
Review Article
Asymptotic Behaviour of the QED Perturbation Series

Idrish Huet,1 Michel Rausch de Traubenberg,2 and Christian Schubert3
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I will summarize the present state of a long-term effort to obtain information on the large-order asymptotic behaviour of the QED
perturbation series through the effective action. Startingwith the constant-field case, I will discuss the Euler-Heisenberg Lagrangian
in various dimensions and up to the three-loop level.This Lagrangian holds the information on theN-photon amplitudes in the low-
energy limit, and combining it with Spinor helicity methods explicit all-N results can be obtained at the one-loop and, for the “all
+” amplitudes, also at the two-loop level. For the imaginary part of the Euler-Heisenberg Lagrangian, an all-loop formula has been
conjectured independently byAffleck, Alvarez, andManton for Scalar QED and by Lebedev andRitus for SpinorQED.This formula
can be related through a Borel dispersion relation to the leading large-N behaviour of the N-photon amplitudes. It is analytic in the
fine structure constant, which is puzzling and suggests a diagrammatic investigation of the large-N limit in perturbation theory.
Preliminary results of such a study for the 1 + 1 dimensional case throw doubt on the validity of the conjecture.

1. Motivation

In 1952 Dyson [1] shocked the high energy physics commu-
nity by declaring that, quite generally, the QED perturbation
series cannot converge. Writing the series as𝐹 (𝑒2) = 𝑐0 + 𝑐2𝑒2 + 𝑐4𝑒4 + ⋅ ⋅ ⋅ , (1)

Dyson argues, “suppose, if possible, that the series converges
for some positive value of 𝑒2; this implies that 𝐹(𝑒2) is
an analytic function of 𝑒 at 𝑒 = 0. Then for sufficiently
small values of 𝑒, 𝐹(−𝑒2) will also be a well-behaved analytic
function with a convergent power-series expansion.”

He then argues that, on physical grounds, this cannot be
the case, since for 𝑒2 < 0 the QED vacuum will be unstable
due to a runaway production of 𝑒+𝑒− pairswhich coalesce into
like-charge groups.

Shortly later Hurst [2] already provided a mathematical
proof of this fact for scalar 𝜆𝜙3 theory.The proof is essentially
based on the following three elements.

(1) The use of the inequality

𝐹∏
𝑖=1

( 1𝑝2𝑖 + 𝜅2) ≥ 𝐹𝐹(∑𝐹
𝑖=1 𝑝2𝑖 + 𝐹𝜅2)𝐹 (2)

to establish lower bounds for arbitrary Feynman
diagrams (in the Euclidean).

(2) Proof that the number of distinct Feynman diagrams
at 𝑛th loop order grows like (𝑛/2)!𝑛!.

(3) Absence of sign cancellations between graphs.

In 1994, ‘t Hooft [3] found another very general, but very
different, argument against convergence of the perturbation
series based on renormalon chains. Thus today it is believed
that the perturbation series in nontrivial quantum field
theories generically is asymptotical rather than convergent,
so that summation methods must be used. Of those by
far the most important one is Borel summation, since it is
ideally suited to the typical factorial growth of perturbation
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theory coefficients. Let me remind you that, for a factorially
divergent series

𝐹 (𝑔) ∼ ∞∑
𝑛=0

𝑐𝑛𝑔𝑛+1, (3)

one defines the Borel transform as𝐵 (𝑡) ≡ ∞∑
𝑛=0

𝑐𝑛 𝑡𝑛𝑛! . (4)

If 𝐵(𝑡) has no singularities on the positive real axis and does
not increase too rapidly at infinity, one can also define the
Borel integral 𝐹̃ (𝑔) ≡ ∫∞

0
𝑑𝑡 𝑒−𝑡/𝑔𝐵 (𝑡) . (5)𝐹̃ is the Borel sum of the original series 𝐹. 𝐹 is asymptotic

to 𝐹̃ by construction, although the true physical quantity
represented by the series 𝐹 might still differ from 𝐹̃ by
nonperturbative terms.The Borel transform remains a useful
concept evenwhen it leads to singularities, since those usually
contain information on the large-order structure of the
theory. In many cases they can be traced either to instantons,
renormalons, or Euclidean bounces.

Until recently, there was a dearth of nontrivial examples
for field theory models where sufficient information would
be available to decide the question of Borel summability in
a definite manner. Fortunately, this has changed through the
advent of supersymmetry; in recent years Borel summability
(or Borel nonsummability) has been rigorously demonstrated
in a number of supersymmetric models [4].

Even when Borel summability does not apply, Borel
analysis can still be very useful through the use of Borel
dispersion relations. This goes as follows. Assume that a
function 𝐹(𝑔) has an asymptotic series expansion

𝐹 (𝑔) ∼ ∞∑
𝑛=0

𝑐𝑛𝑔𝑛, (6)

where the expansion coefficients 𝑐𝑛 have the leading-order
large 𝑛 behaviour 𝑐𝑛 ∼ 𝜌𝑛Γ (𝜇𝑛 + ]) (7)

with some real constants 𝜌 > 0, 𝜇 > 0, and ]. It is easy to
see that such a series is not Borel-summable, since the Borel
integral (5) can never converge (e.g., in the textbook case𝜇 = ] = 1 it has a pole at 𝑡 = 1/𝜌). Nevertheless, applying
a dispersion relation to this integral one can show that the
leading contribution to its imaginary part for small 𝑔 is given
by

Im𝐹 (𝑔) ∼ 𝜋𝜇 ( 1𝜌𝑔)]/𝜇

exp[−( 1𝜌𝑔)1/𝜇] . (8)

Coming back to the case of QED, given the arguments by
Dyson and ‘t Hooft it is certainly safe to exclude a nonzero

convergence radius of the full QED perturbation series.
However, despite the immense work that has gone into low-
order perturbative QED computations, presently still little is
known about the precise large-order behaviour of the coeffi-
cients. Contrary to the case of scalar field theories mentioned
above, straightforward estimates based on lower bounds for
individual diagrams cannot be used in gauge theory, since
here Feynman diagrams come with different signs, and gauge
invariance is known to lead to cancellations between them.
And these cancellations are particularly extensive in the
abelian case, where there are no obstructing color factors.
Thus QED in this respect is more difficult than QCD, which
is made worse by the absence of (space-time) instantons
in QED, which in the nonabelian case can provide some
large-order information. In 1977 Cvitanovic [5] suggested,
based on an analysis of the calculation of the three-loop
anomalous magnetic momentum 𝑔 − 2 which he had done
with Cvitanovic and Kinoshita [6], that these cancellations
should be taken into account by counting the number of
classes of gauge-invariant diagrams, rather than the number
of individual diagrams. He also conjectured that, for the case
of 𝑔 − 2, they reduce the coefficients of the perturbation
series sufficiently to make it convergent in the quenched
approximation. This conjecture, though nowadays forgotten,
is actually still standing, since neither Dyson’s nor ‘t Hooft’s
arguments work in the absence of fermionic bubbles.

Here I will summarize the state of a long-term effort
[7–15] to get information on the large-order behaviour of
the QED perturbation series using the Euler-Heisenberg
Lagrangian and its higher-loop radiative corrections.

2. The 1-Loop Euler-Heisenberg Lagrangian

The Euler-Heisenberg Lagrangian (“EHL”) is the one-loop
QED effective Lagrangian for a constant external field.
Heisenberg andEuler [16] obtained for it in 1936 the following
well-known proper-time representation:

L
(1)
spin (𝐹) = − 18𝜋2 ∫∞0 𝑑𝑇𝑇3 e−𝑚2𝑇⋅ [ (𝑒𝑎𝑇) (𝑒𝑏𝑇)

tanh (𝑒𝑎𝑇) tan (𝑒𝑏𝑇) − 𝑒23 (𝑎2 − 𝑏2) 𝑇2 − 1] . (9)

Here 𝑎, 𝑏 are the two invariants of the Maxwell field, related
to E, B by 𝑎2 − 𝑏2 = 𝐵2 − 𝐸2, 𝑎𝑏 = E ⋅ B. (10)

The analogous result for Scalar QED was obtained by
Weisskopf [17] but will be called “Scalar Euler-Heisenberg
Lagrangian” in the following:

L
(1)
scal (𝐹) = 116𝜋2 ∫∞0 𝑑𝑇𝑇3 e−𝑚2𝑇 [ (𝑒𝑎𝑇) (𝑒𝑏𝑇)

sinh (𝑒𝑎𝑇) sin (𝑒𝑏𝑇)+ 𝑒26 (𝑎2 − 𝑏2) 𝑇2 − 1] . (11)

The Euler-Heisenberg Lagrangian (“EHL”) holds informa-
tion on the one-loop 𝑁-photon amplitudes, but only in the
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Figure 1: Sum of diagrams equivalent to the one-loop EHL.

low-energy limit (since a constant field can emit only zero-
energy photons).

Thus diagrammatically L(1)(𝐹) is equivalent to the sum
of the Feynman graphs shown in Figure 1, where all photon
energies are small compared to the electron mass, 𝜔𝑖 ≪ 𝑚.

In [10] it was shown how to carry out explicitly the
construction of these limiting low-energy amplitudes starting
from the weak-field expansion of the EHL:

L (𝐹) = ∑
𝑘,𝑙

𝑐𝑘𝑙𝑎2𝑘𝑏2𝑙. (12)

It turned out that if one fixes the number of photons, their
momenta 𝑘1, . . . , 𝑘𝑁, and a helicity assignment for each pho-
ton, then in this limit the full dependence on the momenta
and polarization vectors is carried by a unique invariant.Thus
the magnitude of the amplitude can be specified by a single
number, which will be essential for our whole approach.

Except for the purely magnetic case, the EHL has also
an imaginary part related to vacuum pair creation by the
electric field component (to be called “Sauter-Schwinger pair
creation” in the following) [18, 19]. In the purely electric case
one finds, from the poles in the 𝑇-integration, the following
decomposition due to Schwinger [19]:

ImL
(1) (𝐸) = 𝑚48𝜋3𝛽2 ∞∑

𝑘=1

1𝑘2 exp [−𝜋𝑘𝛽 ] ,
ImL

(1)
scal (𝐸) = − 𝑚416𝜋3𝛽2 ∞∑

𝑘=1

(−1)𝑘𝑘2 exp [−𝜋𝑘𝛽 ] . (13)

(𝛽 = 𝑒𝐸/𝑚2). In the following we will focus on the weak-
field limit 𝛽 ≪ 1 where only the first of these “Schwinger-
exponentials” is relevant.

The nonperturbative dependence of the Schwinger-
exponentials on the field supports the interpretation of
field-induced pair creation as a vacuum tunneling effect, as
proposed by Sauter as early as 1931 [18].

As usual in quantum field theory, the real and imaginary
parts of the EHL are related by a dispersion relation. For
the𝑁-photon amplitudes at full momentum, this would be a
standard dispersion relation performeddiagram-by-diagram,
relating the diagrams of Figure 1 to the “cut diagrams” shown
in Figure 2, involving on-shell electrons.

However, in the zero-energy limit the cut diagrams all
vanish, since a finite number of zero-energy photons cannot
create a pair on-shell. Thus what counts here is only the
asymptotic behaviour for a large number of photons, and
instead of an ordinary dispersion relation we have to use a
Borel dispersion relation. This works in the following way [7].

++ · · ·

Figure 2: Cut diagrams giving the imaginary part of the𝑁-photon
amplitudes.

Consider the purely magnetic EHL. Expanding it out in
powers of the field yields

L
(1) (𝐵)
= − 18𝜋2 ∫∞0 𝑑𝑇𝑇3 e−𝑚2𝑇 [ 𝑒𝐵𝑇

tanh (𝑒𝐵𝑇) − 13 (𝑒𝐵𝑇)2 − 1]
= 2𝑚4𝜋2 ∞∑

𝑛=2

𝑐(1)𝑛 𝑔𝑛
(14)

with an effective expansion parameter 𝑔 = (𝑒𝐵/𝑚2)2, and
coefficients 𝑐(1)𝑛 that can be written in terms of the Bernoulli
numbers 𝐵𝑛:

𝑐(1)𝑛 = − 22𝑛−4𝐵2𝑛(2𝑛) (2𝑛 − 1) (2𝑛 − 2) . (15)

Here 𝑐(1)𝑛 holds information on the 𝑁 = 2𝑛 photon ampli-
tudes. The asymptotic behaviour of the coefficients can be
easily studied using well-known properties of the Bernoulli
numbers. One finds𝑐(1)𝑛

𝑛→∞∼ (−1)𝑛 18 Γ (2𝑛 − 2)𝜋2𝑛 (1 + 122𝑛 + 132𝑛 + ⋅ ⋅ ⋅) . (16)

Thanks to the factor (−1)𝑛, the individual terms on the right
hand side of (16) all give convergent Borel integrals. This
is one (rather roundabout) way of seeing that the purely
magnetic EHL has no imaginary part and does not give rise
to pair creation.

The analogous expansion for the purely electric field case
is almost the same:

L
(1) (𝐸)= − 18𝜋2 ∫∞0 𝑑𝑇𝑇3 e−𝑚2𝑇 [ 𝑒𝐸𝑇

tan (𝑒𝐸𝑇) + 13 (𝑒𝐸𝑇)2 − 1]= 2𝑚4𝜋2 ∞∑
𝑛=2

(−1)𝑛 𝑐(1)𝑛 𝑔𝑛, (17)

where now 𝑔 = (𝑒𝐸/𝑚2)2, but with the same 𝑐(1)𝑛 . However,
the additional factor (−1)𝑛 makes the series nonalternating,
which is crucial, because now the termwise use of expansion
(16) leads to divergent Borel integrals. These divergent
integrals do, however, all possess well-defined imaginary
parts, by a (now ordinary) dispersion relation. One finds
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a perfect match between expansion (16) and Schwinger’s
expansion (13):

𝑐(1)𝑛 ∼ (−1)𝑛 18 Γ (2𝑛 − 2)𝜋2𝑛 󳨀→ ImL(1) (𝐸) ∼ 𝑚48𝜋3 ( 𝑒𝐸𝑚2
)2 exp(−𝜋𝑚2𝑒𝐸 ) ,𝑐(1)𝑛 ∼ (−1)𝑛 18 Γ (2𝑛 − 2)𝜋2𝑛 122𝑛 󳨀→ ImL(1) (𝐸) ∼ 𝑚48𝜋3 ( 𝑒𝐸𝑚2

)2 122 exp(−2𝜋𝑚2𝑒𝐸 ) ,... ...
(18)

3. The Euler-Heisenberg Lagrangian at
Higher Loops

Proceeding to higher-loop orders, the two-loop EHL L(2) is
generated by the diagrams shown in Figure 3 (here and in the
following it is understood that internal photon corrections are
put in all possible ways).

As in the one-loop case, L(2) will have an imaginary
part iff the field is not purely magnetic. This imaginary
part corresponds to the one-loop “cut diagrams” depicted in
Figure 4.

The two-loop EHL was first studied by Ritus, both for
Spinor [20] and for Scalar QED [21]. These calculations, as
well as later recalculations [12, 22, 23], resulted in a type of
rather intractable two-parameter integrals. However, the first
few coefficients of the weak-field expansions of the two-loop
EHLs have been computed [7, 12, 23]. As to the imaginary
parts, the Schwinger formulas (13) generalize to the two-loop
level as follows [24]:

ImL
(2) (𝐸) = 𝑚48𝜋3𝛽2 ∞∑

𝑘=1

𝛼𝜋𝐾spin
𝑘

(𝛽) exp [−𝜋𝑘𝛽 ] ,
ImL

(2)
scal (𝐸)= 𝑚416𝜋3𝛽2 ∞∑

𝑘=1

(−1)𝑘+1 𝛼𝜋𝐾scal
𝑘 (𝛽) exp [−𝜋𝑘𝛽 ] .

(19)

(𝛼 = 𝑒2/4𝜋), where
𝐾scal,spin
𝑘

(𝛽) = − 𝑐𝑘√𝛽 + 1 +O(√𝛽) ,
𝑐𝑘 = 12√𝑘 𝑘−1∑𝑙=1 1√𝑙 (𝑘 − 𝑙) , 𝑘 ≥ 2, 𝑐1 = 0 (20)

(these coefficients, also called 𝑐𝑛, should not be confused
with the weak-field expansion coefficients introduced above).
Thus at two loops the 𝑘th Schwinger-exponential appears
with a prefactor which is still a function of the field strength,
of which presently only the lowest order terms in the weak-
field expansion are known. Still, things become very simple
at leading order in this expansion: adding the one-loop and

two-loop EHLs, one finds, for example, for the Spinor QED
case [24],

ImL
(1) (𝐸) + ImL

(2) (𝐸) 𝛽→0∼ 𝑚4𝛽28𝜋3 (1 + 𝛼𝜋) e−𝜋/𝛽, (21)

and this result is spin-independent (but for the normaliza-
tion). In [24] it was further noted that if one assumes that in
this weak-field approximation higher order corrections just
lead to an exponentiation

∞∑
𝑙=1

ImL
(𝑙) (𝐸) 𝛽→0∼ ImL

(1) (𝐸) e𝛼𝜋 (22)

then the e𝛼𝜋 factor can be absorbed into the Schwinger factor
e−𝜋/𝛽 by the following mass-shift:𝑚(𝐸) ≈ 𝑚 − 𝛼2 𝑒𝐸𝑚 . (23)

Moreover, the existence of this mass-shift can be indepen-
dently confirmed in two different ways. First, the same mass-
shift had been found by Ritus already before in the crossed
process of electron propagation in the electric field [25].
Second, in the tunneling picture it can be interpreted as the
correction to the Schwinger pair creation rate due to the pair
being created with a negative Coulomb interaction energy
at a definite distance, taking the Coulomb interaction into
account at the one-photon exchange level [24].

And although this was not known to the authors of [24],
an analogous exponentiation had already been conjectured
two years before for the Scalar QED case by Affleck et
al. [26]. However, those authors used a totally different
approach based on worldline instantons. To explain this
concept, we first have to discuss Feynman’s worldline path
integral representation of the QED effective action.

4. Worldline Representation of the QED
Effective Action

In 1950 Feynman presented, in an appendix to one of his
groundbreaking papers on themodern,manifestly relativistic
formalism of QED [27], also an alternative first-quantized
formulation of Scalar QED, “for its own interest as an
alternative to the formulation of second quantization.”There
he provides a simple rule for constructing the complete Scalar
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Figure 3: Feynman diagrams contributing to the 2-loop EHL.

+ + · · ·

Figure 4: Feynman diagrams contributing to 2-loop Schwinger pair
creation.

QED 𝑆-matrix by representing the scalar particles in terms of
relativistic particle path integrals, and coupling them through
photons in all possible ways. Upon restriction to the purely
photonic part of the 𝑆-matrix (no external scalars) and to
the “quenched” contribution (only one virtual scalar), this
“worldline representation” can be stated very compactly in
terms of the (quenched) effective action Γ[𝐴]:Γscalar [𝐴] = ∫𝑑4𝑥Lscalar [𝐴]= ∫∞

0

𝑑𝑇𝑇 e−𝑚
2𝑇∫

𝑥(𝑇)=𝑥(0)
D𝑥 (𝜏) 𝑒−𝑆[𝑥(𝜏)]. (24)

Here 𝑇 denotes the proper-time of the scalar particle in the
loop, 𝑚 its mass, and ∫

𝑥(𝑇)=𝑥(0)
D𝑥(𝜏) a path integral over

all closed loops in space-time with fixed periodicity in the
proper-time. The worldline action 𝑆[𝑥(𝜏)] has three parts:𝑆 = 𝑆0 + 𝑆ext + 𝑆int. (25)

They are given by𝑆0 = ∫𝑇
0
𝑑𝜏 𝑥̇24 (free propagation) ,

𝑆ext = 𝑖𝑒 ∫𝑇
0
𝑥̇𝜇𝐴𝜇 (𝑥 (𝜏)) (external photons) ,

𝑆int = − 𝑒28𝜋2 ∫𝑇0 𝑑𝜏1 ∫𝑇
0
𝑑𝜏2 𝑥̇ (𝜏1) ⋅ 𝑥̇ (𝜏2)(𝑥 (𝜏1) − 𝑥 (𝜏2))2(internal photons) .

(26)

The kinetic term 𝑆0 describes the free propagation of the
scalar, 𝑆ext describes its interaction with the external field,
and 𝑆int generates the corrections due to internal photon
exchanges in the loop. Expanding out the two interaction
exponentials leads back to Feynman diagrams, however with
the important difference that no particular ordering of the
photon legs along the loop needs to be fixed. Thus the term𝑆ext alone upon expansion yields the diagrams of Figure 1
(where each leg now stands for an interaction with the
arbitrary field 𝐴(𝑥)).

The “worldline instanton” of Affleck et al. [26] is an
extremal trajectory of the worldline path integral for a

stationary phase approximation. For the case of a constant
electric field in the 𝑧 direction this extremal action trajectory
is given by a circle in the (Euclidean) 𝑡-𝑧 plane:𝑥instanton (𝜏) = 𝑚𝑒𝐸 (0, 0, cos(2𝜋𝜏𝑇 ) , sin(2𝜋𝜏𝑇 )) . (27)

It can be shown that in the weak-field (= large mass) limit
the imaginary (although not the real) part of the effective
Lagrangian can be well-approximated by replacing the path
integral with this single trajectory:

ImL
(quenched)
scalar (𝐸) ∼ e−𝑆[𝑥instanton]. (28)

This is easily evaluated to be

(𝑆0 + 𝑆ext) [𝑥instanton] = 𝜋𝑚2𝑒𝐸 ,𝑆int [𝑥instanton] = −𝛼𝜋. (29)

Thus the contribution of 𝑆0 + 𝑆ext just reproduces the leading
(one-loop) Schwinger-exponential of (13) and the one of 𝑆int
the e𝛼𝜋 factor.

ThusAffleck et al. arrive, with very little effort, at the same
exponentiation for Scalar QED that Lebedev and Ritus find in
Spinor QED:

ImL
(all-loop)
scal (𝐸) = ∞∑

𝑙=1

ImL
(𝑙)
scal (𝐸)

𝛽→0∼ −𝑚4𝛽216𝜋3 exp [−𝜋𝛽 + 𝛼𝜋]= ImL
(1)
scal (𝐸) e𝛼𝜋.

(30)

Their argument assumes the field to be weak, but there is no
restriction on the strength of the coupling 𝛼. We note the
following:

(i) Formula (30), if true, constitutes a rare case of an
all-loop summation of an infinite series of graphs
of arbitrary loop order. Those graphs are shown in
Table 1.

(ii) According to [26], the contribution of all non-
quenched diagrams gets suppressed in the weak-field
limit.

(iii) Perhaps, most surprisingly, the scalar mass appearing
in (30) is already the physically renormalized one,
implying that the worldline instanton approach auto-
matically takes all mass renormalization counterdia-
grams into account. This is remarkable considering
that the determination of the physicalmass parameter
for the EHL becomes a rather nontrivial issue already
at two loops [20, 22, 23].

Thus, according toAffleck et al. a true all-loop summation
has produced the factor e𝛼𝜋, which is not only unreasonably
simple but also perfectly analytical in the fine structure
constant 𝛼!. According to what has been said above, this
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Table 1: Feynman diagrams contributing to the AAM formula.

Number of loops Number of external legs
4 6 8 ⋅ ⋅ ⋅

1 ⋅ ⋅ ⋅
2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
3 ⋅ ⋅ ⋅ d ...
... ... d d ...
would seem to point towards extensive cancellations between
Feynman diagrams. However, neither [26] nor [24]made this
point, perhaps because the Schwinger pair creation rate is a
rather peculiar quantity.Thus our next goal will be to transfer
the exponential factor from the imaginary to the real part of
the EHL, by a Borel dispersion relation, and from there to the
low-energy photon 𝑆-matrix through the same procedure as
at one-loop:

ImL
disp. rel.󳨀→ ReL 󳨀→ Γ [𝑘1, 𝜀1; . . . ; 𝑘𝑁, 𝜀𝑁] . (31)

First we need to see whether our one-loop Borel disper-
sion relation can be extended to the multiloop level. For this
it will be useful to consider the simplest possible nonzero
constant-field background, which is the self-dual one.

5. The Self-Dual Case

As we mentioned above, the two-loop correction to the EHL
for a purely electric or purely magnetic field are known
only in terms of intractable integrals, and only the first few
coefficients have been calculated so far. However, this case is
not the simplest one that one can consider; mathematically
much better behaved is the one of a (Euclidean) constant self-
dual field, defined by 𝐹𝜇] = (1/2)𝜀𝜇]𝛼𝛽𝐹𝛼𝛽. The field strength
tensor can be written as

𝐹 =( 0 𝑓 0 0−𝑓 0 0 00 0 0 𝑓0 0 −𝑓 0). (32)

At the one-loop level, the self-dual (“SD”) EHLs for Scalar
and Spinor QED are special cases of (9) and (11). Anticipating
the result of the two-loop calculation below, it will be useful

here to eliminate the proper-time integral and perform a
change of variables from 𝑓 to 𝜅 ≡ 𝑚2/2𝑒𝑓. This leads to [8]

L
(1)(SD)
scal (𝜅)= 𝑚4(4𝜋)2 1𝜅2 [− 112 ln (𝜅) + 𝜁󸀠 (−1) + Ξ (𝜅)] , (33)

where the function Ξ(𝑥) is defined as follows:Ξ (𝑥) ≡ ∫𝑥
0
𝑑𝑦 ln Γ (𝑦) − 𝑥 ln Γ (𝑥) + 𝑥22 ln (𝑥) − 𝑥24− 𝑥2 . (34)

The Spinor EHL in this SD case after renormalization differs
from the scalar one only by a trivial global factor of −2 (the
reason for the independence of spin is that theDirac equation
in such a background possesses a hidden supersymmetry
[28]).

Remarkably, for the SD case it is possible to do all
integrals in closed form not only at one loop but even at two
loops, in both Scalar and Spinor QED. The results can be
written compactly in terms of the digamma function 𝜓(𝑥) ≡Γ󸀠(𝑥)/Γ(𝑥) [8]:

L
(2) (𝑓) = −2𝛼 𝑚4(4𝜋)3 1𝜅2 [3𝜉2 (𝜅) − 𝜉󸀠 (𝜅)] ,

L
(2)
scal (𝑓) = 𝛼 𝑚4(4𝜋)3 1𝜅2 [32𝜉2 (𝜅) − 𝜉󸀠 (𝜅)] . (35)

Here 𝜅 ≡ 𝑚2/2𝑒𝑓 and𝜉 (𝑥) ≡ −𝑥(𝜓 (𝑥) − ln (𝑥) + 12𝑥) (36)
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(note that 𝜉(𝑥) = Ξ󸀠(𝑥)). Using the well-known expansion of
the digamma function at 𝑥 = ∞ in terms of the Bernoulli
numbers 𝜓 (𝑥) ∼ ln𝑥 − 12𝑥 − ∞∑

𝑘=1

𝐵2𝑘2𝑘𝑥2𝑘 (37)

one finds the following closed-form expressions for the one-
and two-loop weak-field expansion coefficients 𝑐(1,2)(SD)𝑛 (we
write them down for the Spinor case):𝑐(1)(SD)𝑛 = − 𝐵2𝑛2𝑛 (2𝑛 − 2) ,𝑐(2)(SD)𝑛 = 1(2𝜋)2 {2𝑛 − 32𝑛 − 2𝐵2𝑛−2 + 3𝑛−1∑

𝑘=1

𝐵2𝑘2𝑘 𝐵2𝑛−2𝑘(2𝑛 − 2𝑘)} .
(38)

Further, in this self-dual case there is also an analogue of the
distinction between a purely magnetic and a purely electric
field. For real 𝑓 the SD EHL turns out to have a weak-field
expansion with alternating coefficients, so that it is Borel-
summable, and there is no imaginary part. Thus we call
this case “magnetic-like.” Taking imaginary 𝑓 removes the
alternating sign and creates a pole in the Borel integral, which
implies an imaginary part for the EHL.Thus we call this case
“electric-like.” This imaginary part of the self-dual EHL with
complex 𝑓 is obtained from (35) simply by using the analytic
continuation of the digamma function and thus also known
in closed form.

Studying the self-dual case turned out to be useful in three
ways:

(i) For this case we could verify that the Borel dispersion
relation (8) can be used to construct the imaginary
part of the EHL from the weak-field expansion even
at the two-loop level. That is, the asymptotic three-
parameter matching (7) works, and (more nontriv-
ially) the Borel summation procedure does not miss
any nonperturbative terms (see [29] for a case where
such a thing actually occurred, even at one-loop).

(ii) The AAM exponentiation formula (30) can be gen-
eralized to the SD case unchanged, by a simple
modification of the worldline instanton to a double
circle,𝑥instanton (𝜏) = 𝑚√2𝑒𝐸 (cos(2𝜋𝜏𝑇 ) , sin(2𝜋𝜏𝑇 ) ,
cos(2𝜋𝜏𝑇 ) , sin(2𝜋𝜏𝑇 )) . (39)

And the initial step of exponentiation (21) is easy
to verify explicitly from (33) and (35). This holds
independently of spin.

(iii) The effective action for a self-dual field is unphysical,
since such a field cannot be real in Minkowski space.
Nevertheless, it still carries information on the phys-
ical photon amplitudes; the self-duality condition

corresponds precisely to a projection on the “all +”
(or “all –”) photon amplitudes [30, 31]. Thanks to the
closed-form expressions (35), even at the two-loop
level we are still able to write down a closed-form all-𝑁 expression for this particular polarization choice:Γ(1) [𝑘1, 𝜀+1 ; . . . ; 𝑘𝑁, 𝜀+𝑁] = −2 (2𝑒)𝑁(4𝜋)2𝑚2𝑁−4

𝑐(1)(SD)𝑁/2 𝜒𝑁,Γ(2) [𝑘1, 𝜀+1 ; . . . ; 𝑘𝑁, 𝜀+𝑁]= −2𝛼𝜋 (2𝑒)𝑁(4𝜋)2𝑚2𝑁−4
𝑐(2)(SD)𝑁/2 𝜒𝑁.

(40)

As was mentioned above, here all the dependence on
momenta and polarization is absorbed by a unique (inde-
pendent of loop order) invariant 𝜒𝑁. Using Spinor helicity
techniques, this invariant can be constructed explicitly for all𝑁 [10].

6. Synthesis: A Conjecture for
the Photon 𝑆Matrix

We are now ready to state a conjecture for the 𝑁-photon
amplitudes at arbitrary loop level 𝑙 [11]. Consider the 𝑙-loop
correction to the purely electric EHL, and define its weak-
field expansion coefficients by

L
(𝑙) (𝐸) = ∞∑

𝑛=2

𝑐(𝑙) (𝑛) ( 𝑒𝐸𝑚2
)2𝑛 (41)

(note the change of convention with respect to (14)). Assum-
ing that the AAM formula (30) holds and that the Borel
dispersion relation (8) works at each loop order, we can
conclude that the leading asymptotic factorial growth rate
must be the same at each loop order, namely, ∼Γ(2𝑛 − 2):𝑐(𝑙) (𝑛) 𝑛→∞∼ 𝑐(𝑙)∞𝜋−2𝑛Γ (2𝑛 − 2) . (42)

And here 𝑐(𝑙)∞ relates to the leading Schwinger-exponential at𝑙 loops:
ImL

(𝑙) (𝐸) 𝛽→0∼ 𝑐(𝑙)∞e−𝜋𝑚
2/𝑒𝐸. (43)

At two loops, the numerical calculations of [7] confirm this,
but only if physical mass renormalization is used! For generic
mass renormalization one finds instead a leading factorial
behaviour ofΓ(2𝑛), and it is only through a cancellation of this
leading order term between the unrenormalized EHL and its
mass renormalization counterterm that this leading factorial
behaviour gets reduced to the same Γ(2𝑛 − 2) behaviour
as at one loop. At the 𝑙-loop level, it is still not difficult
to establish the leading factorial growth of the weak-field
expansion coefficients before renormalization, which is𝑐(𝑙) (𝑛) 𝑛→∞∼ Γ (2𝑛 + 2𝑙 − 4) . (44)

Thus at higher-loop orders the correctness of the AAM
conjecture requires increasingly extensive cancellations in
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the mass renormalization process to cut the leading factorial
growth all the way down to Γ(2𝑛 − 2).

Now let us consider the ratio of the 𝑙-loop to the one-
loop coefficients. Combining (42) and (43) with the AAM
conjecture (30), we find at any fixed loop order

lim
𝑛→∞

𝑐(𝑙) (𝑛)𝑐(1) (𝑛) = 𝑐(𝑙)∞𝑐(1)∞

AAM= 1(𝑙 − 1)! (𝛼𝜋)𝑙−1 . (45)

At this stage, let us switch to the self-dual case. This is not
essential for our argumentation, but we prefer it for two
reasons: first, more is known explicitly about the SD EHL;
second, as mentioned above the SD EHL directly translates
into one particular helicity component of the 𝑁-photon
amplitude, the one with all helicities equal (“all +” or “all −”).

Using our above rule for the conversion of the self-dual
weak-field expansion coefficients into the “all +” photon
amplitudes, which is independent of the loop order, we get
the following statement for the “all +” amplitudes in the limit
of large photon number𝑁 = 2𝑛:

lim
𝑁→∞

Γ(𝑙) [𝑘1, 𝜀+1 ; . . . ; 𝑘𝑁, 𝜀+𝑁]Γ(1) [𝑘1, 𝜀+1 ; . . . ; 𝑘𝑁, 𝜀+𝑁] = lim
𝑁→∞

𝜒𝑁𝑐(𝑙) (𝑁/2)𝜒𝑁𝑐(1) (𝑁/2)= 1(𝑙 − 1)! (𝛼𝜋)𝑙−1 . (46)

Summing this relation over 𝑙 we get
lim
𝑁→∞

Γ(total) [𝑘1, 𝜀+1 ; . . . ; 𝑘𝑁, 𝜀+𝑁]Γ(1) [𝑘1, 𝜀+1 ; . . . ; 𝑘𝑁, 𝜀+𝑁] = 𝑒𝛼𝜋. (47)

Assuming sufficient uniformity in 𝑙 of the convergence for𝑁 → ∞, one could now conclude that the amplitude
must be analytic in 𝛼 for some sufficiently large 𝑁. But
analyticity of the complete amplitude can certainly be safely
excluded by renormalons and other arguments. Therefore
uniformity must fail, and it is easy to see how this comes
about diagrammatically. In Figure 5 we show the diagrams
contributing to the EHL up to four loops, not showing the
external legs.

In the worldline instanton based derivation of the AAM
conjecture (30), only quenched diagrams contribute to the
weak-field limit of the imaginary part of the electric EHL;
thus this must also be true for the leading asymptotic
terms in the large 𝑁 expansion of the weak-field expansion
coefficients; nonquenched diagrams must get suppressed for𝑁 → ∞. However, the number of such diagrams is strongly
growing with the loop order, so that the process of the
suppression of the nonquenched contributions by increasing𝑁 should slow down with increasing 𝑙. This provides a good
reason for uniformity to fail for the whole amplitude, but
there is no obvious reason to expect such a nonuniformity
if one stays inside the class of quenched diagrams from the
beginning.This ledDunne and one of the authors in 2006 [11]
to conjecture that perturbation theory converges for the QED
photon amplitudes in the one-electron-loop approximation.
If true, this would imply enormous cancellations between
Feynman diagrams, presumably due to gauge invariance.

l = 1

l = 2

l = 3

l = 4

.

.

.
.
.
.

Figure 5: Diagrams contributing to the EHL up to four loops
(external legs not shown).

Only afterwards we learned that, as mentioned in the
beginning, Cvitanovic [5] had conjectured the analogous
statement for the electron 𝑔 − 2 factor,
7. Three Predictions for the Three-Loop EHL

To either disprove or further corroborate this conjecture, a
calculation of the EHL at the three-loop level is called for. We
would like to see the following three things happen:

(1) We should see the next term of the exponentiation:

lim
𝑛→∞

𝑐(3) (𝑛)𝑐(1) (𝑛) = 12 (𝛼𝜋)2 . (48)

(2) At three loops there is already a nonquenched con-
tribution, and it should be suppressed in the large 𝑁
limit.

(3) The convergence of 𝑐(3)(𝑛)/𝑐(1)(𝑛) should not be
slower than the one of 𝑐(2)(𝑛)/𝑐(1)(𝑛) when only
quenched diagrams are taken.

However, a calculation of the three-loop EHL in𝐷 = 4 seems
presently technically out of reach.

8. QED in 1 + 1 Dimensions

The proper-time representation of the one-loop EHL is
essentially independent of dimension. In 2008 Krasnansky
[32] studied the Scalar EHL in various dimensions also at two
loops and found, in particular, the rather surprising fact that
the Scalar EHL in 1 + 1 dimensions even at two loops has
a structure almost identical to the one of the self-dual Scalar
EHLs in 3+1 dimensions. Let us contrast the two cases: above
we wrote down the self-dual field strength tensor for𝐷 = 4:

𝐹 =( 0 𝑓 0 0−𝑓 0 0 00 0 0 𝑓0 0 −𝑓 0). (49)
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We also gave the Scalar EHL for this background:

L
(2)(4𝐷)
scal (𝜅) = 𝛼 𝑚4(4𝜋)3 1𝜅2 [32𝜉2 − 𝜉󸀠] ,𝜉 (𝜅) = −𝜅 (𝜓 (𝜅) − ln (𝜅) + 12𝜅) . (50)

In 2D the field strength tensor is 𝐹 = ( 0 𝑓
−𝑓 0 ), and the two-

loop Scalar QED EHL comes out as [32]

L
(2)(2𝐷)
scal (𝜅) = − 𝑒232𝜋2 [𝜉22𝐷 − 4𝜅𝜉󸀠2𝐷] ,𝜉2𝐷 = −(𝜓(𝜅 + 12) − ln (𝜅)) . (51)

Since higher-loop calculations are somewhat easier in two
dimensions, this suggests using the 2D case as a toymodel for
studying the AAM conjecture. An effort along these lines was
started in [13], however switching from Scalar to SpinorQED.
Here we derived an analogue of the AAM conjecture in 2D,
also using the worldline instanton approach, and established
the correspondences between the 4D and 2D cases shown in
Box 1.

There are two essential differences. First, in 2D the fine
structure constant 𝛼̃ is not dimensionless. Thus the exponent
of the AAM formula (rhs of third line) here involves also
a factor of 𝜅2, which in the formula for the asymptotic
behaviour of the weak-field expansion coefficients (rhs of
fourth line) leads to a shift in the argument between the 𝑙-loop
and the one-loop coefficients. Thus in 2D the leading asymp-
totic growth of the coefficients increases with increasing loop
order, as it does in the 4D case before mass renormalization,
and correspondingly it can be shown that the contributions
to the EHL from mass renormalization are asymptotically
subleading and thus irrelevant for our purposes (although
the fermion propagator in 2D does not have UV divergences,
mass renormalization is still a quite nontrivial issue; see [33]
and refs. therein). Presumably this relates to the fact thatQED
in 2D is confining.

In any case, all three of our three-loop predictions above
have an analogue in the 2D case. In [13] we also obtained the
following formulas for the one- and two-loop EHLs in 2D
Spinor QED:

L
(1) (𝜅)= −𝑚24𝜋 1𝜅 [ln Γ (𝜅) − 𝜅 (ln 𝜅 − 1) + 12 ln( 𝜅2𝜋)] ,

L
(2) (𝑓)= 𝑚24𝜋 𝛼̃4 [𝜓̃ (𝜅) + 𝜅𝜓̃󸀠 (𝜅) + ln (𝜆0𝑚2) + 𝛾 + 2] ,

(52)

where we have now abbreviated𝜓̃ (𝑥) ≡ 𝜓 (𝑥) − ln𝑥 + 12𝑥 . (53)

5 10 15
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Figure 6: Convergence of 𝑐(2)2𝐷(𝑛)/𝑐(1)2𝐷(𝑛 + 1) to the AAM prediction
(normalized such that the limit is unity).

Comparing with the Scalar QED result (51), we see that the
Spinor QED one is significantly simpler, as it involves the
digamma function only linearly. This is another surprise,
since in 4D the Scalar and Spinor EHLs do not show
structural differences.

Remarkably, the two-loop EHL can (up to an irrelevant
constant) even be written in terms of derivatives of the one-
loop EHL:

L
(2) (𝑓) = −𝛼̃4 (𝑚2 𝜕𝜕𝑚2

)2L(1) (𝑓) . (54)

From (52) we find for the one- and two-loop weak-field
expansion coefficients

𝑐(1)2𝐷 (𝑛) = (−1)𝑛+1 𝐵2𝑛4𝑛 (2𝑛 − 1) ,𝑐(2)2𝐷 (𝑛) = (−1)𝑛+1 𝛼̃8 2𝑛 − 12𝑛 𝐵2𝑛. (55)

From this we can, using properties of the Bernoulli numbers,
easily show that

lim
𝑛→∞

𝑐(2)2𝐷 (𝑛)𝑐(1)2𝐷 (𝑛 + 1) = 𝛼̃𝜋2. (56)

This verifies the 2D AAM-like formula of Box 1 at the lin-
earized level.

In Figure 6 we show the convergence to the asymptotic
limit, which is rather rapid.

Even in the 2D case, the calculation of the three-loop EHL
turned out to be a formidable task, and it is only very recently
that we were able to obtain it in a form suitable for computing
a sufficient number of the weak-field expansion coefficients
[14, 15].

At three loops, we have the three Feynman diagrams
shown in Figure 7.

Here the solid lines denote the electron propagator in the
constant field. A and B are quenched; C is nonquenched.
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4D QED ←→ 2D QED𝛼 = 𝑒24𝜋 ←→ 𝛼̃ = 2𝑒2𝜋𝑚2

Im Γ𝐷=4 ∼ e−𝑚
2𝜋/𝑒𝐸+𝛼𝜋 ←→ Im Γ𝐷=2 ∼ e−𝑚

2𝜋/𝑒𝐸+𝛼𝜋2𝜅2

lim
𝑛→∞

𝑐(𝑙)4𝐷 (𝑛)𝑐(1)4𝐷 (𝑛) = (𝛼𝜋)𝑙−1(𝑙 − 1)! ←→ lim
𝑛→∞

𝑐(𝑙)2𝐷 (𝑛)𝑐(1)2𝐷 (𝑛 + 𝑙 − 1) = (𝛼̃𝜋2)𝑙−1(𝑙 − 1)!
Mass renormalization essential ←→ Mass renormalization irrelevant

Box 1: Correspondences between the 4D and 2D cases.

A B C

Figure 7: Three-loop Feynman diagrams.

The last one is by far the easiest one, and it is straight-
forward to obtain for it the following compact integral
representation:

L
3𝐶 (𝑓) = 𝑒316𝜋3𝑓 ∫∞

0
𝑑𝑧 𝑑𝑧󸀠𝑑𝑧̂ 𝑑𝑧󸀠󸀠

⋅ sinh 𝑧 sinh 𝑧󸀠 sinh 𝑧̂ sinh 𝑧󸀠󸀠[sinh (𝑧 + 𝑧󸀠) sinh (𝑧̂ + 𝑧󸀠󸀠)]2
⋅ e−2𝜅(𝑧+𝑧

󸀠+𝑧+𝑧󸀠󸀠)

sinh 𝑧 sinh 𝑧󸀠 sinh (𝑧̂ + 𝑧󸀠󸀠) + sinh 𝑧̂ sinh 𝑧󸀠󸀠 sinh (𝑧 + 𝑧󸀠) .
(57)

This representation turned out to be quite adequate for a
numerical calculation of the first 9 weak-field expansion
coefficients 𝑐(3)𝐶 (𝑛) of diagram C. In Figure 8 we use these
nine coefficients to show that this unquenched contribution
is indeed asymptotically subleading.

This settles point 2 of our wish list above!
Diagrams A and B are much more difficult, but the use of

the “traceless gauge” choice 𝜆 = 2 led to simplifications and
in particular to manifesting IR finiteness term by term. We
managed to compute the first coefficient analytically

𝑐3𝐴+𝐵 (0) = (−32 + 74𝜁 (3)) 𝛼̃264 (58)

and fivemore coefficients numerically. Using these to plot the
ratio (𝑐(3)𝐴+𝐵(𝑛)/𝑐(1)2𝐷(𝑛 + 2))/((𝛼̃𝜋2)2/2) we get Figure 9.

Thus we are falling even below the asymptotic prediction!
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Figure 8: The ratio (𝑐(3)𝐶 (𝑛)/𝑐(1)2𝐷(𝑛 + 2))/((𝛼̃𝜋2)2/2) for 𝑛 = 0, . . . , 8.
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Figure 9:The ratio (𝑐(3)𝐴+𝐵(𝑛)/𝑐(1)2𝐷(𝑛 + 2))/((𝛼̃𝜋2)2/2) for 𝑛 = 0, . . . , 5.
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9. Conclusions and Outlook

Let us summarize:

(i) We have presented here first results of a calculation of
the three-loop 2D EHL.This is the first calculation of
a three-loop effective Lagrangian in QED.

(ii) Although so far we have been able to compute only
six coefficients of theweak-field expansion (we should
be able to obtain a few more) it seems already very
likely that the analogue of the AAM conjecture fails
in 2D QED. This would throw also serious doubts on
the validity of the 4D AAM conjecture.

(iii) However, since the coefficient ratios fall below, rather
than above, the asymptotic prediction, the riddle of
the unreasonable smallness of loop corrections remains.
Presumably the worldline instanton approach cap-
tures some valid information on large-scale cancel-
lations between Feynman diagrams but needs refine-
ment beyond two loops.

(iv) We have also made an effort to make the point that
theQEDphoton amplitudes in the limit of low energy
and large number of photons are very natural objects
for a study of the asymptotic properties of the QED
perturbation series.

(v) It should also have become clear that physical mass
renormalization is essential for asymptotic estimates
in QED! Unless mass renormalization is done phys-
ically, QED perturbation theory will break down
already at the two-loop level, because the two-loop
contribution to any helicity component of the 𝑁-
photon amplitude will, at least in the low-energy
limit, dominate over the one-loop one for sufficiently
large 𝑁. This implies, in particular, that approaches
to the study of the large-order behaviour of the QED
perturbation series that are indifferent to the issue
of physical mass renormalization ought to be viewed
with caution.

(vi) As an aside, it would be interesting to study also the
QCD𝑁-gluon amplitudes for large𝑁 from the point
of view of mass renormalization.
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