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cascaded with the plant to effectively move the 1∕T𝜃2
zero to s = −3. The MATLAB

commands are

acl= aa - ba*0.1*ca(3,:); % Close alpha loop, K𝛼=.1
qfb= ss(acl,ba,ca(2,:),0); % SISO system for q f.b.
z=3; p=1;
lag= ss(-p,1,z-p,1); % Lag compensator
csys= series(lag,qfb); % Cascade Comp. before plant
[a,b,c,d]= ssdata(csys);
k= logspace(-2,0,2000);
r= rlocus(a,b,c,d,k);
plot(r)
grid on
axis([-20,1,-10,10])

The root-locus plot is the same shape as Figure 4.4-3, and when the pitch-rate
feedback gain is kq = 0.2, the closed-loop transfer function is

q
u
= 203.2s(s + 10.0)(s + 1.027)(s + 0.0217)(s + 3)

(s + 18.02)(s + 10.3)(s + 1.025)(s + 1.98 ± j2.01)(s + 0.0107± j0.0093)
(1)

When the pole and zero close to s = −1 are canceled out, this transfer function is
essentially the same as in Example 4.4-1 except that there is a zero at s = −3 instead
of s = −1. This zero can be replaced by a zero at s = −1 once again, by placing the
lag compensator in the feedback path. However, a zero at s = −1 produces a much
bigger overshoot in the step response than the zero at s = −3. Therefore the flying
qualities requirements on T𝜃2

should be checked (see Section The Handling Qualities
Requirements) to obtain some guidance on the position of the zero.

This example shows that the same short-period mode, as in Example 4.4-1, can
be achieved with much less alpha feedback and less pitch-rate feedback. Also, the
transfer function (1) shows that no additional modes are introduced. A dynamic com-
pensator is the price paid for this. Section 4.3 shows that the 1∕T𝜃2

zero will move
with flight conditions, and so the compensator parameters may have to be changed
with flight conditions. ◾

Lateral-Directional Stability Augmentation/Yaw Damper

Figure 4.4-4 shows the most basic augmentation system for the lateral-directional
dynamics. Body-axis roll rate is fed back to the ailerons to modify the roll subsi-
dence mode, and yaw rate is fed back to the rudder to modify the dutch roll mode
(yaw damper feedback). The lateral (rolling) motion is not, in general, decoupled
from the yawing and sideslipping (directional) motions. Therefore, the augmenta-
tion systems will be analyzed with the aid of the multivariable state equations (two
inputs, ailerons and rudder, and two or more outputs), as implied by the figure. This
analysis will be restricted to the simple feedback scheme shown in the figure; in a
later section additional feedback couplings will be introduced between the roll and
yaw channels.
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Figure 4.4-4 Lateral-directional augmentation.

The purpose of the yaw damper feedback is to use the rudder to generate a yawing
moment that opposes any yaw rate that builds up from the dutch roll mode. This raises
a difficulty; in a coordinated steady-state turn the yaw rate has a constant nonzero
value (see Table 3.6-3 and the subsection on turn coordination) which the yaw-rate
feedback will try to oppose. Therefore, with the yaw damper operating, the pilot
must apply larger than normal rudder pedal inputs to overcome the action of the yaw
damper and coordinate a turn. This has been found to be very objectionable to pilots.
A simple control system solution to the problem is to use “transient rate feedback,” in
which the feedback signal is differentiated (approximately) so that it vanishes during
steady-state conditions. The approximate differentiation can be accomplished with a
simple first-order high-pass filter (see Table 3.3-1), called a “washout filter” in this
kind of application.

In Figure 4.4-4, GW is the washout filter, the transfer function Ga represents an
equivalent transfer function for differential actuation of the left and right ailerons,
and Gr is the rudder actuator. The transfer functions GF represent noise filtering
and any effective lag at the output of the roll-rate and yaw-rate gyros, and GB is a
bending-mode filter. The bending-mode filter is needed because the moments gener-
ated by the ailerons are transmitted through the flexible-beam structure of the wing,
and their effect is sensed by the roll-rate gyro in the fuselage. The transfer function of
this path corresponds to a general low-pass filtering effect, with resonances occurring
at the bending modes of the wing. Because the wing bending modes are relatively low
in frequency, they can contribute significant phase shift, and possibly gain changes,
within the bandwidth of the roll-rate loop. The bending-mode filter is designed to
compensate for these phase and gain changes.

To understand the purpose of the roll-rate feedback, consider the following facts.
In Section 4.2 the variation of the roll time constant with flight conditions was
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analyzed, and in Chapter 2 the change of aileron effectiveness with angle of attack
was described. These effects cause large, undesirable variations in aircraft roll per-
formance that result in the pilot flying the aircraft less precisely. Closed-loop control
of roll rate is used to reduce the variation of roll performance with flight conditions.

While the roll time constant is a feature of the linear small-perturbation model and
gives no indication of the maximum roll rate or time to roll through a large angle, it
is relevant to the initial speed of response and control of smaller-amplitude motion.
Figure 4.4-5 shows a plot of the reciprocal of the F-16 roll time constant versus alpha
and indicates that this time constant may become unacceptably slow at high angles
of attack. The plot was derived by trimming the F-16 model in straight and level
flight at sea level, with the nominal cg position, over a range of speeds. At angles
of attack greater than about 20∘ the roll pole coupled with the spiral pole to form a
complex pair.

Landing approach takes place at a relatively high angle of attack, and the roll-rate
feedback may be needed to ensure good roll response. Also, satisfactory damping
of the dutch roll mode is particularly important during landing approach in gusty
crosswind conditions. Our F-16 model does not include flaps and landing gear, so
the design of the augmentation loops will simply be illustrated on a low-speed,
low-altitude flight condition. If we take the F-16 model dynamics at zero altitude,

0 2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ALPHA IN DEG.

1/
(T
A

U
−

R
O

LL
)

Figure 4.4-5 F-16 model roll time constant versus alpha in degrees.
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with the nominal cg position and an airspeed of 205.0 ft/s (alpha = 18.8∘), the roll
pole is real and quite slow (𝜏 = 1.44 s), and the dutch roll is very lightly damped
(𝜁 = 0.2). The state equations can be found by linearization, and a five-state set of
lateral-directional equations can be decoupled from the full thirteen-state set. The
coefficient matrices are found to be

A =

⎡⎢⎢⎢⎢⎢⎢⎣

𝛽 𝜙 𝜓 p r

−0.13150 0.14858 0.0 0.32434 −0.93964

0.0 0.0 0.0 1.0 0.33976

0.0 0.0 0.0 0.0 1.0561

−10.614 0.0 0.0 −1.1793 1.0023

0.99655 0.0 0.0 −0.0018174 −0.25855

⎤⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎣

𝛿a 𝛿r
0.00012049 0.00032897

0.0 0.0

0.0 0.0

−0.1031578 0.020987

−0.0021330 −0.010715

⎤⎥⎥⎥⎥⎥⎥⎦
(4.4-1a)

C =
[

0.0 0.0 0.0 57.29578 0.0

0.0 0.0 0.0 0.0 57.29578

]
p

r
D =

[
0 0

0 0

]
(4.4-1b)

The null column in theA-matrix shows that the state𝜓 is not coupled back to any other
states, and it can be omitted from the state equations when designing an augmentation
system. The C-matrix has been used to convert the output quantities to degrees, to
match the control surface inputs. The transfer functions of primary interest are

p
𝛿a

= −5.911(s − 0.05092)(s + 0.2370± j1.072)
(s + 0.06789)(s + 0.6960)(s + 0.4027± j2.012)

(4.4-2)

r
𝛿a

= −0.1222(s + 0.4642)(s + 0.3512± j4.325)
(s + 0.06789)(s + 0.6960)(s + 0.4027± j2.012)

(4.4-3)

p
𝛿r

= +1.202(s − 0.05280)(s − 2.177)(s + 1.942)
(s + 0.06789)(s + 0.6960)(s + 0.4027 ± j2.012)

(4.4-4)

r
𝛿r

= −0.6139(s + 0.5078)(s + 0.3880 ± j1.5439)
(s + 0.06789)(s + 0.6960)(s + 0.4027 ± j2.012)

(4.4-5)

The dutch roll poles are not canceled out of the p∕𝛿a transfer function by the com-
plex zeros. Therefore, coupling exists between the rolling and yawing motions, and
the dutch roll mode will involve some rolling motion. These transfer functions vali-
date the decision to use the MIMO state equations for the analysis. At lower angles of
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attack the dutch roll poles will typically be largely canceled out of the p∕𝛿a transfer
function, leaving only the roll subsidence and spiral poles.

The two roll-rate transfer functions given above contain NMP zeros close to the
origin. This is because gravity will cause the aircraft to begin to sideslip as it rolls.
Then, if the dihedral derivativeCl𝛽

is negative (positive roll stiffness), the aircraft will
have a tendency to roll in the opposite direction. This effect will be more pronounced
in a slow roll when the sideslip has a chance to build up.

The rudder-to-roll-rate transfer function has another NMP zero farther away from
the origin, corresponding to faster-acting NMP effects. A positive deflection of the
rudder directly produces a positive rolling moment (see Table 3.5-1) and a nega-
tive yawing moment. The negative yawing moment rapidly leads to positive sideslip,
which will in turn produce a negative rolling moment if the aircraft has positive roll
stiffness. This effect tends to cancel the initial positive roll, and the NMP zero is the
transfer function manifestation of these competing effects.

Example 4.4-3: A Roll Damper/Yaw Damper Design In Figure 4.4-4 the aileron
and rudder actuators will be taken as simple lags with a corner frequency of 20.2 rad/s
(as in the original model), and the bending mode filter will be omitted. The coefficient
matrices for the plant will be (4.4-1) with the 𝜓 state removed and denoted by ap,
bp, cp, dp. Positive deflections of the control surfaces lead to negative values for the
principal moments (Table 3.5-1) so, in order to use the positive-gain root locus for
design, we will insert a phase reversal at the output of the control surface actuators (in
the C-matrix). The aileron and rudder actuators will be combined into one two-input,
two-output state model and cascaded with the plant as follows:

aa= [-20.2 0; 0 -20.2]; ba= [20.2 0; 0 20.2]; % Actuator
ca= [-1 0; 0 -1]; da= [0 0; 0 0]; % SIGN CHANGE
actua= ss(aa,ba,ca,da); % u1= 𝛿a, u2= 𝛿r
plant= ss(ap,bp,cp,dp); % x1=beta, x2=phi, x3=p, x4=r
sys1 = series(actua,plant); % y1=p, y2=r (degrees)

The washout filter will be incorporated in a two-input, two-output model, with the
first input-output pair being a direct connection:

aw= [-1/𝜏w]; bw= [0 1/𝜏w]; % 𝜏w to be defined
cw= [0;-1]; dw= [1 0; 0 1]; % y1=p y2=washed-r
wash= ss(aw,bw,cw,dw);
sys2= series(sys1,wash); % x1=wash, x2=beta,.., x6=ail, x7=rdr

The washout filter time constant is a compromise; too large a value is undesirable
since the yaw damper will then interfere with the entry into turns. The following
root-locus design plots can also be used to show that too small a value will reduce the
achievable dutch roll damping (see Problem 4.4-3). The time constant is normally of
the order of 1 s, and 𝜏W = 1.0 s is used here.

Experience shows that the roll damping loop is the less critical loop, and it is
conveniently closed first. The p∕ua transfer function is the same as (4.4-2) with an
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additional pole at s = −20.2 and the static loop sensitivity changed to 119 (i.e., 20.2
times the original value of 5.91). The MATLAB commands to obtain a root-locus
plot and to close the loop are:

[a,b,c,d]= ssdata(sys2);
k= linspace(0,.9,3000);
r= rlocus(a,b(:,1),c(1,:),0,k);
plot(r) % Roll channel root locus
grid on
axis([-12,1,-5,5])

Figure 4.4-6 is the root-locus plot for positive kp. It shows that the feedback has
had the desired effect of speeding up the roll subsidence pole, which moves to the
left in the s-plane and eventually combines with the actuator pole to form a complex
pair. The spiral pole (not visible) moves a little to the right toward the NMP zero
at s = 0.05, and the dutch roll poles change significantly as they move toward the
open-loop complex zeros. If the feedback gain is made too high in this design, it
will be found to be excessive at lower angles of attack. Furthermore, a high value
will simply cause the aileron actuators to reach their rate and deflection limits more
rapidly, as they become less effective at the higher angles of attack. A feedback gain
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Figure 4.4-6 Root-locus plot for the roll damping loop.
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of kp = 0.2 puts the roll subsidence pole at s = −1.37, which is about twice as fast
as the open-loop value. This is a suitable starting value for investigating the effect of
closing the yaw damper loop:

acl1= a - b(:,1)*kp*c(1,:); % Close roll loop
[z,p,k1]= ss2zp(acl1,b(:,2),c(2,:),0) % Yaw tr. fn. + wash
r= rlocus( acl1,b(:,2),c(2,:),0,k);
plot(r) % Yaw channel root locus

The transfer function rW∕ur (with kp = 0.2) is

rw
ur

= 12.40s(s + 18.8)(s + 0.760)(s + 0.961 ± j0.947)
(s + 1)(s+ 18.9)(s + 1.37)(s + 0.0280)(s + 20.2)(s + 0.752 ± j1.719)

(1)

A root-locus plot for closing the yaw-rate loop through the feedback gain kr is shown
in Figure 4.4-7. Although not shown in the figure, one of the actuator poles is effec-
tively canceled by the zero at s = −18.8; the remaining actuator pole moves to the
right to meet the roll pole and form a new complex pair. As the magnitude of kr is
increased, the spiral pole moves slightly closer to the washout zero at the origin, and
the washout pole moves toward the zero at s = −0.76. At first the dutch roll poles
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Figure 4.4-7 Root-locus plot for the yaw-rate loop.
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move around an arc of constant natural frequency (approximately), and increasing
damping ratio, toward the complex zeros. After kr reaches about 3.5, the natural
frequency begins to decrease and the damping ratio tends to remain constant. This
feedback gain was considered to be the optimum value for the dutch roll poles, and
so the yaw-rate loop was closed:

acl2= a - b*[.2 0; 0 3.5]*c;
[z,p,k1]= ss2zp(acl2,b(;,1),c(1,:),0) % c.l. roll-rate t.f.

The principal transfer functions were found to be

p
r1

= 119.4(s + 17.4)(s − 0.0502)(s + 3.74)(s + 0.262 ± j0.557)
(s + 18.7)(s + 17.7)(s + 0.0174)(s + 3.29)(s + 0.861)(s + 1.18 ± j1.33)

(2)

r
r2

= 12.4(s + 18.8)(s + 1.00)(s + 0.760)(s + 0.961 ± j0.947)
(s + 17.7)(s + 18.7)(s + 3.29)(s + 0.861)(s + 0.0174)(s + 1.18 ± j1.33)

, (3)

where r1 and r2 are the roll-rate and yaw-rate reference inputs, as shown in
Figure 4.4-4.

Transfer functions (2) and (3) show that the dutch roll poles and the washout pole
(at s = −0.861) do not cancel out of the p∕r1 transfer function, so there is still strong
coupling between the roll and yaw channels. The dutch roll natural frequency and
damping (𝜔n = 1.78 rad∕s, 𝜁 = 0.67) are now satisfactory, but the appearance of the
relatively slow washout pole in the lateral dynamics may mean that the roll response
is not much improved. Since we no longer have a simple dominant poles situation,
a time response simulation is needed to assess the design. Before this is undertaken,
the effect of a higher gain in the roll-rate loop will be considered.

If the roll-rate loop is closed, with kp = 0.4, the roll subsidence pole moves out
to s = −3.08, and the zero in the yaw-rate loop transfer function (1) moves from
s = −0.76 to s = −3.40. This causes different behavior in the root-locus plot for
the yaw-rate loop, as shown in Figure 4.4-8. The washout pole now moves to the
left instead of the right. A comparison of Figures 4.4-7 and 4.4-8 shows that the
price paid for this potential improvement in roll response is that the maximum dutch
roll frequency is reduced. If the yaw-rate loop is closed with kr = 1.3, to obtain the
highest possible damped frequency for the dutch roll poles, the closed-loop transfer
functions are

p
r1

= 119.4(s + 19.27)(s + 1.74)(s − 0.0507)(s + 0.334 ± j0.787)
(s + 19.25)(s + 17.4)(s + 0.00767)(s + 2.82)(s + 1.57)(s + 0.987 ± j0.984)

(4)
r
r2

= 12.40(s + 1.00)(s + 17.1)(s + 3.40)(s + 0.486 ± j0.459)
(s + 19.25)(s + 17.4)(s + 0.00767)(s + 2.82)(s + 1.57)(s + 0.987 ± j0.984)

(5)
The dutch roll frequency has decreased to 𝜔n = 1.39 rad∕s, and the damping

has increased to 𝜁 = 0.71; these values still represent good flying qualities (see
Table 4.3-6). An improvement in the roll response should have been obtained since
the slow washout pole is nearly canceled by the zero at s = −1.74, and the roll
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Figure 4.4-8 Alternate yaw-rate root locus.

subsidence pole (at s = −2.82) may now dominate the roll response. Note the way
in which one actuator pole almost cancels out of each transfer function. Also, in the
yaw-rate response, note the zero at s = −1 that originally canceled the washout pole.
The transfer functions still show significant roll-yaw coupling.

The roll response of this design can only be assessed with a simulation, and
because of the presence of the slow spiral pole in the transfer functions, a doublet
pulse should be used as the input. The time responses were obtained by closing the
yaw-rate and roll-rate loops with the feedback gains above (kp = 0.4, kr = 1.3) and
using the following commands:

acl2= a - b*[.4 0; 0 1.3]*c; % Close roll & yaw
t= [0:.02:10]; % 501 points for plot
u= [-1.8*ones(1,51),1.8*ones(1,50),zeros(1,400)]’; % Doublet
[y,x]= lsim(acl2,b(:,1),c(1,:),0,u,t); % Linear simulation
plot(t,y,t,u)
grid on

Figure 4.4-9 compares the roll-rate response of the open-loop dynamics (augmented
with the actuators) with the closed-loop response. The doublet input is negative for
1 s, positive for 1 s, then zero, with unit amplitude in the open-loop case. In the
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Figure 4.4-9 Roll-rate response to an aileron doublet.

closed-loop case the overall gain is different, and the doublet was adjusted to 1.8∘ so
that the responses were of similar amplitude. The figure exhibits the major improve-
ment in the dutch roll damping and the small but significant improvement in the
roll-rate speed of response. ◾

This example indicates the difficulties of multivariable design when significant
cross-coupling is present in the dynamics. It also shows the difficulty of obtaining
a good roll response at low dynamic pressure and high alpha. The design could be
pursued further by investigating the effect of changing the washout time constant and
using compensation networks, such as a phase lead, in the yaw-rate feedback loop.
As pointed out earlier, increasing the bandwidth of the control loops may simply lead
to saturation of the control surface actuators, and the limitations of the basic aircraft
must be considered first.

4.5 CONTROL AUGMENTATION SYSTEMS

When an aircraft is under manual control (as opposed to autopilot control), the sta-
bility augmentation systems of the preceding section are, in most cases, the only
automatic flight control systems needed. But in the case of high-performance military
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