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Recent discussions in TPT have considered
the pros and cons of an early introduction of
students to modern physics.1-4 In this re-

gard, appropriate experiments with classical waves can
help students understand some important but coun-
terintuitive aspects of modern physics.  I recently
taught a summer course that introduced high school
seniors who had graduated with some background in
physics and algebra to aspects of quantum physics and
relativity.  In this paper I’ll describe a simple experi-
ment I used to introduce these students to uncertainty
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principles in quantum physics. 
The experimental setup shown in Fig. 1 allows

demonstration of the uncertainty principle �f�t � 1.
Here �t is the length in time of a pulse of waves while
�f is the range of frequencies in the pulse.  A simple
derivation of this relation is given in Appendix I.  The
present experiment nicely complements an LED de-
termination of Planck’s constant h reported earlier.5

The described experiment provides students with a
basis to understand the uncertainty principles �Px �x
� h and �E�t � h that can be easily derived from the
time-frequency uncertainty relation.  These two rela-
tions allowed my students to understand other experi-
ments they performed as well as interesting applica-
tions of quantum physics.6 Details of the preparation
of my particular class for this experiment are included
in Appendix II.

As seen in Fig. 1, this experiment uses a computer-
interfaced microphone to record 200-Hz sound sig-
nals of various lengths produced by depressing a mo-
mentary push button.  The electrical signal can be
recorded directly but I wanted students to hear the
length of the pulse.  Table I presents data collected7 in
one experiment.  In this case �f�t � 1.2.  The Logger
Pro software was set up to begin recording at the start
of the sound signal and to display both the recorded
signal and the amplitude of its Fourier transform.
The “Examine” function in the Analyze menu of Log-
ger Pro allowed students to accurately measure the
time length of the signal as well as the full width at
half maximum amplitude of the 200-Hz FFT peak.

Careful choice of the data collection parameters
plays an important part in obtaining a useful Fourier
Fig. 1. Diagram of the apparatus discussed in this paper.
While the momentary push button is held down, the sig-
nal generator set to 200 Hz is connected to the speaker.
The ULI II interface collects sound data that is trans-
ferred to a computer for analysis.
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Time Width Frequency Width ��f��t

��t (s)

0.108 11.35 1.23

0.220 5.37 1.18

0.388 3.06 1.19

0.880 1.34 1.18

1.68 0.73 1.22

3.15 0.43 1.35

Table I. Data collected using the apparatus shown in Fig.
1 with a 200-Hz sound signal. Each row represents a
measurement in which 8.5 s of data were collected at
500 Hz. The time width ��t was measured from the data
collected by the ULI interface. The frequency width ��f
was measured as the full width at half maximum of the
200-Hz peak in the amplitude of the 4096-point Fourier
transform of the recorded data. The smallest ��f value in
the last row was determined by interpolation of points
around half maximum amplitude.
transform for analysis.  I used a 200-Hz sound signal
and collected data for 8.5 s at 500 points/s.  These
choices give a 4096-point (212) Fourier transform
with small enough frequency steps so that �f could be
determined with reasonable accuracy.  Discussion of
signal processing principles that allow the intelligent
choice of data collection parameters is not included in
manuals supplied with student lab software and is al-
most never considered in physics classes.  Some
knowledge of signal processing is helpful in any exper-
iment where Fourier transforms are used, so I include
a short discussion of the relevant principles in Appen-
dix III. 
Fig. 2. One cycle of the beats produced by interference
of the waves cos (2��f2t) and cos (2��f1t) is shown in an
amplitude-vs-time plot.
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Appendix I: 
Time-Frequency Uncertainty Relation

Figure 2 shows one cycle of the beats produced by
interference of two waves cos (2�f1t ) and cos (2�f2t)
of frequency f1 and f2.  I assume f2 is greater than f1.
These waves are in phase at t = 0 and out of phase
(by �) at t = �t/2.  This gives Eq. (1):  
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Taking f2 – f1 = �f , Eq. (1) gives Eq. (2): 

�f�t = 1. (2)

The important aspect of Eq. (2) (that relates to the
more familiar quantum uncertainty relations) is that
the right-hand side is not zero.  Making a pulse of
waves narrower in time makes the range of frequencies
in the pulse larger.  A perceptive student might point
out that only one of an infinite series of beats is con-
sidered here, so how can this derivation with only two
frequencies relate to a real pulse of waves with time
width �t ? 

Wave peaks at times larger than those shown in Fig.
2 can be canceled by adding in more waves with fre-
quencies between f1 and f2.  Therefore, the difference
f2 – f1 provides a reasonable estimate of �f for a pulse
with time length �t.  A more sophisticated analysis
where an infinite number of waves are superimposed
using integration and �f and �t are carefully defined
gives �f�t � 1.  The present derivation is not tied to a
particular type of wave so considering the probability
density waves of quantum physics (wavelength �) and
using the de Broglie relation � = h/p and hf = E allows
simple derivation of the useful relations �Px�x � h
and �E�t � h. 

Appendix II: 
Student Preparation for these Experiments

In the case discussed here, I had a small summer
class of very good, recently graduated high school
seniors selected from the entire state of North
Dakota.  They were not all chosen for particular
preparation in mathematics and physics since my
class was only one part of a program covering other
disciplines.  They all had some physics and at least
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high school algebra.  The students were not familiar
with either the equipment used to perform these
experiments or most of the concepts required to
understand their results.  In the following paragraphs
I present activities and discussions that were carried
out to prepare this class for the uncertainty-principle
experiment.

In particular, I first reviewed the properties of sinu-
soidal waves and we practiced use of the LabPro hard-
ware and Logger Pro software.  I wanted students to
have some feel for the possibility and usefulness of
representing time-dependent signals in frequency
space (none of them had heard of Fourier transforms).
Students performed an experiment in which they
recorded single-frequency sounds produced by a digi-
tal function generator (with frequency display) con-
nected to a speaker.  They then compared the Logger
Pro FFT display to the input frequency and examined
the effect on the FFT of changing the frequency and
loudness of the sound.  They repeated this experiment
recording several superimposed sounds with different
frequencies (up to three).  They changed the relative
amplitudes of these sounds and described the changes
they saw in the FFTs.  We discussed the FFT as a tool
that displays the strengths of the different frequencies
present in a sound signal.  I discussed the representa-
tion of sounds and other signals by sums of single fre-
quency signals.  As an illustration of this concept, they
next used a Mathcad8 simulation to sequentially add
in higher frequency components to produce a good
approximation to a square wave.  I did not discuss the
material in Appendix III because it was beyond the
scope of the course, and all data collection used Log-
ger Pro template files that I had set up for the experi-
ments.  I next discussed the material included in Ap-
pendix I, and they ran a Mathcad simulation in which
two waves with different frequencies were added to-
gether to produce beats.  They observed that as the
frequencies moved closer together, the beat pulses be-
came longer in time (as expected from the discussion
of Appendix I).  After this preparation they performed
the uncertainty-principle experiment, which we dis-
cussed in terms of the activities detailed above.
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Appendix III: Signal Processing
Assume that data is collected at f points/s.  To repre-
sent a particular sine wave requires at least two data
points per cycle so data collected at f points/s can
only represent frequencies up to f/2.  Student soft-
ware used to process data normally uses a power-of-
two-based Fourier transform algorithm so that if the
number of data points is between 2n and 2n+1, the
software calculates a 2n-point Fourier transform of
the data.  Positive and negative frequencies between
–f/2 and +f/2 are included in the calculation.  The
frequency steps in the Fourier transform then have a
size given by f/(2n).  This result shows that better fre-
quency resolution in Fourier transforms can some-
times be obtained by using a lower data collection
rate (f ) and/or a longer recording time (larger n).
The data collection rate must, of course, be at least
twice the highest frequency component in the signal.

In the present experiment, Logger Pro only calcu-
lates Fourier transforms up to a maximum of 212 =
4096 points.  I always collected 8.5 s of data at 500
points/s for a total of 4250 points to ensure that 
212-point Fourier transforms were calculated even
though the actual time length of the 200-Hz signals
was less than 8.5 s, as seen in Table I.  In this case, the
frequency steps in the Fourier transform are 500
Hz/4096 = 0.122 Hz.  Collecting data for a time
longer than the signal results in smaller frequency
steps but does not improve frequency resolution.  The
effect of using a larger-than-needed Fourier transform
is to interpolate the Fourier transform data.  These
smaller frequency steps make it easier to determine �f
accurately even if further interpolation is required.
An engaging, readable introduction to signal process-
ing (requiring only introductory calculus) has been
written by Steiglitz.9
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