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Summary of topics

@ 20/10: Introduction & Kinetic Theory
@ 27/10: Lattice Boltzmann & Hands-On
@ 03/11: Dense Fluids & Hands-On



Introduction:
A quick look at the
Lattice Boltzmann method



e |
i

e Flow past obstacles with inlet/outlet boundary
conditions



e Phase separation (periodic domain)



.

e \Wetting phenomena




e Wetting phenomena



Highlights
@ Intrinsically time-dependent
@ Easy to implement and parallelize
@ Natural description of complex flows
@ Applies to both meso and macro scales
@ Easy handling of irregular geometries



Highlights
@ Intrinsically time-dependent
@ Easy to implement and parallelize
@ Natural description of complex flows
@ Applies to both meso and macro scales
@ Easy handling of irregular geometries
Limitations
@ Highly-compressible flows (high Mach number)
@ Substantial heat transfer
o Lattice constraints



Simple D2Q9 scheme: at each lattice point r:

{eo, €1, es,€e3,€4,€5,€5,€7,€5} (velocities)

¢ atinna’
{no, n1,m2,n3, 14, 115, 6, N7, N8 } (‘populations’)

where n, = ng(r,t)



t.
X
7 4 ]

Flow fields at each lattice point r:

8
p=> mng (mass density)
a=0
8
pu= > me,n, (momentum density)
a=0
8
5pRT =" tm(e, —u)’ n, (temperature)

a=0



Lattice Boltzmann equation (¢t = time step):

i) nl(r,t) =ny(r,t) + Qu(r, t) collide

i) na(r+eydt,t+0t) =n)(r,t)  stream



Lattice Boltzmann equation (¢t = time step):

i) nl(r,t) =ny(r,t) + Qu(r, t) collide

i) na(r+eydt,t+0t) =n)(r,t)  stream

e how is this related to fluid dynamics?



e Molecular dynamics and statistics.



Part 1:
Elements of kinetic theory

@ Basic notions

@ The Boltzmann equation

@ Fluid dynamics

@ Equilibrium

@ Chapman-Enskog theory

@ Non-ideal gases: exclusion volume correction
@ The BGK collision model



Basic notions



The probable number of molecules within d€dr is

f(x, &, t)d€dr

where f is the one-particle distribution function —
this is the central object of kinetic theory.



The probable number of molecules within d€dr is

f(r, & t)d€dr

where f is the one-particle distribution function —
this is the central object of kinetic theory.

n(r,t) = /f(r,ﬁ,t)dﬁ number density at r
N = /n(r, t) dr total number of particles

(obs: sometimes other normalizations are used)



Number and mass densities

n(r,t) = [ f(r,&t)d€  p(r,t) = mn(r,t)



Number and mass densities

n(r,t) = [ f(r,&t)d€  p(r,t) = mn(r,t)

Momentum density

p(r,t)u(r,t) = [ mé& f(r, & 1)dé



Number and mass densities

n(r,t) = [ f(r,&t)d€  p(r,t) = mn(r,t)

Momentum density

p(r,t)u(r,t) = [ mé& f(r, & 1)dé

Kinetic energy density

p(r,t)e(r,t) = [ 3me® f(r, & )dg



Number and mass densities
n(r.t) = [ f(r.6.0d6  p(r.t) = mn(r.1)

e u(r,t) = momentum per unit mass

p(r,t)u(r, 1) = [mé f(r, & t)dé

e ¢(r,t) = kinetic energy per unit mass

p(r,te(r,t) = [ 3me® f(r,€,t)dé



Thermal velocity (‘peculiar’ velocity)

Cr&t)=¢—ulrt) = [Cfde=0



Thermal velocity (‘peculiar’ velocity)

Cr&t)=¢—ulrt) = [Cfde=0

pe = /%m(u + C)? fd¢



Thermal velocity (‘peculiar’ velocity)

Cr&t)=¢—ulrt) = [Cfde=0

pe = /(%mu2 +1mC?+2C - u) fd¢



Thermal velocity (‘peculiar’ velocity)

Cr&t)=¢—ulrt) = [Cfde=0

pe = %pu2 +/%m02 fdg



Thermal velocity (‘peculiar’ velocity)
Cr.&,t)=€&—u(r,t) = /Cfd£ =0
1,2 1,2
pe = 5pu +/§mC’ fdg

Internal (thermal) energy per unit mass

pe(r t) = /%mC’2 fdg



Temperature at equilibrium (p = py and u = 0)
3kp
£=—-——
2m
kp = 1.38065 x 10~ Joule/Kelvin = Boltzmann constant

(equipartition theorem from statistical physics)



Temperature at equilibrium (p = py and u = 0)

3kp
£=——
2m
kp = 1.38065 x 10~ Joule/Kelvin = Boltzmann constant

(equipartition theorem from statistical physics)

Temperature field

3kp
e(r,t) = -—T(r,t
(x,8) = 52T (r, 1
e the equilibrium relation is extended to nonequilibrium

e complex molecules: center-of-mass DOFs are used



Temperature at equilibrium (p = py and u = 0)

. _3ks
2m

kp = 1.38065 x 10~ Joule/Kelvin = Boltzmann constant
(equipartition theorem from statistical physics)

Temperature field

k
e(r,t) = ZWST(r,t) = 2}% T(r,t)

kg  Nakp  ideal gas constant i
R=—= = = gpecific gas constant
m Nam molar mass




The Boltzmann equation



Knowledge of f(r,&,t) allows calculation of

n=[rdg
pu= [ mé fdé (p=mn)
%pRT:/%mszd&’ (C=¢—u)



Knowledge of f(r,&,t) allows calculation of

n=[rdg
pu= [ mé fdé (p=mn)
%pRT:/%mCQfdé (C=¢—u)

The Boltzmann equation governs the evolution of
the distribution function

f(r7€70) % f(r7€7 t)

under suitable initial /boundary conditions.



At t = 0, consider the cluster of molecules at r(0) that have
velocity £(0). Without collisions the number of molecules in
the cluster would not change as we follow their motion:

f(x(t), &(1),t) = f(r(0),£(0), 1)

where: E(t) = £(t), (1) = g(x(1))

(mg(r) = external force field, smooth at molecular scale)



At t = 0, consider the cluster of molecules at r(0) that have
velocity £(0). Without collisions the number of molecules in
the cluster would not change as we follow their motion:

f(r(t),€(t),t) = f(r(0),£(0),1)
where: E(t) = £(t), (1) = g(x(1))

(mg(r) = external force field, smooth at molecular scale)

e ‘Lagrange form’ (no collisions)

df(r(t),€(), 1)

dt =0




At t = 0, consider the cluster of molecules at r(0) that have
velocity £(0). Without collisions the number of molecules in
the cluster would not change as we follow their motion:

f(xe(t),€(t),t) = f(r(0),£(0), )
where: () = &(t), &(t) = g(x(1))
(mg(r) = external force field, smooth at molecular scale)
e ‘Euler form’ (no coIIisions)

at ar o 0



At t = 0, consider the cluster of molecules at r(0) that have
velocity £(0). Without collisions the number of molecules in
the cluster would not change as we follow their motion:

f(x(t),€(t),t) = f(x(0),£(0),1)
where: #(t) = £(t), &(t) = g(x(t)
(mg(r) = external force field, smooth at molecular scale)

e ‘Euler form’ (no collisions)

Of(r.&8) Ofr.&t) | Of(r.60

ot or ot 0

6 .



In reality, however, the number of molecules in the cluster
changes, since their velocities are altered at collision events,

hat is
R ORI ()
dt 8t collisions




In reality, however, the number of molecules in the cluster
changes, since their velocities are altered at collision events,

hat is
RO (af)
dt 8t collisions

Assumptions for rarefied gases
@ only binary collisions are considered
@ collisions are local
@ collisions are essentially instantaneous events
@ collisions are assumed to be elastic



() = ()= (30,
| o ¢
SN




() s = (30),00 = (o)
ot collisions B ot gain ot loss

N ¢ w(3,4 4+ 1,2) =

probability rate for collisions
of the type: £3,&, < §,,&,

61 Ez —— ——
time after before




() s = (30),00 = (o)
ot collisions B ot gain ot loss

N ¢ w(3,4 + 1,2) =

probability rate for collisions
of the type: £3,&, < §,,&,

61 Ez —— ——
time after before

(Of (Do = [[f w(3:4  1,2) f(1) f(2) dEd€;dé,




() s = (30),00 = (o)
ot collisions B ot gain ot loss

64\0 o w(3,4+ 1,2) =

probability rate for collisions
of the type: £3,&, < §,,&,

(Onf (D)ioss = [ (3.4 = 1,2) f(1)(2) d&ydéde,
(Onf (D)gain = [[] w(1,2 4= 3,4) £(3)f(4) drd&sdE,




() s = (30),00 = (o)
ot collisions B ot gain ot loss

64\0 o w(3,4+ 1,2) =

probability rate for collisions
of the type: £3,&, < §,,&,

(Of (W)ioss = [ | [ w34 = 1,2)d&5d8,] £(1)(2) dE,
(Onf (D))guin = [[] w(1,2 4= 3,4) £(3)f(4) drd&sdE,




time

() e = (30),00 = (o)
ot collisions B ot gain ot loss

o &%, uBe12) -

probability rate for collisions
of the type: £3,&, < &1, &,

61 Ez —— ——
after before

FWhoss = [ [ [[w(1,2 3. 1)déyde,] F(1)F(2) dE,
F))gain = [[[ w(1,2 4 3,4) f(3)f(4) d€zd€,dé,



() e = (30),00 = (o)
ot collisions B ot gain ot loss

E"\O % w(3,4 1,2) =

probability rate for collisions
of the type: £3,&, < &1, &,

61 Ez —— ——
time after before

(Onf (D)ioss = [ (1,2 = 3,4) f(1)(2) d&ydEsde,
(Onf (D))guin = [[] w(1,2 4= 3,4) £(3)f(4) d&rd&sdE,




Therefore, the dynamic equation takes the form

W+£-(9f+g-af=9(f)

where

Qf) = [[[ w(fsfs — fir12) d€ad€sde,

e Q(f) is known as the collision integral

(obs: w is related to the scattering cross section for collisions)



Q(f) has the important properties:

[mQ(f)dé =0
| m€Q(f) dg =0
[3me*Q(f) de =0

Meaning: the local rate of mass, momentum, and
energy changes due to collisions is zero.



Q(f) has the important properties:

[mQ(f)dé =0
[ meQ(f)de =0
[3me*Q(f) de =0

Meaning: the local rate of mass, momentum, and
energy changes due to collisions is zero.

e This immediately yields balance equations for
mass, momentum, and kinetic energy.



Fluid dynamics






o« [m

0

f
ot

9
a = o [ mfde =



. /mg{dgz(i/mfdg:gf
. /mE-VdezV-/médezV-(pu)



0 0 0
/m(ﬁfﬁ-£+g-a£)d§:/mfz(f)dg:o

of .. 0 op
. /mad.ﬁ—a/mfdg—a

o/mE-VdezV-/médezV-(pu)
. /mg-vgfdg:g-/mvgfdg:g-jggmfds:o



0 0 0
/m(ﬁfﬁ-£+g-a£)d§:/mfz(f)dg:o

of .. 0 op
. /mad.ﬁ—a/mfdg—a

o/mE-VdezV-/médezV-(pu)
. /mg-vgfdg:g-/mvgfdg:g-jggmfds:o

dp
a‘FV‘ﬂU—O



0 0 0
[+ 565+ S i1 Ve = [ mefdg = 0
J J J



0 0 o
/m&({Jr%: fjaxj;JrEj: gj(%i)dg = /m&Q(f)dﬁ 0

d(pu;)
ot

o /m&(g{dﬁ = gt/mgifdg —



fme +Z€Ja g 85] Jdg = [mEQ(f)dg =0

o ey dﬁ— 2 m&fdﬁ o)

.« [maXe g € s / me; fdE = 28“”
J




fme +Z€Ja 3 Jagj Jdg = [mEQ(f)dg =0
o [meae= 5 | m&fdﬁ o)
. /m&ny’ 5 Z /mfzfgfdﬁ ZGHU

/m& Zg] e, dE Z / mfl mf5ij>d£ = —pPYi




fme +Z€Ja g 85] Jdg = [mEQ(f)dg =0
-/ me o dﬁ—at / m&fdﬁ <8t>
. /m&ny’ 5 Z /mfzfgfdﬁ ZGHU

/m& Zg] e, dE Z / mfl mf5ij>d£ = —pPYi

dpu; olL;;
Y +Zax] pYi

J

II;; = momentum flux tensor



/3 g(af+£f+ ﬁds [ meQ(f)dg =0



/Qgﬁfs‘ﬁ-wﬁgt/mﬁzcm—o

0
o [1me%ig =0 [ 1me jag = 20



[ime (e g o) £)de = [ metaf)ag = 0
e G5 ;mgfdg:ag;@
/gmf€-Vfd€—V-/%m§2€fd€=V-Q



[ime (e g o) £)de = [ metaf)ag = 0
+ [imeLic =2 e - 260
/§m§s-Vfdé—V-/%m€2€fd€=V'Q

o [im&s-Verdt =g [ (Velimes) —mef)dg = —pg-u



[ime (e g o) £)de = [ metaf)ag = 0
o [imegiag = g [ gmetsig = 70
o [ime €-Vfd€=V-/%m€2€fd£=V-Q
o [im&s-Verdt =g [ (Velimes) —mef)dg = —pg-u
dpe

thv Q=pg-u

Q = kinetic energy flux vector



I;; = /mfifj /g
- /m(uZ + Ci)(u; + Cj) f dg
= puu; + / mC;C; f d€



I;; = /mfifj /g
- /m(uZ + Ci)(u; + Cj) f dg
= puu; + / mC;C; f d€

Q= [ 3m&¢; f de
= /%m(u2 +C? + QZWO@')(U]’ +Cj) f d€

= peu; + [ smC>C; f dg + S u; [ mCiC; f d€
| i



Definitions
P, = / mC;C; f d§ (pressure tensor)
¢ = /%mCQCj fdg (heat vector)
The fluxes decompose as follows
ILj = puiu; + B
Qj = peuj + q; + ;uipij
using tensor notation:

II=puu+P
Q=peu+q+u-P



The pressure tensor as implemented in LAMMPS s

Pij — Vfl aiv:l [m(Ca)i(Ca)j + (ra)i(Fa)J}

where sum is over all atoms inside volume V and

C, = v, — u(r,) = thermal vel. of atom ‘a’
F, = total force in atom ‘a’ due to other atoms

e the interatomic forces F' are responsible for
non-ideal gas behavior



The pressure is the trace P = %Zi P;; or

Nk BT N
P = Z
%/—/ a=1 a,_/
kinetic virial

@ Finite-range interatomic forces are neglected in
the kinetic theory of rarefied gases (collisions
act merely as a thermalization mechanism)

@ In order to deal with dense fluids (liquids)
corrections are needed (we will return to this)



The pressure is the trace P = %Zi P;; or

Nk BT N
P = Z
W a=1 %/—’
kinetic virial

@ Finite-range interatomic forces are neglected in
the kinetic theory of rarefied gases (collisions
act merely as a thermalization mechanism)

@ In order to deal with dense fluids (liquids)
corrections are needed (we will return to this)

back to balance equations...



The full set of balance equations

o o

—_— . :O

o VY
‘98’):+V.puu:pg—v-P (obs: P = P)
)
;:+V'(peu+q)=pg-u—v'(u?)

(obs: potential energy due to g drops out of the equations)



The full set of balance equations

dp

et ou=0

8t+v ou
agtuﬂLV-puu:pg—V-P

0
;tg%—v-,oau:—v'q—P:Vu

(obs: potential energy due to g drops out of the equations)



The full set of balance equations

0
£+V-pu:0

ot

0

gtunLV-puu:pg—V-P

opT 9

— 4+ V- -pTu=—-——(V- .V
5 TV PTu 3R( q+P:Vu)

Meaningful only if a solution to the Boltzmann
equation f(r,&,t) is provided.



Equilibrium



In equilibrium collisions do not change the velocity
distribution — gains and losses cancel off so that

Q(fo) =0
and the equilibrium distribution must satisfy
9t 5’f0 9o

+E- =0

ot HENT:



Theorem: any function with the form

fo(€) = ¢ exp[—b(€ — a)?]

makes the collision integral vanish.



Theorem: any function with the form

fo(€) = ¢ exp[—b(€ — a)?]

makes the collision integral vanish.

The parameters can be expressed in terms of the
hydrodynamic variables (p, T', u):

fol€) = g(sz T) 32 exp [ — (52;2‘7{)2]

(Maxwell-Boltzmann/Maxwellian distribution)



Theorem: any function with the form

fo(€) = ¢ exp[—b(€ — a)?]

makes the collision integral vanish.

The parameters can be expressed in terms of the
hydrodynamic variables (p, T', u):

fo(€) = 751<27TR T)_3/2 exp [ — (52]_%;)2}

(Maxwell-Boltzmann/Maxwellian distribution)

e obs: Q(fy) = 0 even for p(r,t), T(r,t), u(r,t).



A few properties of the equilibrium function
C)o = [ CfodC =0
< 0= [ CfodC = (8kpT/mm)"/?
(C?Y, / C?f,dC = 3kpT/m
(W(C))o = /w ) fodC =0 if ¥(C) is of odd degree



A few properties of the equilibrium function
C)g = / C f,dC = 0
< 0= [ CfodC = (8kpT/mm)"/?
<C / C?fodC = 3kgT/m
(W(C))o = /¢ ) fodC =0 if ¥(C) is of odd degree
At standard temp/press conditions

Hy: (CYg=1644m/s (p=0.0899 g/L)
Ny: (C)o =454 m/s (p=1.2506 g/L)



0.5

0.4

0.3

0.2

0.1

Maxwellian (velocity component)

T

T=1.00 —
T=2.00
T=3.00 —

T=4.00 —— |

T=500 ——

Il L 1

-6 -4 -2 0 2 4 6

(Cx, Cy, Cz) range

FCOFCYFCL), F(Ca) = (p/m)*(2nRT) 2 5




Maxwellian (absolute value of velocity)

0.7 T T T T
T=1.00 ——
T=2.00
06 - T=3.00 — |
T=4.00 —
0.5 T=500 —— 4
0.4 y
03 ]
0.2 ]
0.1 4
0 |
0 2 4 6 8 10

Crange

F(C)dE — 4xC2F(C)AC = 4 (p/m)(2x RT) 3/?C2e~ 7 dC



Pressure tensor and heat vector at equilibrium:
Pj(fo) = [ mCiC; fo dé = pRT 65 = p 3y
a(fo) = [ §mC>C; fo dg =0
where the equilibrium pressure has been identified

=pRT = %Z P;i(fo) (ideal gas law)



Pressure tensor and heat vector at equilibrium:

Py(fo) = [mCiC; fod€ = pRT b6 = p &5
a(fo) = [ §mC>C; fo dg =0

where the equilibrium pressure has been identified

=pRT = %Z P;i(fo) (ideal gas law)

These are the constitutive relations of an Euler
fluid, but beware...



...the function f; must also obey the Boltzmann
equation — this imposes severe restrictions in the
hydrodynamic fields.



...the function f; must also obey the Boltzmann
equation — this imposes severe restrictions in the
hydrodynamic fields.

Stationary equilibrium solutions have the form:

T =T,
u(r) =uy+wxr

v(r) (wXxu) r (wx r)Q)
]CBTO ]CBT() 2]CBTO

p(r) = poexp (-

where g(r) = —Vu(r); this is hydrostatics.



Chapman-Enskog theory



Task: seek for solutions of the form
f=f+of
Fundamental assumptions
p=[mfde = [m fydE
pu= [mé fdé = [ mé& f,dé
SPRT = [3mC? fdg = [ 3mC” f, dé

Deviations do not directly affect the local values of
the basic hydrodynamic fields.



Task: seek for solutions of the form

f=Jfo+of
Fundamental assumptions
[m(5f)dg=0

[ mg (5f) dé =0
/ngQ (0f)d€ =0

Deviations do not directly affect the local values of
the basic hydrodynamic fields.



The deviations 0 f, however, affect the pressure
tensor and heat vector

Py = pRT b;+ [ mCiCy o f dé
4 = / ImC2C; 6 f de

which, in turn, induce changes in the hydrodynamic
fields through

0

§:+V-puu:pg—V-P

opT 9

— 4+ V- -pTu=—-——(V- P:V
5 TV pTu 3R( q+ u)



Following this logic, deviations take the general form
of = —fola(C)- VT +B(C) : Vu]

and the task is to find vector a and tensor B by
approximately solving the Boltzmann equation —
once they are found we may compute



Following this logic, deviations take the general form
of = —fola(C)- VT +B(C) : Vu]

and the task is to find vector a and tensor B by
approximately solving the Boltzmann equation —
once they are found we may compute

G = — Z {/ smC>C; a; fo d€| (VT);

Py =pRT 6;; — Y [/mCZCj By fo d€] (V)
K



The result for monoatomic isotropic gases is
q=—-\VT

P =pRTI-2uVi
where the symmetric traceless part of Vu is
o 1/0u;  Ouy 1%
(Vi) = 2(8xj + (%i) B 3 0xy,

The transport coefficients for rigid-spheres are
p= 1 ymkgT/ma? (shear viscosity)
A =2 (3R/2) ymkpT/ma* (thermal conductivity)

Cy

5,

where a is the molecular diameter.



The dimensionless combination
A epp 2 2.5

agrees well with experimental values for noble gases
(Chapman-Cowling p. 249)

Table 2: Experimentally
measured values of
f = A/ue, for the first five
noble gases.[12]

Helium 2.45
Neon 2.52
Argon 2.48
Krypton 2.535

Xenon 2.58



Hence the first nonequilibrium correction ¢ f yields
the constitutive relations for a viscous fluid

q=-\VT, P=pl-2uVa, p=pRT



Hence the first nonequilibrium correction ¢ f yields
the constitutive relations for a viscous fluid

q=-\VT, P=pl-2uVa, p=pRT

and the fluid obeys the Navier-Stokes equations

dp
a +V . (pu) =0
Jpu 9 1
W+V~(puu) =pg — Vp+uVu+;uV(V - u)
T
O (; LV - (pe,Tu) = AV2T — pV - u + 2u(Vit : Vi)

e here the temperature dependence of A and i was ignored

e obs: the volume viscosity for a monoatomic gas is zero



Non-ideial gases:
(i) exclusion volume correction



At least two types of corrections are needed to
describe non-ideal fluids: we must account for

@ molecular exclusion volume (today)
@ long-range intermolecular forces (later)

to understand look at RDFs...



normalized RDF

2.5

15

0.5

Lennard-Jones fluid at T=1.50 P=4.44 (lj units)

T T T T
atom-atom

3 4 5 6
radial distance (lj units)




normalized rdf

3.5

2.5

H20 at T=300K P=1atm

hydrogen-hydrogen
oxygen-oxygen
hydrogen-oxygen

4 6 8
radial distance (Angstrom)

10



normalized rdf

0.8

0.6

0.4

0.2

CO2 at T=300K P=200atm

carbon-carbon
carbon-oxygen

-

3 4 5 6 7 8
radial distance (Angstrom)



Result: if molecules have an effective diameter d

(g{) collisions - X{Q(f) N ®f0} = Qb(f)



Result: if molecules have an effective diameter d

(g{) collisions - X{Q(f) N ®f0} = Qb(f)

i.e. the collision rate increases by the factor
x(p) =1+ 2bp+0.2869(bp)* + - - - where b= 27d’/3m



Result: if molecules have an effective diameter d

(g{) collisions - X{Q(f) N ®f0} = Qb(f)

i.e. the collision rate increases by the factor
x(p) =1+ 2bp+0.2869(bp)* + - - - where b= 27d’/3m

while shifted by a factor ‘—0O f;’, where

3,C% 5
O(p,T,)u) = bp{C-Vlog(p2xT)+g(2RT—§)C-VlogT e

2.CC c? 5
+g[ﬁ:Vu+(2RT—§)V-uH




Result: if molecules have an effective diameter d

(g{) collisions - X[Q(f) - @fo} - Qb(f)

i.e. the collision rate increases by the factor
x(p) =1+ 2bp+0.2869(bp)* + - - - where b= 27d’/3m

while shifted by a factor ‘—0O f;’, where

3,0% 5
O(p,T,)u) = bp{OVlog(psz)+g(2RT—§)C'VlogT e

2.CC c? 5
—i—g[ﬁ:Vu—i—(ZRT—i)V-uH

e how does this affect the balance equations?



New terms appear:

[mutpa

/méﬂb ) d§ = =V (bp’xRT)

[ 3m&*(f)dg = =V - (bp*x R T)



New terms appear:

/me

/méﬂb ) d¢ = =V (bp>xRT) = -V - 11,

[ 3m&*(f)de = =V - (bp*xRTu) = =V - (u - 11)
These can be incorporated as a correction to the
momentum flux tensor

= (bp*xRT)1



The balance equations are the same, except that

1= puu+P + (bp*xRT)I

IL; = puju;+(pRT + bp*x R T) 65+ | mC;C; (5f)dé€
J

pp=corrected equil. press.

viscous part



The balance equations are the same, except that

1= puu+P + (bp*xRT)I

I = pusuj+(pR T + bp* xR T) 85+ [ mCiC; (3)de

pp=corrected equil. press.

viscous part

This effectively yields a non-ideal gas equation of
state
py=p(L+bpx)RT

e in practice x(bp) can be adjusted to model different EOS.



The exclusion volume corrections also affect 6 f and,
consequently, the expressions for the viscous stress
tensor and heat vector are modified:

ILiscous = —U(V : U->I — 2Mbel, Q = -NVT
where

pp = px (14 3bpx)* + 20
Ao = Ax 1+ 2bpx)* + 3Ry

Note that a volume viscosity appears

= 1.002ux(bp)?
(ref: Chapman-Enskog's book, Cap. 16)



The BGK collision model



The main source of difficulty in solving Boltzmann's
equation is the collision integral

of ¢ af of

5 +g DE Q(f)



The main source of difficulty in solving Boltzmann's
equation is the collision integral

of ¢ af of

5 +g DE Q(f)

Simplification: adopt the BGK collision model
1
Q(f) = Q(f) = —;(f — Jo)

2
o Ty = L 2eR 1) W exp [ &8

e 7. is a model parameter known as the relaxation time
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The BGK model satisfies the fundamental properties

[ d&m Q(f) =0
[ d& mg Qy(f) =0
[ d& 3me® Qo(f) =0
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and it is compatible with Enskog's assumptions

p=[dgmf=[dEmfy
u=[dEmg [ = [ dgmé fy
Sp)RT = /df ImC? f = /ds ImC? fy



The Boltzmann-BGK equation reads

of of of 1
(%+€'&+g'8€——%(f—f0)



The Boltzmann-BGK equation reads

of af of 1
8t+£ g'ag——%(f—fo)

The Chapman-Enskog procedure yields
Iyiscous = =204V, q=—-AVT
with coefficients
pu=pRT7., N=pRT (bR/2) 7,

e in practice 7, can be chosen to match the fluid’s viscosity



The Boltzmann-BGK equation reads

f e O g 01
ot g’?g_ Te

The Chapman-Enskog procedure yields

+&- (f = fo)

Il iscons = _2HVﬁ, q = —-\VT
with coefficients
p=pRT 7., AX=pRT (bR/2) T,

o \pc, =32 =1.666--- #2.5



In order to avoid velocity gradients, we write

of of 1 af
6)LLJré'ar——Tc(f—fo)—g'ag



In order to avoid velocity gradients, we write

e U Ny gy g 0

_|_ -
ot or Te
and approximate

of 0fo  (§—u),  C

en Sl = S =~y

o0& 0¢ RT RT
which should be valid as long as fluctuations remain
small — then:




In order to avoid velocity gradients, we write

of of 1 af
6)LLJré'ar——Tc(f—fo)—g'ag

and approximate

of dfo  (&—-u),  C

v = - Jo=—5=/o

o0& 0¢ RT RT
which should be valid as long as fluctuations remain
small — then:

oot h-nlon)




Defining

9= fo(l+ 7 (C/RT)-g)

‘default’ forcing style



Defining

9= fo(l+ 7 (C/RT)-g)

the transport equation takes the simpler form

of of 1
8t+€ ——;c(f—g)

‘default’ forcing style



Alternatively, we may note that

g(0, T, p) = fo(uw,T,p) x (1+7.(C/RT)-g)

~ fO(u+Au7T7p) = f()

with
Au=r1.g

‘shifted velocity’ forcing style



Alternatively, we may note that

g(uvTv p) - fO(u7T7 p) X (1 + T (C/RT) ) g)

~ fO(u+Au7T7p) = f()

with
Au=r1.g

then
9 ¢ 0f 1

% T8 o - (f = fo)

‘shifted velocity’ forcing style



The starting point for developing the Lattice
Boltzmann equation will be

or Te




The starting point for developing the Lattice
Boltzmann equation will be

of
ot

+&- af——j(f—fo)




The starting point for developing the Lattice
Boltzmann equation will be

of
ot

+&- af——j(f—fo)

To do:
@ Design time-marching scheme
@ Introduce discrete velocity space
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