



## SAA0169 Sistemas de Controle de Aeronaves II

## Sistemas de Aumento de Estabilidade

## Longitudinal

Prof. Dr. Jorge Henrique Bidinotto

jhbidi@sc.usp.br





- Modelos segundo McLean (1990):
- Sistema de Controle de Razão de Arfagem







- Modelos segundo McLean (1990):
- Sistema de Controle de Razão de Arfagem



FONTE: McLean, D. (1990)





- Modelos segundo McLean (1990):
- Sistema de Controle de Razão de Arfagem e fator de carga







- Modelos segundo McLean (1990):
- Sistema de Controle de Razão de Arfagem e fator de carga







- Modelos segundo Stevens (2016):
- Sistema de Controle de Arfagem e Razão de Arfagem



FONTE: Stevens, B. L.; Lewis, F. L.; Johnson, E. N. (2016)



•



- Criar um modelo de SAS em Simulink e variar seu ganho de forma a obter o maior amortecimento possível
  - Modelo a ser programado: Modelo da aeronave Controlador proporcional  $G_c(s)$ G(s)Realimentação do estado q





- Primeiro Passo
  - Coloque em um arquivo .m (script) as matrizes A, B, C e D do seu modelo (já realizado)

- Segundo Passo
  - Inserir no script o valor inicial do ganho do controlador

| Кс | 10 |
|----|----|
|----|----|





- Para criar um modelo
  - File > New > Model
- Na tela do modelo, abra a biblioteca
  - View > Library Browser







- Terceiro Passo
  - Inserir o script no modelo
  - File > Model Properties
  - Callbacks > StartFcn
  - Inserir o nome do script

| Main                                                             | Callbacks                                                                           | History | Description                                          |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------|------------------------------------------------------|
| Model c<br>PreL<br>Post<br>InitF<br>Stop<br>PreS<br>Post<br>Clos | calibacks<br>oadFcn<br>LoadFcn<br>Scn<br>tFcn*<br>Fcn<br>SaveFcn<br>SaveFcn<br>eFcn |         | Simulation start function:<br>Boeing747M8_velocidade |
|                                                                  |                                                                                     |         | OK Cancel Help Apply                                 |





- Quarto Passo
  - Inserir os componentes do modelo:
  - A partir de Library Browser:
  - Continuous:
    - 1 State-Space
  - Math Operations
    - 1 Add
    - 1 Gain
  - Signal Routin
    - 1 Demux
  - Sources:
    - 1 Constant
  - Sinks
    - 2 Scopes
    - 2 Terminator







- Quinto Passo
- Uma os blocos conforme a figura
  - Para facilitar a união, selecione o bloco, pressione ctrl e selecione o bloco seguinte
  - Para dividir um fio conector, selecione o fio, pressione ctrl e arraste até o bloco desejado
  - Para rodar/inverter o bloco, clique sobre ele com o botão direito e selecione Rotate & Flip







- Sexto Passo
  - Configurar as janelas
  - Dois clicks para habilitar edição das janelas
  - Janelas a serem configuradas:
    - Space-State
    - Transfer fcn
    - Add
    - Gain
    - Demux
    - Constant

| State Space                    |
|--------------------------------|
| State-space model:             |
| State space model.             |
| dx/dt = Ax + Bu<br>y = Cx + Du |
| Darameters                     |
| A.                             |
| A:                             |
| Along                          |
| B:                             |
| Blong                          |
| C:                             |
| Clong                          |
| D:                             |
| Dlong                          |
| Initial conditions:            |
| 0                              |
| Absolute tolerance:            |
| auto                           |
| State Names (o. g. (accilian)) |
| state Name: (e.g., position)   |
|                                |
|                                |
| OK Cancel Help Apply           |





- Sétimo Passo
- Na janela do modelo
  - Simulation > Configuration Parameters
  - Na aba solver, utilizar max step size de 0.01

| Select:                       | Simulation time                         |                                          |             |            |                        |   |
|-------------------------------|-----------------------------------------|------------------------------------------|-------------|------------|------------------------|---|
| Solver                        | Start time: 0.0                         |                                          | Stop tim    | e: 10.0    |                        |   |
| Data Import/Export            |                                         |                                          |             |            |                        |   |
| Diagnostics                   | Solver options                          |                                          |             |            |                        |   |
| Sample Time<br>Data Validity  | Type:                                   | Variable-step                            | ✓ Solver:   |            | ode45 (Dormand-Prince) | • |
| Type Conversion               | Max step size:                          | auto                                     | Relative to | lerance:   | le-3                   |   |
| Connectivity<br>Compatibility | Ministep size:                          | auto                                     | Absolute to | lerance:   | auto                   |   |
| Model Referencing             | Initial step size:                      | auto                                     | Shape pres  | ervation:  | Disable al v           |   |
| Hardware Implementation       | Number of conse                         | cutive min steps:                        | 1           |            |                        |   |
| Model Referencing             | Tasking and samp                        | le time options                          |             |            |                        |   |
| Symbols<br>Custom Code        | Tasking mode for periodic sample times: |                                          |             | Auto       |                        |   |
| Real-Time Workshop            | Automatically                           | handle rate transition for data transfer |             |            |                        |   |
| Comments                      | Higher priority                         | value indicates higher task priority     |             |            |                        |   |
| Custom Code                   | -Zero-crossing opt                      | ions                                     |             |            |                        |   |
| Debug<br>Interface            | Zero-crossing con                       | trol: Use local settings                 | 👻 Algori    | thm:       | Nonadaptive            | - |
| HDL Coder                     | Time tolerance:                         | 10×128×eps                               | Signal      | threshold: | auto                   |   |
| Test Bench                    | Number of consec                        | utive zero crossings:                    | 1000        |            |                        |   |
| EDA Tool Scripts              |                                         |                                          |             |            |                        |   |
|                               |                                         |                                          |             |            |                        |   |
|                               |                                         |                                          |             |            |                        |   |
|                               |                                         |                                          |             |            |                        |   |
|                               |                                         |                                          |             |            |                        |   |





- Oitavo Passo
- Configure as informações do scope para serem utilizadas
- Janela do scope:
  - Parameters > Data History







- Esta entrega é o capítulo seguinte do trabalho (a ser ACRESCENTADO no texto)
- Deve ser entregue (no mínimo), para o movimento Longitudinal:
  - Descrição da construção do controlador
  - Dimensionamento do ganho Kc
  - Resultados:
    - Gráfico de resposta no tempo para os ganhos tentados;
    - Gráfico comparativo sem controle e com o valor final do ganho aplicado;
  - Comentário comparando os casos sem controle e com controle
  - Apêndice Diagrama Simulink utilizado neste controlador
- Entrega
  - Data: até 26/10 23:59h
  - Submissão em formato .pdf, via e-disciplinas
  - Apenas uma submissão por grupo