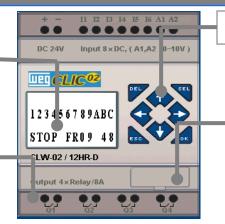
Padrão IEC Montagem - Fixação : Trilho DIN ou Parafuso

IEC - 3 níveis


Fácil Instalação!!

A B C

Conectividade


Mod Bus

(disponível nos modelos CLW-02 20V... através da porta RS485)

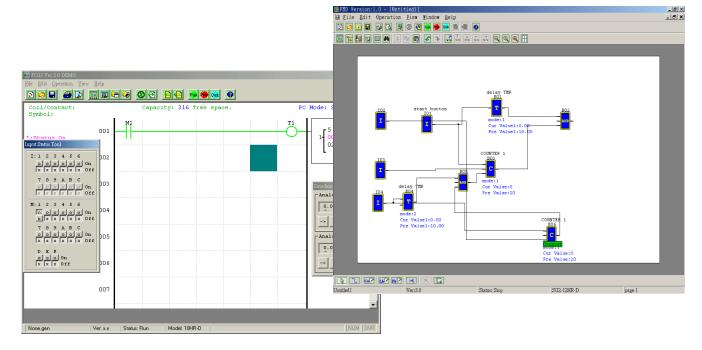
Simples e com Design Amigável

Display em 7 idiomas (Inglês, Alemão, Francês, Italiano, Espanhol, Português e Chines)

Relé 8A ou Transistor 0,5A

8 Teclas de operação

RS232 ou Módulo de Memória



Ferramenta de Programação

- Linguagens Ladder & FBD
- Simulação & Monitoração de funções
- Windows 98/ME/2K/XP/CE OS
- Display Multi-Linguagens

Memória Flash Incorporada

O programa do usuário é automaticamente copiado da memória Ram para a Memória Flash e mantido após desligar a CPU.

Módulo de Memória

Através do módulo de memória, podemos regravar rapidamente um CLIC 02, evitando que a máquina ou sistema fique parado.

Display com Back-light (Iluminação própria)

O CLIC 02 possui Back-light para corrigir deficiências de iluminação no ambiente a ser operado. Com isso, pode ser operado no escuro e em ambientes de pouca iluminação.

Alta Performance

Entradas Analógicas 8 Bits (CLW-02 / 12/20xR/T-D) Unidade Básica

- 2 Entradas analógicas incorporadas no modelo de 12 pontos (8 Bits, 0-10V).
- 4 Entradas analógicas incorporadas no modelo de 20 pontos (8 Bits , 0-10V).

Tipos de Aplicação

Controle temperatura, umidade, vazão...

Saída Trem de Pulso (PWM) CLW-02 / 12/20xT-D

CLIC 02 possui saída de trem de pulsos tipo PWM (Resolução 16 Bits).

 Aplicações de controle de velocidades de Servos e Motores de Passo

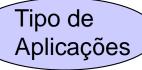
Entrada de Contagem Rápida (1KHz) (CLW-02 / 12 e 20xR/T-D)

CLIC 02 possui 2 entradas de contagem rápida com frequência admitida na frequência de até 1 KHz.

Simples controles de posicionamentos.

IHM que possibilita fácil alteração de ajustes de Tempo e Contagens

Cada tela possui 48 caracteres que podem ser programados através do Clic 02 Edit. Este recurso permite que ajustes de tempos ou contagens possam ser feitos com o programa em execução (Modo Run)



Relógio Tempo Real Incorporado

Todos modelos possuem relógio de tempo real.

Ano/Mês/Dia/Hora/Min./Dia da Semana.

Aplicações que precisem de controles de tempo real.

Comunicação em Alta Velocidade (Modbus Incorporado)

Os modelos CLW-02 / 20 VT-D e VR-D possuem porta de comunicação RS 485 capazes de trocarem informações com outos Clic´s ou comunicarem em rede utilizando o protocolo Modbus.

Conectividade e comunicação a distância.

Tabela de Especificação

Parametros	Especificação
Memória de Programa (Passos – Ladder / Blocos - FBD)	200/99
Faixa de Alimentação – Modelos CC (Volts CC)	10,8 –13,2 / 21.6-26.4
Faixa de Alimentação – Modelos CA (Volts CA-50/60Hz)	85-265
Saída Relé (Amps /250Volts AC and 24 Volts DC, Carga Indutiva	8,3
Display (Linhas x Caracteres)	4x12
Faixa de Tensão de Entrada – Modelos CC:"ON","OFF" (Volts CC)	>15 , <5
Faixa de Tensão de Entrada- Modelos CA: "ON", "OFF" (Volts CA)	>79,<40
Tempo de Resposta ED – Modelos CC:"On-to –Off","Off-to-On"(ms)	3,5
Tempo de Resposta ED – Modelos CA:"On-to –Off","Off-to-On"(ms)	50-90*,50-90*(240V/120V)
Grau Proteção	IP20
Faixa de Temperatura de Operação (°C)	0 to 55
Faixa de Temperatura armazenamento (°C)	-40 to 70
Máxima Umidade (Relativa , Não condensado) (%)	90
Certificações	cUL, CE, UL

Módulos Básicos

	Entradas						
CLW-02	Total I/O	Digital		Analógica	Saídas	Módulos de Expansão	Módulos de Expansão para
		CC	CA	0-10 VCC		ED/SD	Comunicação (Breve)
10HR-A	10	-	6	-	4xRelés	Max. 3	1
12HR-D	12	6(8)	-	*2	4xRelés	Max. 3	1
12HT-D	12	6(8)	-	*2	4xTrans.	Max. 3	1
20HR-A	20	-	12	-	8xRelés	Max. 3	1
20HR-D	20	8(12)	-	*4	8xRelés	Max. 3	1
20HT-D	20	8(12)	-	*4	8xTrans.	Max. 3	1
20HR-12D	20	8(12)	-	*4	8xRelés	Max. 3	1

^{•*} Entradas analógicas podem ser usadas como Entradas Digitais.

Modelos Comunicação em Alta Velocidade

			Entrad	da			
CLW-02	Total I/O	Total I/O Digital Analo a		Analogic a	Saídas	Módulos de Expansão	Módulos de Expansão para
		DC	AC	0-10 VDC		ED/SD	Comunicação (Breve)
20VR-D	20	8(12)	-	*4	8xRelés	Max. 3	1
20VT-D	20	8(12)	-	*4	8xTrans.	Max. 3	1

Módulos de Expansão

CLW-02	Alimentação	Enti	radas Digitais	Saídas Digitais		
CLVV-UZ	CLVV-UZ Alimentação		Tensão	Pontos	Tipo	
8ER-A	85~246 Vca	4	85~246Vac	4	Rele	
8ER-D	24 Vcc	4	24Vdc	4	Rele	
8ET-D	24 Vcc	4	24Vdc	4	Transistor	

CARACTERÍSTICAS

MICRO CLP

TPW03

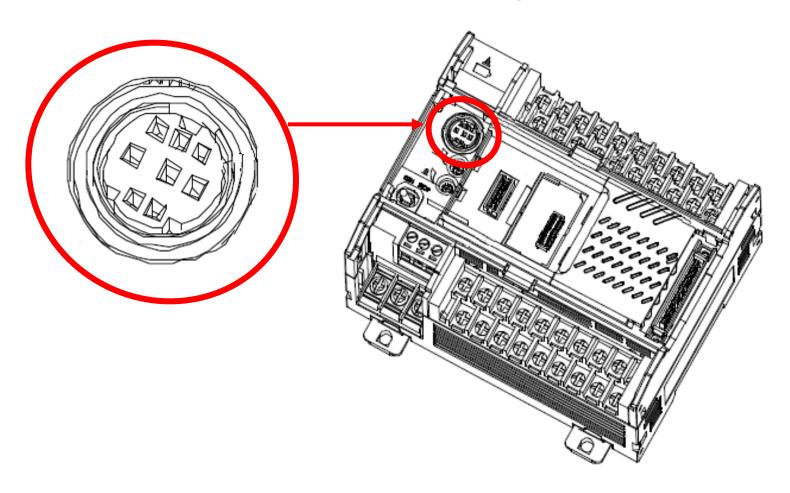
Unidade Básica com 20, 30, 40 e 60 pontos de I/O's.

- Modbus (mestre e escravo) incorporado.
- Entradas Rápidas até 100 KHz.
- Saída trem de pulso e PWM.
- Função PID.
- Nova Ferramenta de Programação (Não converte TP02).
- Comunicação entre TPW e PC através de RS232.
- Firmware Atualizado diretamente via cabo de programação e software dedicado.

- Novo "Set" de Instruções.
- Maior velocidade de Processamento.
- Todas as unidades básicas com capacidade de expansão analógica e digital.
- Comunicação com IHM's inteligentes (linha PWS)
- Compatibilidade com módulos de Expansão da linha TP-02.
- SOFTWARE DE PROGRAMAÇÃO GRATUITO

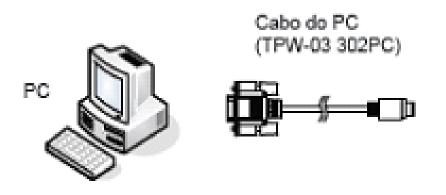
		TPW-03 20/30H	TPW-03 40/60H		
Linguagem o Programaçã		Ladder e Lista de	Instruções		
Capacidade Programa	Memória de	8K (passos)	16K (passos)		
Temporizado	ores	512 pontos (206 pontos 100mS / 4	6 pontos 10mS / 260 pontos		
Contadores		256 pontos (200 pontos 16 bits e 56 pontos de 32 bits)			
Registradore	es de Dados	registradores de arquivo / 512 pontos de registradores			
Constantes	Decimal	16 Bits: -32.768 a +32.768 / 32 Bits: -2.147.483.648 a +2.147.483.648			
Constantes	Hexadecimal	16 Bits: 0 a FFFF / 32 Bits: 0 a FFFFFFF			
Relógio Tem	npo Real	Sim			

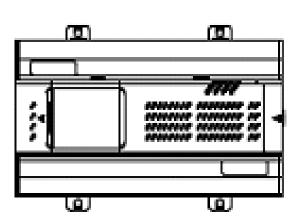
		TPW-03 20/30H TPW-03 40/60H					
Chave Run/Sto	р	Incorporado					
Potênciometro		2 pontos incorporador					
Cretica de Alte	Contadores	Fase simples : 4 pontos 100	KHz + 2 pontos 5 KHz				
Entrada Alta Velocidade	Contadores	Fase Dupla : 2 po	ntos 50 KHz				
Velocidade	Interrupção	6 pontos / largura de pulso	mínima 10 micro seg				
Onfda Dánida	Saída Pulso	2 pontos (Y0 e Y1) com controle de aceleração e desaceleração					
Saída Rápida Pulso *1	PWM	2 pontos (YC) e Y1)				
1 4130 1	Frequência	100 KHz (m	áximo)				
	PC	RS232 (carregar programa)					
Portas de	RS485	Porta para funções Data Link, Remote I/O ou Computer Link (Modbus					
Comunicação	incorporada	mestre/escravo ou ASCII)					
	Cartão de Expansão	RS232 ou RS485 / Modbus mestre/escravo					
Bloco T		Removí	vel				
Temperatura	de Operação	0 a 55 ^c	PC PC				
Temperatura de Armazenamento		-25 a 75 ℃					
Umidade		Nivel RH1 / 30 a 95% (não condensado)				
Grau de	Poluição	2 (IEC 60664)					
Categoria d	e Instalação						


TABELA DE ESPECIFICAÇÃO

Modelo	Tensão de	Entradas	Saídas			iguração tima E/S	Relógio
Wodelo	Alimentação	Digital (24Vcc)	Relé (2A)	Transistor (0,3A)	Digital	Analógica	Tempo Real
TPW-03 20HR-A		12	8	-	28/24		
TPW-03 30HR-A	85 a	16	14	-	32/30	8/2	Sim
TPW-03 40HR-A		24	16	-	56/48		
TPW-03 60HR-A		36	24	-	68/56		
TPW-03 20HT-A	264 Vca	12	-	8	28/24		
TPW-03 30HT-A		16	-	14	32/30	0/2	Silli
TPW-03 40HT-A		24	-	16	56/48		
TPW-03 60HT-A		36	-	24	68/56		
TPW-03 40HR-D	19,2 a	24	16	-	56/48		
TPW-03 60HR-D	28,8 Vcc	36	24	-	68/56		

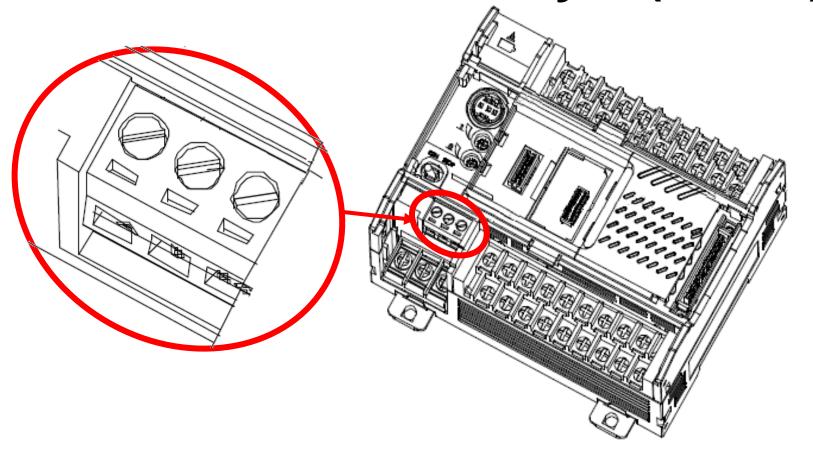
Porta de programação (RS-232)



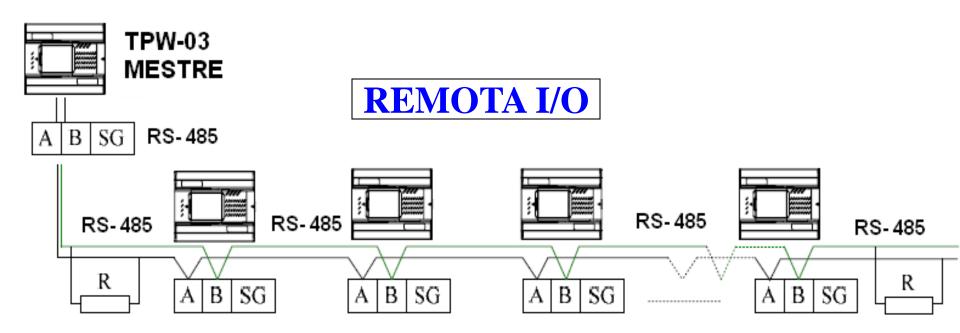


Porta de programação (RS-232)

- ➤ Cabo de programação pode ser montado pelo cliente, não havendo necessidade de utilizar um conversor;
- Firmware do TPW03 pode ser atualizado pela porta de programação;



Porta de comunicação (RS485)


^{*} Somente para os modelos "H"

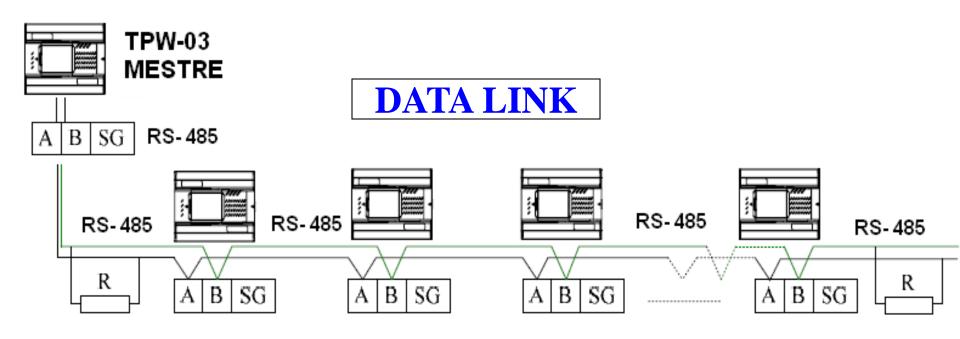
REDE COM TPW-03 MESTRE

ESCRAVOS não tem Software

Máximo 4 escravos

Mestre ED=68 SD = 56

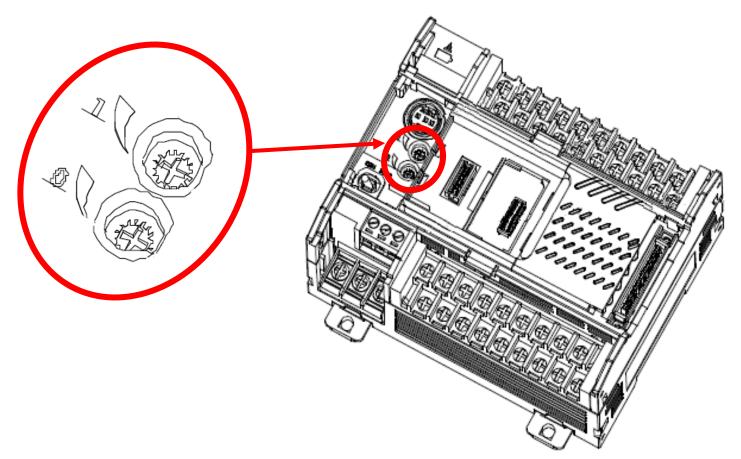
Total ED=212 SD = 152



REDE COM TPW-03 MESTRE

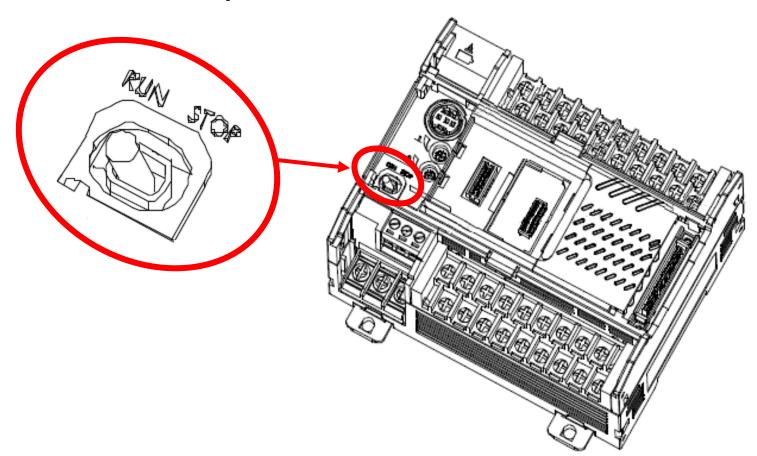
ESCRAVOS podem ter Software

Máximo 15 escravos


Máx. por Escravos: 64 bits 8 Words

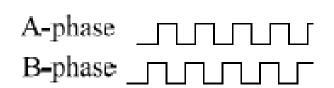
CARACTERÍSTICAS

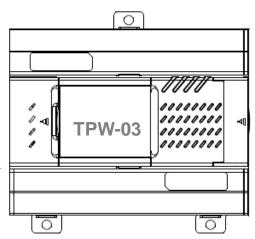
Trimpot para ajustes de variáveis internas



CARACTERÍSTICAS

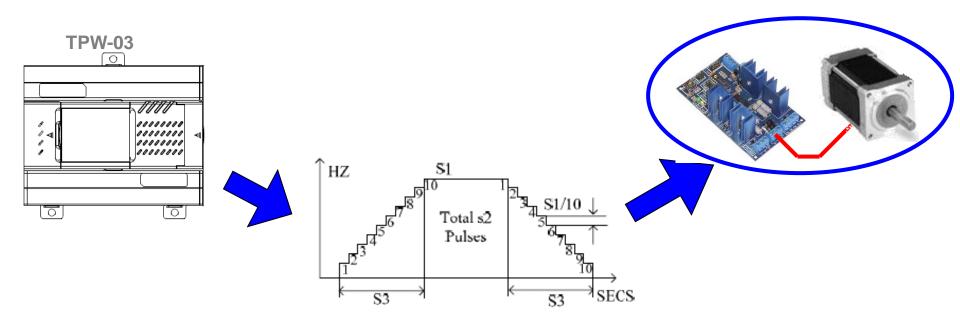
Chave para alternar entre modo Run/Stop





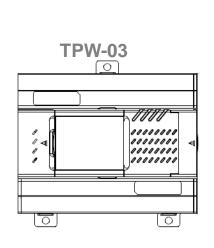
ENTRADA RÁPIDA

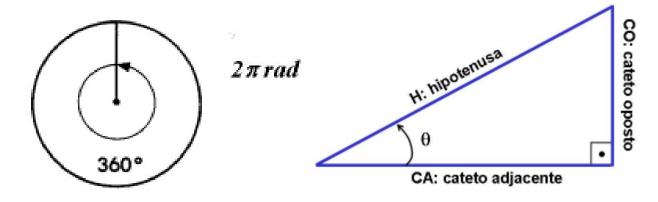
Leitura de encoder incremental através da entrada rápida


Teminal de entrada		Nível de alta tensão	Freqüência					
Terrimar de eridada		ivivei de alta terisao	-20M	-30M	-20H	-30H	-40H	-60H
X000~X003	1 Canal	15v~20v	10 KHz 1		100	00 KHz		
	2 Canais	15v~28.8v	10 KHz		50 KHz			
X004~X005	1 Canal/2 Canais	15v~28.8v	5 K	Hz	5 KHz			

SAÍDA RÁPIDA DE PULSO

Aceleração e desaceleração de motor de passo

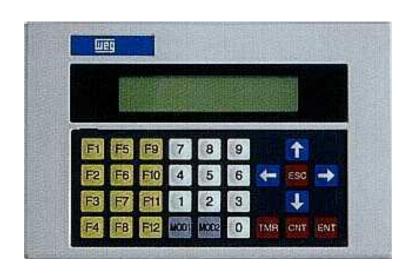

Tipo Item	-20MT	-30MT	-20HT	-30HT	-40HT	-60HT
Saída de pulso	2 Pontos Y0/Y1 com aceleração/desaceleração					
Saída PWM	2 Pontos Y0/Y1					
Freqüência	Máx.	5KHz.	Máx.100KHz			



BLOCOS MATEMÁTICOS

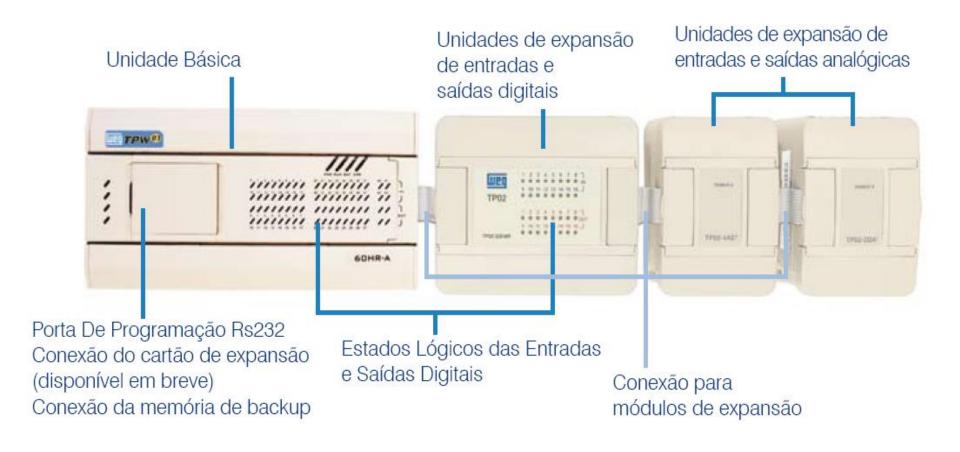
Operações aritiméticas e trigonométricas em decimal ou ponto flutuante (float).

	0°	30°	45°	60∘	90∘
	0 rad	π/6 rad	π/4 rad	$\pi/3$ rad	π/2 rad
cos	1	$\sqrt{3}/2$	$\sqrt{2}/2$	0,5	0
sen	0	0,5	$\sqrt{2}/2$	$\sqrt{3}/2$	1
tan	0	$\sqrt{3}/3$	1	√3	-



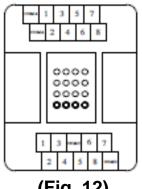
ACESSÓRIOS

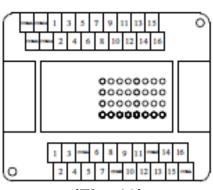
IHM OP08



- Compatível com toda a linha TPW03
- ➤ Comunicação RS232 e RS485
- > 2 linhas, 20 caracteres por linha.
- > Backlight incorporado
- ➤ Possível ajustar e visualizar temporizadores, contadores e variáveis.
- Não necessita de cabo de programação

EXEMPLO COM EXPANSÕES DO TP02

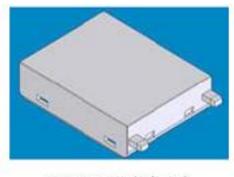


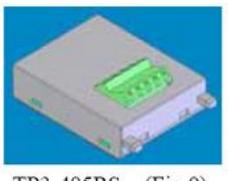


MÓDULOS DE EXPANSÃO

TIPO	DESCRIÇÃO	FIGURA
TP02-16EXD	Módulo de expansão, 16 entradas digitais	(Fig. 12)
TP02-16EYR	Módulo de expansão, 16 saídas a relé	(Fig. 12)
TP02-16EYT	Módulo de expansão, 16 saídas a transistor	(Fig. 12)
TP02-16EMR	Módulo de expansão, 8 entradas digitais, 8 saídas a relé	(Fig. 12)
TP02-32EMR	Módulo de expansão, 16 entradas digitais, 16 saídas a relé	(Fig. 13)
TP02-4AD+	Módulo de expansão, 4 entradas analógica 12bits	(Fig. 12)
TP02-2DA+	Módulo de expansão, 2 saídas analógica 12bits	(Fig. 12)

(Fig. 12)


(Fig. 13)



CARTÕES DE EXPANSÃO


TIPO		DESCRIÇÃO	FIGURA
TPW-03-0CV	Padrão	Cobertura/tampa padrão	(Fig. 4)
TPW-03-RS485	Opcional	Porta de comunicação RS485	(Fig. 9)
TPW-03-2AI		2 Entradas analógicas 10bits	(Fig. 10)

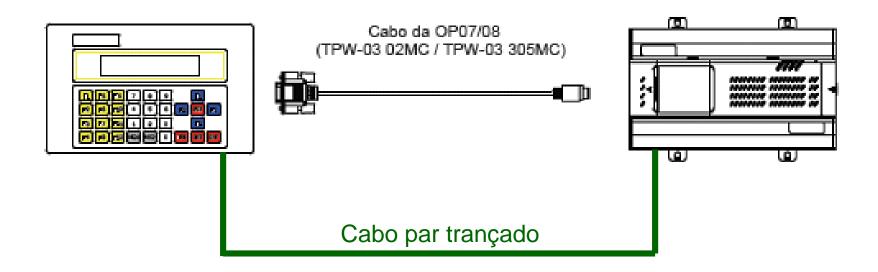
TP-0CV (Fig 4)

TP3-485RS (Fig 9)

TP3-2AI (Fig 10)

Interface Homem-máquina

IHM OP08


- Compatível com toda a linha TPW03
- ➤ Comunicação RS232 e RS485
- > 2 linhas, 20 caracteres por linha.
- > Backlight incorporado
- ➤ Possível ajustar e visualizar temporizadores, contadores e variáveis.
- Não necessita de cabo de programação

IHM OP-08 (LCD)

Comunicação da IHM com o CLP pode ser feito através da porta RS232 (programação) ou a RS485 (modelos "H")

IHM GRÁFICA

PWS-6300S-S

Características Téc.:

Monocromática 3" Gráfica

Resolução 180 x 80 pixels

16 Tons de Cinza

16 Teclas

10 Teclas Função

RS 422 / RS 232 / RS 485 4 MBytes

IHM GRÁFICA

PWS-6500S-S

Características Téc.:

Touchscreen

Monocromática 4,7" Gráfica

4 Tons de Cinza

Resolução 240 x 128 pixels

RS 422 / RS 232 / RS 485 4 MBytes

IHM GRÁFICA

PWS-6600C-P

Características Téc.:

Touchscreen

Colorida 5,7" Gráfica 256 cores

Resolução 320 x 240 pixels

5 Teclas Função 1 tecla Menu

COM 1 RS 232 / RS 485 COM 2 RS 422 / RS 232 / RS 485 4 MBytes

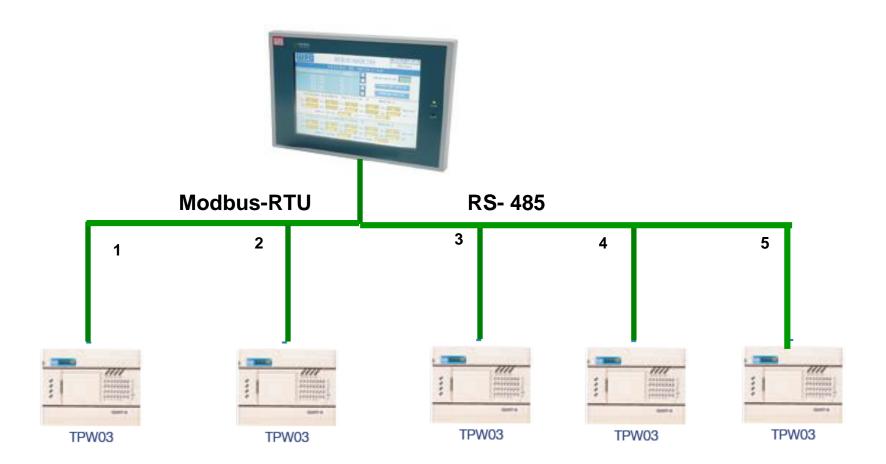
IHM GRÁFICA

PWS-3261-TFT

Características Téc.:

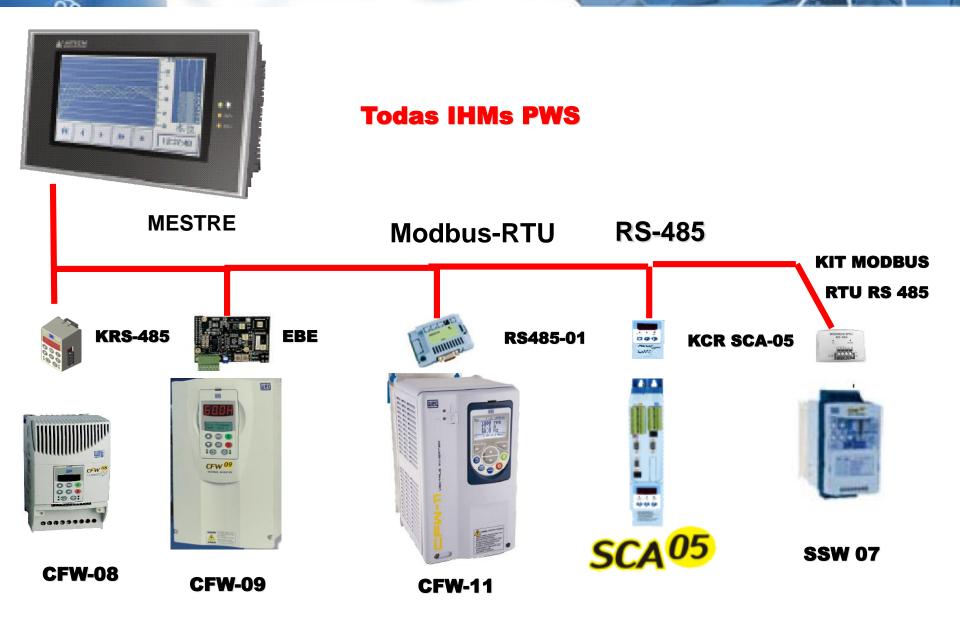
Touchscreen
Colorida 10,4" 256 cores
Resolução 640 x 480 Pixels

COM 1 RS 422 / RS 232 / RS 485 COM 2 RS 422 / RS 232 / RS 485 Porta Impressora 4 MBytes



Redes com IHM

IHM's como mestre da rede


Comunicação em Modbus-RTU

Redes com IHM

INSTALAÇÃO

1- FILTRO DE LINHA

É recomendado o uso de filtro de linha código WEG 0303.8777

2 - ATERRAMENTO

Fazer o aterramento de acordo com o especificado no manual, ou seja, um aterramento separado para o CLP.

3 - FIAÇÃO

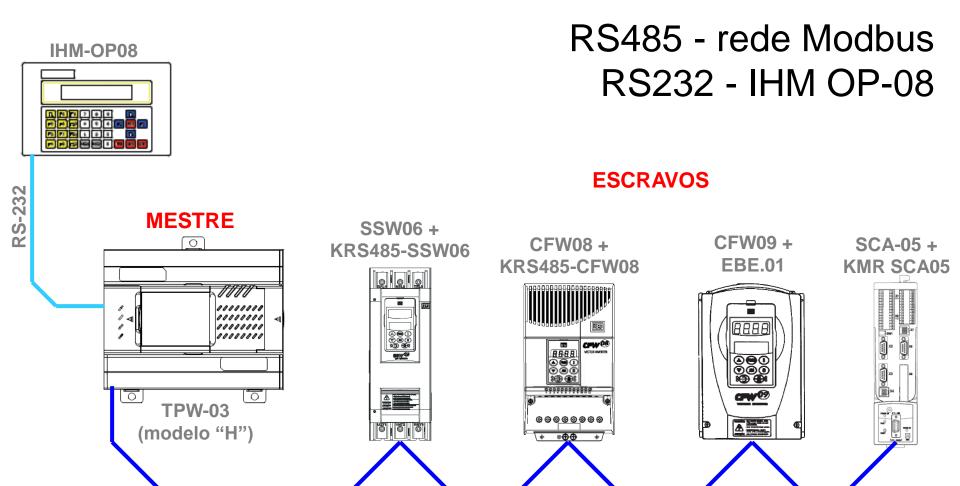
A fiação das entradas e saídas digitais do CLP devem ter eletrodutos específicos e percurso separado dos cabos de potência.

4 - ENTRADAS e SAÍDAS

Separar as fontes de alimentação das entradas e saídas do CLP.

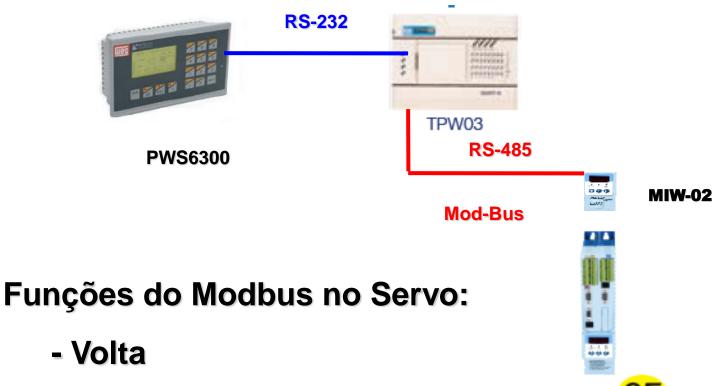
5 – CARGAS INDUTIVAS

Proteger a saída do CLP contra o retorno de tensão de cargas indutivas AC, colocando um circuito RC (para saída relé - vide cálculo no manual) ou diodo reverso para cargas indutivas DC (saída transistor ou relé) na bobina da carga


APLICAÇÕES

Exemplos

Rede Modbus


Cabo par trançado (RS-485)

Exemplos

Posicionamento Dosagem

- Fração de Volta
- Disparo Posicionamento: Dosagem

Exemplos

Referência de Velocidade

Funções do Modbus no Inversor:

- Ajuste Referência Velocidade
- Pode-se ler vários parâmetros

 Não usa Analógica no CLP, redução de custo para o cliente, EBE < AD e DA do CLP

CFW 09

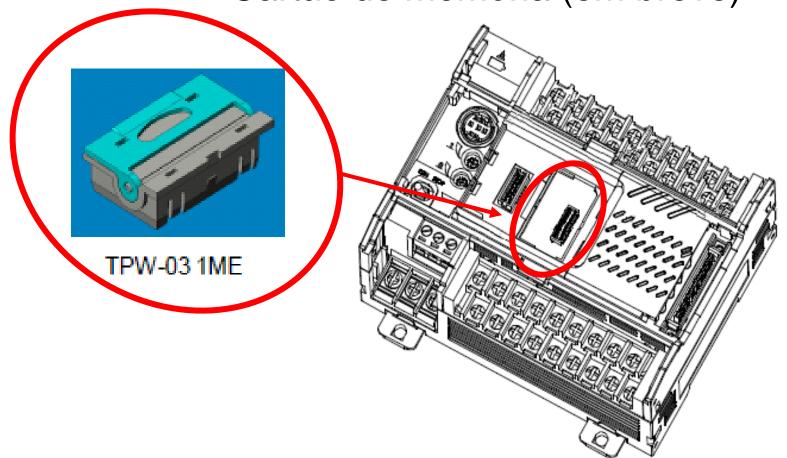
CFW-09

EM BREVE

Em Breve

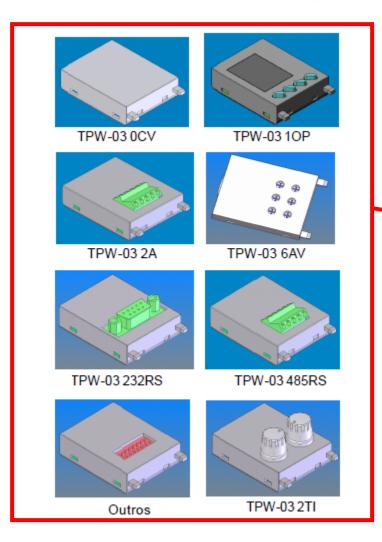
BREVEMENTE

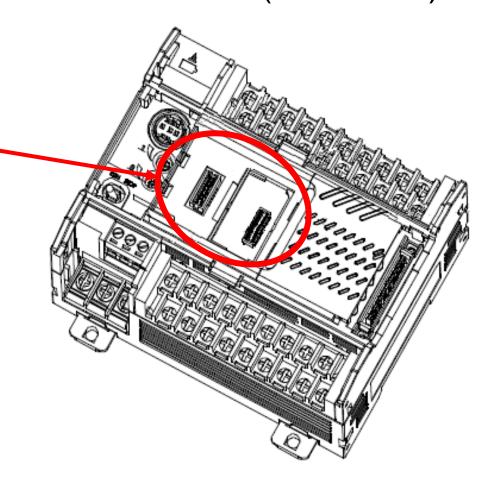
- Configuração Máxima de 252 pontos digitais e 70 Pontos analógicos.
- Cartões de expansão com baixo custo (cartões com 2 entradas analógicas, porta de comunicação RS232, RS485, etc.).
- Módulos de Expansão com entradas analógicas PT100 e termopar.
- Módulos de Comunicação Ethernet TCP/IP,
 Profibus-DP e DeviceNet (somente escravos).



Em Breve

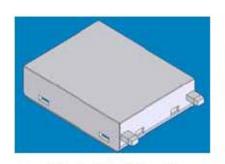
CARACTERÍSTICAS

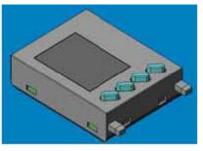

Cartão de memória (em breve)



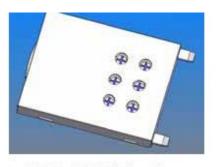
CARTÕES DE EXPANSÃO

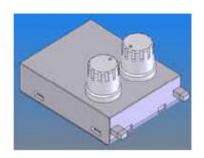
(em breve)




CARTÕES DE EXPANSÃO

(EM DESENVOLVIMENTO)

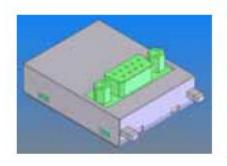

TIPO		DESCRIÇÃO	FIGURA
TPW-03-0CV	Interna	Cobertura/tampa padrão	(Fig. 4)
TPW-03-1OP		Temporizador compacto e dispositivo de programação do contador	(Fig. 5)
TPW-03-6AV	Opcional	Porta de entrada do potênciometro analógico	(Fig. 6)
TPW-03-2TI		Temporizador (0~30s) porta de entrada	(Fig. 7)


TP-0CV (Fig 4)

TP3-1OP (Fig 5)

TP3-6AV (Fig 6)

TP3-2TI (Fig 7)



CARTÕES DE EXPANSÃO

(EM DESENVOLVIMENTO)

TIPO		DESCRIÇÃO	FIGURA
TPW-03-232RS		Porta de comunicação RS232	(Fig. 8)
TPW-03-485RS		Porta de comunicação multi-função RS 485	(Fig. 9)
TPW-03-2AI	Opcional	Porta de entrada analógica 0~10V (10bit)	(Fig. 10)
TPW-03-1ME		Módulo de memória	(Fig. 11)

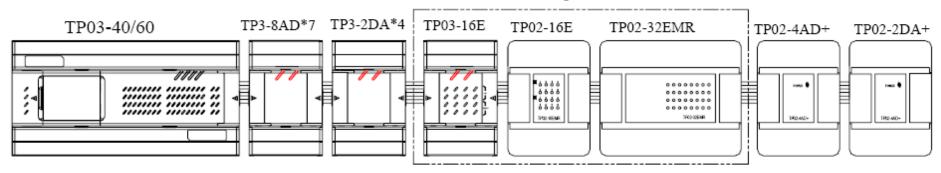
TP3-232RS (Fig 8)

TP3-485RS (Fig 9)

TP3-2AI (Fig 10)

TP3-1ME (Fig 11)

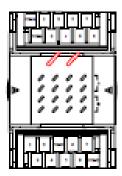
MÓDULO DE EXPANSÃO

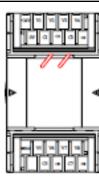


EXEMPLO COM EXPANSÕES DO TPW-03 (EM DESENVOLVIMENTO)

Expansões do TP-02 + TPW-03 (em breve)

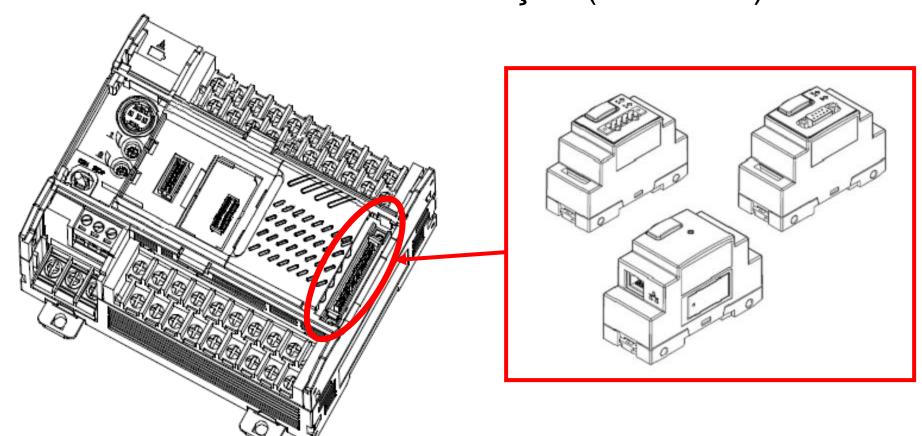
max 256 points




MÓDULOS DE EXPANSÃO

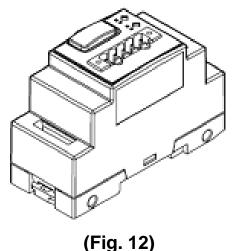
(EM DESENVOLVIMENTO)

TIPO	DESCRIÇÃO	FIGURA
TPW-03-01SPS-A	Fonte para módulo de expansão	Fig.
TPW-03-4RD	Módulo de expansão, 4 entradas p/ sensor de temperatura PT100	Fig.
TPW-03-4TM	Módulo de expansão, 4 entradas de sensor de temperatura J/K	Fig.
TPW-03-2DA	Módulo de expansão, 2 saídas analógicas	Fig.
TPW-03-3MA	Módulo de expansão, 2 entradas analógicas, 1 saída analógica	Fig.
TPW-03-8AD	Módulo de expansão, 8 entradas analógicas	Fig.
TPW-03-16EMR	Módulo de expansão, 8 entradas digitais e 8 saídas digitais a relé	Fig.

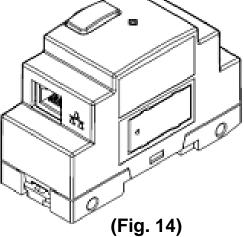

(Fig. 13)

CARACTERÍSTICAS

Módulos de comunicação (em breve)



MÓDULOS DE EXPANSÃO


(EM DESENVOLVIMENTO)

TIPO	ALIMENTAÇÃO	DESCRIÇÃO	FIGURA
TPW-03-Dnet		Modulo DeviceNet escravo	(Fig. 12)
TPW-03-Pbus	24Vdc	Modulo Profibus escravo	(Fig. 13)
TPW-03-TCP/IP		Modulo EtherNet TCP/IP	(Fig. 14)

MICRO CLP

PROGRAMAÇÃO

Principais comandos do TPW03-PCLINK

- Estabelecer a comunicação PC <--> TPW-03 :
- **→** PLC / Connect / (COM1) Link
- Escrever programa para o TPW-03:
 - **→** PLC / Write / (selecionar)
- Executar ou Parar o programa :
 - **⇒** PLC / Run
 - → PLC / Stop
- Monitorar níveis lógicos :
 - **→ PLC / Program Watch ou Monitor the program**
 - \Rightarrow Para sair : idem

ENDERAÇAMENTO DE MEMÓRIA

ENTRADA X

SAÍDA

MARCADOR AUXILIAR M

CONSTANTE DECIMAL K

CONSTANTE HEXADECIMAL H

TEMPORIZADOR T

CONTADOR

DADOS

Pontos de Entrada	X0X377 (sistema octal)
Pontos de Saída	Y0Y377 (sistema octal)
Marcadores Auxiliares	M0M7679 (sistema decimal)
Marcadores Especiais	M8000M8511
Registradores Gerais	D0D7999
Registradores Especiais	D8000D8511
Arquivos de Texto	Armazenam mensagens

ENTRADAS

- **∠** Representado pela letra "X"
- **∠** Endereçamento em octal (0 a 7, 10 a 17, 20 a 27...)
- **∠** Faixa de valores:

TPW03-20...: X000 a X013 (total 12 pontos)

TPW03-30...: X000 a X017 (total 16 pontos)

TPW03-40...: X000 a X027 (total 24 pontos)

TPW03-60...: X000 a X043 (total 36 pontos)

MÁX : X000 a X177 (total 128 pontos)

SAÍDAS

- **∠** Representado pela letra "Y"
- **∠** Endereçamento em octal (0 a 7, 10 a 17, 20 a 27...)

TPW03-20...: Y000 a Y007 (total 12 pontos)

TPW03-30...: Y000 a Y015 (total 14 pontos)

TPW03-40...: Y000 a Y017 (total 16 pontos)

TPW03-60...: Y000 a Y027 (total 24 pontos)

MÁX : Y000 a Y177 (total 128 pontos)

MARCADORES AUXILIARES

- **∠** Representado pela letra "M"

Uso geral: M000 a M499 (end. configurável)

Retentivo 2: M500 a M1023 (end. configurável)

Retentivo 3: M1024 a M7679 (endereço fixo)

Diagnóstico: M8000 a M8511 (Reg. especiais)

CONSTANTES

DECIMAL

Representado pela letra "K"

16 bits: -32.768 a +32.767

32 bits: -2.147.483.648 a +2.147.483.647

HEXADECIMAL

∠ Representado pela letra "H"

∠ Faixa de valores:

16 bits: 0 a FFFF

32 bits: 0 a FFFFFFF

TEMPORIZADORES

- Representado pela letra "T"
- **∠** Faixa de valores:

Base de tempo 100ms: T0 a T199

Base de tempo 10ms: T200 a T245

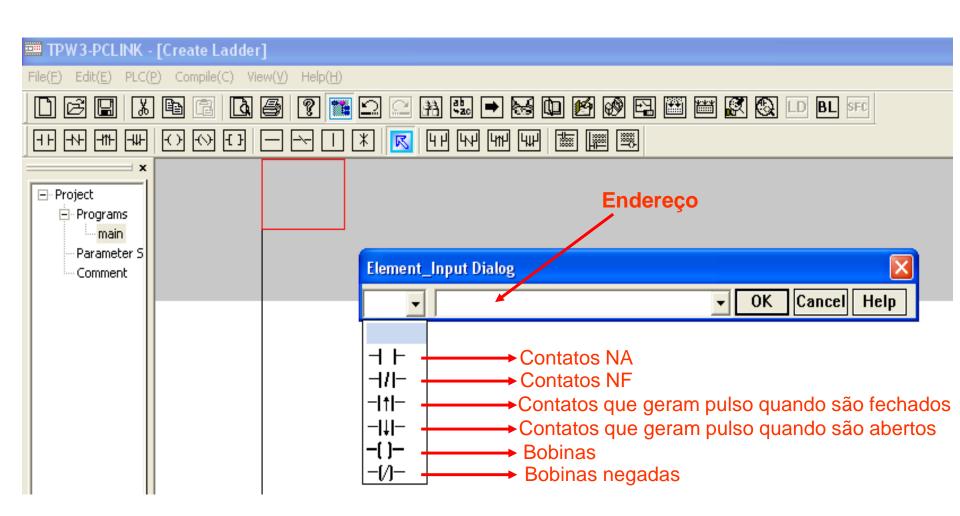
Base de tempo 1ms: T256 a T511

Acumulativo 100ms: T250 a T255

Acumulativo 1ms: T246 a T249

CONTADORES

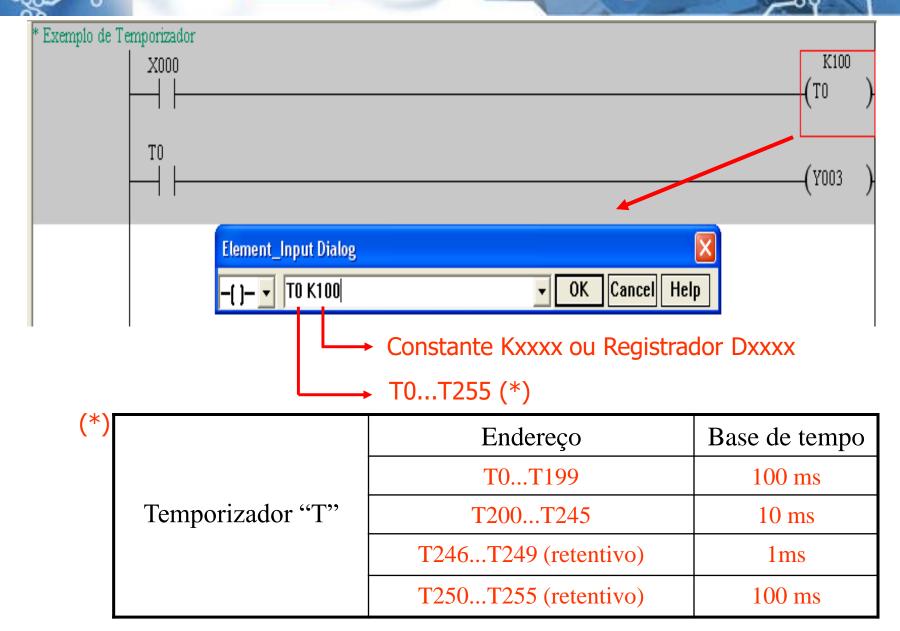
- **∠** Representado pela letra "C"
- **∠** Faixa de valores:

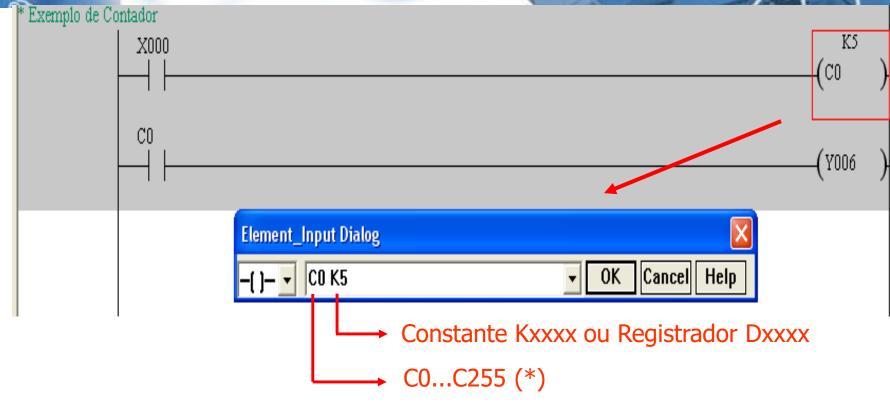

Uso geral (16bits): C0 a C099 (configurável) Contagem de 0 a 32.767

Retentivo (16bits): C100 a C199 (configurável) Contagem de 0 a 32.767

Retentivo (32bits): C200 a C255 Contagem de -2.147.483.648 a +2.147.483.647




Função SET-RESET


Temporizador

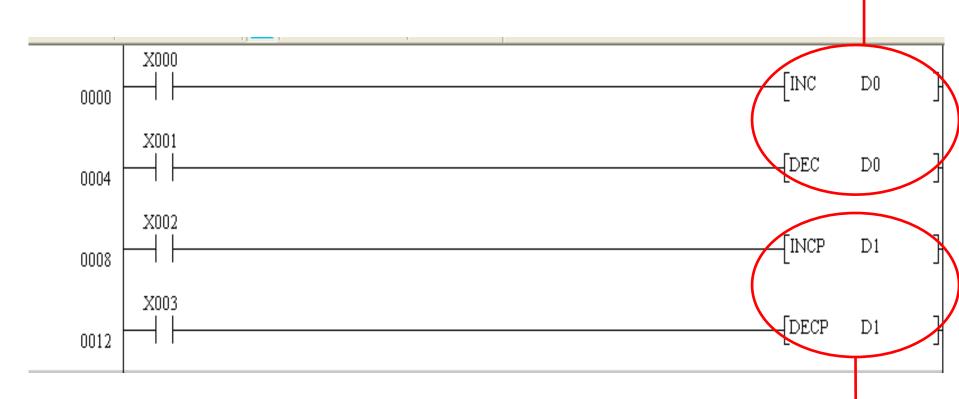
Contador

Endereço Características

C0...C99 16 bit's unidirecional

Contador "C" C100...C199 16 bit's unidirecional

retentivo


C200...C255 32 bit's bidirecional retentivo

Incrementa Decrementa

Incrementa/Decrementa 1 unidade em Dxxxx a cada scan, se a entrada estiver ativa

Incrementa/Decrementa 1 unidade em Dxxxx a cada pulso na entrada

Comparação

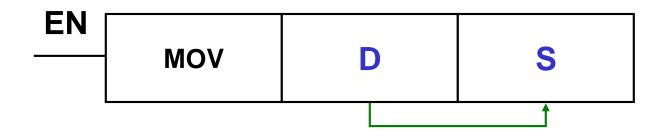
<u>Função</u>: Compara Campo1 (S1) com Campo2 (S2) e ativa a saída caso a comparação seja verdadeira

LD< Compara se S1 é menor que S2

LD<= Compara se S1 é menor ou igual a S2

LD> Compara se S1 é maior que S2

LD>= Compara se S1 é maior ou igual a S2

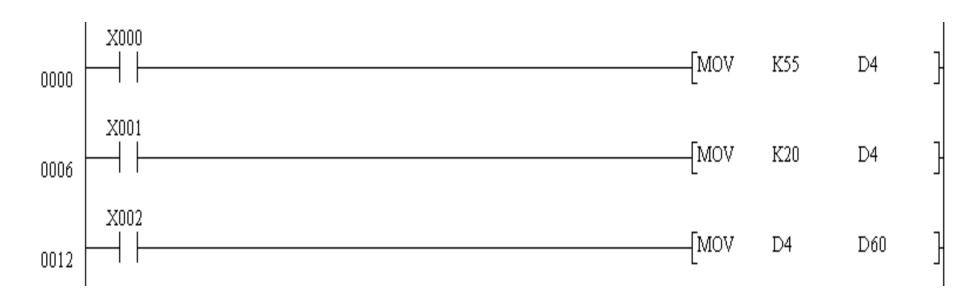

LD= Compara se S1 é igual a S2

LD<> Compara se S1 é diferente de S2

Função MOVE

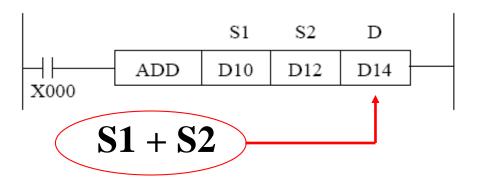
Função: transfere o valor ou conteúdo do registrador apontado por "D" para o registrador apontado por "S";

S : endereço de destino


D : endereço de origem

Função MOVE

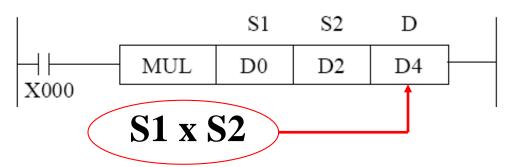
Exemplo:

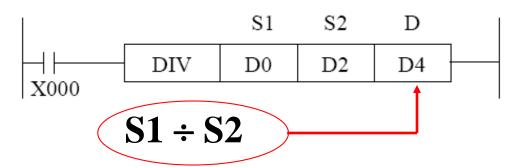


Aritimética

Soma

Subtração





Aritimética

Multiplicação

Divisão

MICRO CLP

PROGRAMAÇÃO - OP08

Teclas de função

OP07/08 (M)

8280	Tecla F1
8281	Tecla F2
8282	Tecla F3
8283	Tecla F4
8284	Tecla F5
8285	Tecla F6
8286	Tecla F7
8287	Tecla F8
8288	Tecla F9
8289	Tecla F10
8290	Tecla F11
8291	Tecla F12
8292	Para cima
8293	Para baixo
8294	Esquerda
8295	Direita
8296	Tecla TMR
8297	Tecla CNT
8298	Tecla ENT
8299	Tecla MOD1
8300	Tecla MOD2
8301	Tecla ESC
8302	Reservado
8303	Reservado

OP07/08 (D)

8280	Conteúdo da primeira linha defaulted
8281	Conteúdo da segunda linha defaulted
8282	Usuário do Conteúdo da primeira linha definido
8283	Usuário do Conteúdo da primeira linha definido
8284	OP07/08 Ajuste do modo de display
8285	OP07/08 Modo de display atual
8286	OP07/08 faixa do número do display
8287	Código de erro
8288	
8289	Número atual para o timer mode
8290	Número atual para o modo de contador
8291	Número atual para o modo de usuário 1
8292	Número atual para o modo de usuário 2
8293	Número atual para o modo de usuário 3
8294	Número atual para o modo de usuário 4
8295	Conteúdo da primeira linha para o modo F192
8296	Conteúdo da segunda linha para o modo F192
8297	Ajuste do formato dos dados 1
8298	Ajuste do formato dos dados 2
8299	Ajuste do formato dos dados 3
8300	Ajuste do formato dos dados 4

Edit ⇒ **Data Memory** ⇒ **File**

PCLINK	TPW-03	mensagem			
FL001	1	Máx. 20 caracteres ASCII			
FL002	2				
FL003	3				
FL004	4				
FL005	5				
FL006	6				
•••	•••				
	•••				
FL129	129				
FL130	130				

MODO INICIAL

- Configurar o display em modo inicial;
- **♣** Definir o arquivo de texto da *Linha 1*;
- **♣** Definir o arquivo de texto da *Linha 2*;

Mensagens de texto podem ser editadas com letras, números. (1)

⁽¹⁾ Caracteres ASCII std.

MODO DE DISPLAY TEXTP (função de texto)

- **4** Configurar o display em *modo de display*;
- **♣** Definir o arquivo de texto da *Linha 1*;
- **♣** Definir o arquivo de texto da *Linha 2*;
- **♣** Parametrizar a função TEXTP para a *Linha 1*;
- **♣** Parametrizar a função TEXTP para a *Linha 2*;

Mensagens de texto podem ser editadas com letras, números (1) e caracteres especiais.

Caracteres especiais:

- ⇒ Define a máscara para escrita na memória;
 ⇒ Define a máscara para leitura da memória;

Estrutura básica

EN	MOV	13 [FL???]		D8284	
	MOV			D8280	
	MOV	[FL???	[FL???]		281
	TEXTP	D8280		[S1]	K2
	TEXTP	D8281		[S 2]	K 1

TEXTP	D8280	[S1]	K2	
-------	-------	------	----	--

Função: Envia o arquivo de texto especificado em D para o display da OP08 sob modo de display TEXTP;

Para o parâmetro S considerar os seguintes casos :

- 1. Texto simples repetir o endereço de $D \Rightarrow [S = D]$
- 2. Escrita de dados o dado será armazenado na posição de memória apontada por [S+1];
- 3. Leitura de dados o dado será resgatado da posição de memória apontada por [S];

Considerando: Exem

Exemplo – Caso 1

FL002 = WEG Industrias S/A - Linha 1

FL006 = Texto de Exemplo - Linha 2

EN		MOV	K13		D82	284
		MOV	K2 K6		D8280	
		MOV			D8281	
		TEXTP	D8280	D	8280	K2
		TEXTP	D8281	D	8281	K 1

Exemplo – Caso 2

Considerando: FL007 = Escrita no Registro - Linha 1

FL001 = D0004 = ????? - Linha 2

EN		MOV	K13		D8284		
		MOV	K7		D82	D8280	
		MOV	K1		D8281		
		TEXTP	D8280	D	8280	K2	
		TEXTP	D8281	D	0003	K1	

Exemplo – Caso 3

Considerando: FL010 = Leitura do Registro - Linha 1

FL005 = D0009 = ##### - Linha 2

EN		MOV	K13		D82	8284	
		MOV	K10		D8280		
		MOV	K5		D8281		
		TEXTP	D8280	D	8280	K2	
		TEXTP	D8281	D	0009	K 1	

Exemplo - Caso 4

Considerando: FL003 = Ajustar D0002 em ??? - Linha 1

FL008 = Ajustar D0007 em ??? - Linha 2

EN		MOV	K13		D8284	
		MOV	K3		D8280	
		MOV	K 8		D8281	
		TEXTP	D8280	D	0001	K2
		TEXTP	D8281	D	0006	K 1

Exemplo – Caso 5

Considerando : FL009 = D0002 = ##### - Linha 1

FL004 = D0007 = ##### - Linha 2

EN	MOV	K13		D8284	
	MOV	K9		D8280	
	MOV	K4		D8281	
	TEXTP	D8280	D	0002	K2
	TEXTP	D8281	D	0007	K1

Exemplo – Caso 6

Considerando : FL006 = D0008 = ????? - Linha 1

FL005 = D0008 = ##### - Linha 2

EN		MOV	K13		D8284	
		MOV	K6		D8280	
		MOV	K5		D8281	
		TEXTP	D8280	D	0007	K2
		TEXTP	D8281	D	8000	K1