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Objectives and references

• To introduce to basic aspects related parametrically excited systems;

• Focuses of the classes: Importance on cable dynaimcs, evaluation of stability
maps (Strutt's diagram), introduction to Floquet theory;

• Examples of references

1 Nayfeh, A.H. 1973. Perturbation methods. John Wiley & Sons.
2 Nayfeh, A.H. & Mook, D.T. 1979. Nonlinear oscillations. John Wiley &

Sons.
3 Nayfeh, A.H. & Balachandran, B. 1995. Applied Nonlinear Dynamics -

Analytical, Computational and Experimental Methods. John Wiley &
Sons.

4 Franzini, G.R. 2019. Tópicos de pesquisa em problemas de excitação

paramétrica e de vibrações induzidas pelo escoamento. Habilitation thesis.
Escola Politécnica da Universidade de São Paulo.

5 Selected papers.
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General de�nitions

• A system is non-autonomous if its dynamics is governed by a system of
�rst-order ODEs given by ẋi = fi (x , t,µ), µ being a vector with the parameters
of the mathematical model. On the other hand, an autonomous system is given
by ẋi = fi (x ,µ)

• The explicit dependence on time arises either from an external excitation (for
example, an external harmonic load) or from a (or more than one) parameter
that varies with respect to time. The focus herein is on problems in which the
sti�ness harmonically varies with respect to time;

• Problems in which one or more parameters of the mathematical model explicitly
depend on time are called parametrically excited systems.
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General de�nitions

• Hill's equation → ü + p(t)u = 0, p(t) a periodic function;

• Mathieu's equation → ü + (δ + 2ε cos 2t)u = 0;

• If these equations represent the dynamics of a mechanical system, the sti�ness
explicitly depends on time (k = k(t));

• Both are linear equations.
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Strutt's diagram

• Indicates the regions of the plane of control parameters (ε; δ) associated with
bounded or unbounded responses. We will obtain the transitions curves using
the Floquet theory and the harmonic balance method.

• We will see that the transition curves correspond to periodic solutions of period
T or 2T .
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Strutt's diagram

Figure: Extracted from Ibrahim (2007).
Obs: Figure above corresponds to the Strutt's diagram for
ẍ + 2ζωẋ + (ω2 − 2ε cos Ωt)x = 0.
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Problem

Figure: Horizontal cable under parametric excitation.

• As already showed, the equation of motion of a horizontal cable is given by

µẅ − T (t)w ′′ = 0 (1)
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Formulation

• Solutions with the form w(x , t) = ψn(x)An(t) (separation of variables) are
sought. By substituting this expression into the equation of motion, we obtain:

µψn(x)Än(t)− T (t)ψ′′n (x)An(t) = 0 (2)
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Formulation

• Using the Galerkin's method:

L∫
0

µψ2n (x)dxÄn −
L∫

0

T (t)ψn(x)ψ′′n (x)dxAn = 0 (3)

• By adopting the natural modes of vibration of the horizontal cable,
ψn(x) = sin

(
nπ
L
x
)
, n = 1, 2, 3 . . ., we obtain:

L∫
0

µψ2n (x)dx =
µL

2
= m; (4)

−
L∫

0

T (t)ψn(x)ψ′′n (x)dx =
n2π2

2L
T (t) = k(t) (5)

mÄn + k(t)An(t) = 0 (6)

• Hint: when using a numerically obtained function for ψn(x) it is possible to
achieve better accuracy by using integration by parts to work with the smaller
order possible for derivatives.
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Formulation

• We assume that the tension varies as T (t) = T̄ + ∆T cos Ωt,∆T < T̄

k(t) =
n2π2

2L
T̄ +

n2π2

2L
∆T cos Ωt (7)

• For the sake of generality, we rewrite the ODE in the corresponding
dimensionless form. For this, we de�ne τ = 1

2
Ωt as the dimensionless time. The

derivatives with respect to the dimensional time read:

˙( ) =
Ω

2

d

dτ
( ), (̈ ) =

Ω2

4

d2

dτ2
( ) (8)
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Formulation

• Using these quantities in the 1-dof ROM, we obtain:

d2A(τ)

dτ2
+

((
2nπ

ΩL

)2 T̄

µ
+

(
2nπ

ΩL

)2 ∆T

µ
cos(2τ)

)
A(τ) = 0 (9)

d2A(τ)

dτ2
+ (δ + 2ε cos 2τ)A(τ) = 0 (10)

• Conclusion: Cables subjected to time-dependent normal force (tension) are
parametrically excited;

• Obs: If we adopt another dimensionless time, the Mathieu's equation will be
given in a di�erent form.
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Parametric instability

• Two parameters govern the parametric excitation, namely, its amplitude and
frequency. In the Mathieu's equation herein discussed, these parameters are,
respectively, ε e δ.

• Depending on the values of ε e δ, the trivial solution loss stability and
unbounded responses appear. This phenomenon is known as parametric
instability (or Mathieu's instability).
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Riser's and TLP's tethers

• Risers. Slender and tubular structures, used to convey gas and oil from the
seabed to a �oating unit;

• TLPs - Tension leg platforms. A type of �oating unit consisted of a platform
kept in place by the use of vertical tethers �xed to the seabed;

• Nonlinear e�ects may be important in the dynamic behavior of TLP tethers and
risers due to their slenderness.
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Motivation

Figure: Extracted from Franzini et al (2014).

The tension along the riser depends explicitly on time due to the vertical motion of
the �oating unit.
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Examples of references

• Rainey (1977): One of the �rst works in the �eld, focused on the dynamics of
TLPs.

• Patel & Park (1991): Studies the Strutt diagram for the tethers of a TLP for
large values of δ and ε. The e�ect of the the hydrodynamic damping is also
considered. → The nonlinear hydrodynamic damping in the form β|ẋ |ẋ limits
the amplitudes of motion even in the unstable regions of Strutt's diagram. The
linearization of the damping eliminates this important property for the dynamic
behavior of the structure.

• Simos & Pesce (1997): Takes into account the e�ects of the distributed load
due to the structural weight on the Strutt's diagram for the problem.
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Examples of references

• Franzini et al (2016): Study of the in�uence of hydrodynamic coe�cients
(additional mass and drag coe�cient) on the amplitude of steady-state motion;

• Mazzilli et al (2014): Brings a mathematical deduction for the nonlinear modes
of vibration of a vertical beam under self-weight load. The formulation also
allows to obtain the �Bessel-Like� functions that represents a very good
approximation for the shape of the linear modes of vibration of this type of
structure;

• Mazzilli & Dias (2014): Presents a reduced order model with a single degree of
freedom by means of a �Bessel-Like� function.
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Franzini et al (2015)

• Analysis of an experiment made with an immerse and �exible structure;

• Harmonic motions were imposed to the top of the structure with a constant
amplitude At/L0 = 1% and di�erent frequencies;

• The displacements were monitored in various points along the structure by
means of an optical tracking system;

• The experiment is part of a comprehensive project on nonlinear dynamics of
risers made by the research group during the years between 2009 and 2013.
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Franzini et al (2015)

Figure: Extracted from Franzini et al (2015).
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Franzini et al (2015)

Figure: Extracted from Franzini et al (2015).
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Franzini et al (2015)

Figure: Extracted from Franzini et al (2015).
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Franzini et al (2015)

Figure: Extracted from Franzini et al (2015).
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Franzini et al (2015)

Table: Nondimensional parameters. Extracted from Rateiro et al (2012).

Number Symbol Representation

Froude Fr = ωA√
gL

Dynamic motion
number in waves

Reynolds
Re = UD

ν

Inertial forces
number vs viscous forces

Strouhal
St = fs D

U

Vortex shedding
number frequency

Keulegan-Carpenter
KC = 2πA

D
Inertial forces

number vs drag forces

Structural ζ = c
cc

Linear structural
damping damping

Reduced
VR = U

fnD
Normalized velocity

velocity in VIV

Reduced shedding f ?s = fs
fn

= Vortex shedding

frequency = St
U

fnD
= StVr normalized frequency

Reduced m∗ = m
mD

Riser mass
mass vs displaced mass

Added
a = ma

m
Added mass

mass vs riser mass

Bending
Kf =

λf
L

Bending vs.
sti�ness geometrical sti�ness

Axial
Ka = EA

T
Axial vs.

sti�ness geometrical sti�ness
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Franzini et al (2015)

Table: Complementary model properties.

Property Value

Internal diameter 15.8 mm
External diameter D 22.2 mm
Unstretched length Lo 2552 mm

Stretched length L 2602 mm

Immersed length Li 2257 mm

Immersed weight γ 7.88 N/m
Axial sti�ness EA 1.2 kN

Bending sti�ness EI 0.056 Nm2

Mass ratio parameter m∗ 3.48
Aspect ratio Li/D 102

L/D 117

Static tension at the top Tt 40 N
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Franzini et al (2015)

• Idea applied to the analysis: The Galerkin method was applied to the time series
of the model in order to obtain �modal Strutt diagrams�. The modal amplitude
of mode n is given by:

un(t) =
< x(z, t), ψn(z) >

< ψn(z), ψn(z) >
=

∫ L
0 x(z, t)ψn(z, t)dz∫ L

0 ψ
2
n (z, t)dz

(11)

• Sine functions were used in the Galerkin method: ψn(z) = sin(nπz/L0)
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Franzini et al (2015)

Reconstruction of an instantaneous deformed con�guration:
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Figure: Extracted from Franzini et al (2015). ft : fN,1 = 3 : 1.
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Franzini et al (2015)

Free vibrations test - decay:

Figure: Extracted from Franzini et al (2015).
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Franzini et al (2015)

Scalogram:

Figure: Extracted from Franzini et al (2015). ft : fN,1 = 2 : 1.
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Franzini et al (2015)

Power spectrum density.

Figure: Extracted from Franzini et al (2015). ft : fN,1 = 2 : 1.
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Franzini et al (2015)

u1(t).
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Figure: Extracted from Franzini et al (2015). ft : fN,1 = 2 : 1.
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Franzini et al (2015)

u2(t).
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Figure: Extracted from Franzini et al (2015). ft : fN,1 = 2 : 1.
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Franzini et al (2015)

u1(t).
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Figure: Extracted from de Franzini et al (2015). ft : fN,1 = 1 : 1.

37/82
PEF 6000



Franzini et al (2015)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

δ1

ǫ
1

Strutt diagram - n = 1

Figure: Extracted from Franzini et al (2015). Red: ft : fN,1 = 1 : 1, green:
ft : fN,1 = 2 : 1, blue: ft : fN,1 = 3 : 1.

38/82
PEF 6000



Franzini & Mazzilli (2016)

• Starting point: Nonlinear equation of motion of a tensioned vertical beam
(disregarding the axial dynamics).

ml
∂2u

∂t2
+ c

∂u

∂t
+ EI

∂4u

∂z4
−

∂

∂z

(
T (t, z)

∂u

∂z

)
−

EA

2L0

∂2u

∂z2

∫ L0

0

(
∂u

∂z

)2

dz

= −ma
∂2u

∂t2
−

1

2
ρDCD

∣∣∣∣∂u∂t
∣∣∣∣ ∂u∂t (12)

Hydrodynamic forces: Potential added mass (Forcing term with the same phase of the
cross-section acceleration); Viscous damping (Quadratic with the relative speed
between �uid and structure - Morison damping).
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Franzini & Mazzilli (2016)

• Product derivative identity:

γ
∂u

∂z
+ T (z)

∂2u

∂z2
=

∂

∂z

(
T (t, z)

∂u

∂z

)
(13)

• Tension along the structure:

T (t, z) = T̄t − γ(L0 − z) +
EA

L0
At cos(Ωt) (14)

• Multi-mode solution:

u(z, t) =
3∑

k=1

ψk (z)Ak (t) (15)
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Franzini & Mazzilli (2016)

• Useful dimensionless quantities:

τ = tω1; n =
Ω

ω1
; Âk = Ak/D;

Ca =
ma

md
; m̃ =

ml

md
; ΛM =

D2

L0md (m̃ + Ca)
ρCD (16)
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Franzini & Mazzilli (2016)

Equation for n = 1

d2Â1

dτ2
+ α1

dÂ1

dτ
+ (δ1 + ε1 cos(nτ))Â1 + α2Â2 + α3Â

3
1+

α4Â
2
2Â1 + α5Â1Â

2
3+

ΛM

∫ L0

0

∣∣∣∣∣
3∑

n=0

dÂn

dτ
ψn

∣∣∣∣∣
(

3∑
n=0

dÂn

dτ
ψn

)
ψ1dz = 0

(17)
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Franzini & Mazzilli (2016)

Equation for n = 2

d2Â2

dτ2
+ β1

dÂ2

dτ
+ (δ2 + ε2 cos(nτ))Â2 + β2Â3 + β3Â1+

β4Â2Â
2
1 + β5Â

3
2 + β6Â2Â

2
3+

ΛM

∫ L0

0

∣∣∣∣∣
3∑

n=0

dÂn

dτ
ψn

∣∣∣∣∣
(

3∑
n=0

dÂn

dτ
ψn

)
ψ2dz = 0 (18)
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Franzini & Mazzilli (2016)

Equation for n = 3

d2Â3

dτ2
+ γ1

dÂ3

dτ
+ (δ3 + ε3 cos(nτ))Â3 + γ2Â2 + γ3Â3Â

2
2+

γ4Â3Â
2
1 + γ5Â

3
3+

ΛM

∫ L0

0

∣∣∣∣∣
3∑

n=0

dÂn

dτ
ψn

∣∣∣∣∣
(

3∑
n=0

dÂn

dτ
ψn

)
ψ3dz = 0 (19)
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Franzini & Mazzilli (2016)

• The equations for the three vibration modes were numerically integrated (using
the Runge-Kutta method) and the modal amplitudes in steady-state regime were
obtained for various pairs of amplitude/frequency of the parametric excitation.
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Franzini & Mazzilli (2016)

Example of result:
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Figure: Extracted from Franzini & Mazzilli (2016).
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Vernizzi et al (2019)

• Starting point: Nonlinear equation of motion of a tensioned vertical beam
(disregarding the axial dynamics);

• Focus: Comparison of the use of di�erent projection functions when using the
Galerkin's method to obtain reduced order models (ROMs);

• Models considered:

- ROM(i): a single �Bessel-like� function in the projection;

- ROM(ii): a single Sine function in the projection;

- ROM(iii): three Sine functions in the projection (Franzini & Mazzilli (2016));

• Main conclusion: �better� projection functions (closer to the actual modes of
vibration) allows the use of a smaller ROM, which in turn allows the
straightforward use of analytical techniques.
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Vernizzi et al (2019)

• Dimensionless equation for a ROM with a single degree of freedom:

d2r

dτ2
+ β1

dr

dτ
+ (1 + β2δ cos (nτ)) r + β3r

3 + β4

∣∣∣∣ dr
dτ

∣∣∣∣ dr
dτ

= 0 (20)

• r is the dimensionless displacement, τ the dimensionless time, β are parameters
depending on the Galerkin integrals and the parametric excitation is ruled by the
parameters δ and n.

• Using the method of multiple scales and expanding the absolute value function
in Fourier series is possible to obtain an algebraic expression for the steady-state
amplitude.
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Vernizzi et al (2019)

Comparison between ROMs and Finite Element solutions:
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Extracted from Vernizzi et al (2019).
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Vernizzi et al (2019)

Comparison between analytical solution and numerical integration for ROM(i):

Extracted from Vernizzi et al (2019).
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Vernizzi et al (2019)

Computational advantage:

Table: Comparison of computational time required by each type of
solution.

Model Method Simulation of a 600×600 map (s) Single simulation (s)
FEM Numerical − 1.342× 103

ROM(i) Numerical 29.3× 103 0.082
ROM(i) Analytical 11.5× 10−3 3.194× 10−8

ROM(iii) Numerical 114.9× 103 0.319

Extracted from Vernizzi et al (2019).

The analytical solution allows an easy and fast investigation of the structure, being an
useful tool to aid the evaluation of the in�uence of changing some parameters such as
cross-section dimensions or material.
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Vernizzi et al (2020)

• Starting point: Nonlinear equation of motion of a tensioned vertical beam with
axial dynamics;

• Axial equation:

µẄ + caẆ + γ − EA
(
W ′′ + V ′V ′′

)
= 0 (21)

• Transversal equation:

(µ+ µa) V̈ + cV̇ +
1

2
ρDCD

∣∣∣V̇ ∣∣∣ V̇ + EIV ′′′′

− EA

(
W ′′V ′ + W ′V ′′ +

3

2

(
V ′
)2

V ′′
)

= 0 (22)
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Vernizzi et al (2020)

• The solution is sought with the application of the method of multiple scales
directly on the partial di�erential equations;

• Motivation: In some problems the Galerkin method may lead to qualitative
errors in the behavior of the dynamic system (Book �Nonlinear Stability and
Bifurcation Theory: An Introduction for Engineers and Applied Scientists�, Hans
Troger & Alois Steindl, 1991). Question not yet fully answered: What are the
properties of a dynamical system that guarantees the success or failure of
Galerkin's method.

• Studies of the in�uence of nonlinear sti�ness and damping e�ects are also
carried out in the paper.
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Vernizzi et al (2020)

Comparison between analytical and Finite Element solutions:
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Vernizzi et al (2020)

Example of parameter investigation:
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Vernizzi et al (2020)

Example of parameter investigation:
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Figure: Extracted from Vernizzi et al (2020).
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Floquet theory applied to the Mathieu's equation

• Floquet theory: Useful for the stability analysis of periodic orbits;

• Focus of this class: Application to the Mathieu's equation;

• Consider the following equation, with p1(t) and p2(t) periodic functions of
period T (p1(t) = p1(t + T ) and p2(t) = p2(t + T ));

ü + p1(t)u̇ + p2(t)u = 0 (23)

• We can use the change of variables u = xe−
1

2

∫
p1(τ)dτ in Eq. 23 to obtain the

Hill's equation (Eq. 24)

ẍ + p(t)x = 0 (24)

p(t) = p2(t)−
p21(t)

4
−

ṗ1(t)

2
(25)

• Since Eq. 23 is linear, its solution is given in the general form
u(t) = c1u1(t) + c2u2(t), u1(t) and u2(t) being two fundamental solutions of
Eq. 23.
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Floquet theory applied to the Mathieu's equation

• We show that u1(t + T ) (and, analogously, u2(t + T )) is also a solution of Eq.
23:

ü1(t + T ) + p1(t)︸ ︷︷ ︸
p1(t+T )

u̇1(t + T ) + p2(t)︸ ︷︷ ︸
p2(t+T )

u1(t + T ) = 0 (26)

• Since u1(t + T ) and u2(t + T ) are solutions of Eq. 23, they are written as
linear combinations of u1(t) and u2(t) as

u1(t + T ) = a11u1(t) + a12u2(t) (27)

u2(t + T ) = a21u1(t) + a22u2(t) (28)

• De�ning u(t) = {u1(t + T ) u2(t + T )}T , we have u(t + T ) = Au(t), with
det(A) 6= 0.
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Floquet theory applied to the Mathieu's equation

• Let v(t) being another set of fundamental solutions. In this case, v(t) is also a
linear combination of the elements of u(t);

u(t) = Pv(t)→ u(t + T ) = Pv(t + T ) = Au(t)↔

↔ v(t + T ) = P
−1

Au(t) = P
−1

AP︸ ︷︷ ︸
B

v(t) (29)

• It can be proved that A and B have the same eigenvalues;

• We conveniently choose P for obtaining B in a Jordan's form.
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Case i - B has distinct eigenvalues

• In this case, we have:

B =

[
ρ1 0
0 ρ2

]
→
{
v1(t + T )
v2(t + T )

}
=

[
ρ1 0
0 ρ2

]{
v1(t)
v2(t)

}
(30)

• It is easy to notice that, for n integer

v1(t + T ) = ρ1v1(t)→ v1(t + nT ) = ρn1v1(t) (31)

v2(t + T ) = ρ2v2(t)→ v2(t + nT ) = ρn2v2(t) (32)

• For t →∞ (n→∞), vi (t + nT )→ 0 if |ρi | < 1 and vi (t + nT )→∞ if
|ρi | > 1. Conclusion: bounded solutions appear if all |ρi | < 1. If at least one
|ρi | > 1, unbounded solutions take place.

• If ρi = 1: vi (t + T ) = vi (t)→ vi (t) is periodic with period T ;

• If ρi = −1: vi (t + T ) = −vi (t)→ vi (t) is periodic with period 2T ;

• Nomenclature: ρi is named Floquet multiplier.
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Case i - B has distinct eigenvalues

• From Eqs. 31 and Eq. 32, we have:

vi (t + T )e−γi (t+T ) = ρie
−γi te−γiT vi (t) (33)

• If ρi = eγiT , vi (t + T )e−γi (t+T ) = vi (t)e−γi t . We de�ne φi (t) = vi (t)e−γt ,
which is a periodic function of period T and write the Floquet (or normal) form
vi (t) = φi (t)eγi t ;

• Nomenclature: γi is the characteristic exponent.
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Case ii - B has equal eigenvalues ρ1 = ρ2 = ρ

• Case ii-a

B =

[
ρ 0
0 ρ

]
(34)

• In the case ii-a, the above discussions still hold;

• Case ii-b

B =

[
ρ 0
1 ρ

]
(35)

• In the case ii-b, v1(t + T ) = ρv1(t) and v2(t + T ) = v1(t) + ρv2(t). Similarly
to already developed, v1(t + T ) = φ1(t)eγt , ρ = eγT and φ1(t) = φ1(t + T ).

• Using the same approach:

v2(t + T )e−γ(t+T ) = v1(t)e−γ(t+T ) + ρv2(t)e−γ(t+T ) =

= φ1(t)e−γT + ρv2(t)e−γ(t+T ) = e−γtv2(t) +
1

ρ
φ1(t) (36)
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Case ii - B has equal eigenvalues ρ1 = ρ2 = ρ

• The term 1/ρφ1(t) does not allow writing a normal form like the one written for
v1(t). However, as can be seen in Nayfeh (1993), we can write:

v2(t) = eγt
(
φ2(t) +

t

ρT
φ1(t)

)
(37)

φ2(t) being a periodic function of period T .

• In the case ii-b, unbounded responses also appear if Re{γ} > 1. We use the
complex logarithm as follows:

ρ = |ρ|e iθ → lnρ = ln(|ρ|e iθ) = γT ↔ ln|ρ|+ iθ = γT ↔
ln|ρ|
T

+
iθ

T
= γ

(38)

• Conclusion: Re{γ} > 0 if |ρ| > 1;

• Note: If z = re iθ, r > 0, lnz = lnr + iθ is one logarithm. We can add an integer
number of 2π in θ to obtain other logaritms.
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How to use?

• We choose a set of fundamental solutions of Eq. 23 satisfying
u1(0) = 1, u̇1(0) = 0, u2(0) = 0 and u̇2(0) = 1. Using this set into Eqs. 27 and
28, we obtain:

A =

[
u1(T ) u̇1(T )
u2(T ) u̇2(T )

]
(39)

• Floquet multipliers (eigenvalues of A):

(u1(T )− ρ)(u̇2(T )− ρ)− u̇1(T )u2(T ) = 0↔

↔ ρ2 − (u1(T ) + u̇2(T ))ρ+ (u1(T )u̇2(T )− u̇1(T )u2(T ))︸ ︷︷ ︸
∆

= 0 (40)

• ∆ = detA is the Wronskian of u1(t) and u2(t) at t = T .

• Two solutions of the Hill's equation satisfy:

ü1 + p(t)u1 = 0→ u2ü1 + p(t)u2u1 = 0 (41)

ü2 + p(t)u2 = 0→ u1ü2 + p(t)u1u2 = 0 (42)

• From above equations: u1ü2 − u2ü1 = 0.
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How to use?

• If we de�ne ∆(t) = u1(t)u̇2(t)− u̇1(t)u2(t), we have
∆̇(t) = u1(t)ü2(t)− ü1(t)u2(t) = 0.

• Conclusion: The Wronskian does not depends on time and ∆(t) = ∆(0) = 1;

• Substituting this result in Eq. 40, we have

ρ2 − (u1(T ) + u̇2(T ))︸ ︷︷ ︸
2α

ρ+ 1 = 0 (43)

ρ1,2 =
2α± 2

√
α2 − 1

2
= α±

√
α2 − 1 (44)

with ρ1ρ2 = 1.

• If |α| > 1, ρ1 > 0 and ρ2 < 0, both real-valued. One normal solution is
unbounded. Unstable solutions;

• If |α| < 1, ρ1 and ρ2 are complex conjugated with |ρ1| = |ρ2| = 1. Both normal
solutions are bounded. Stable solutions;

• If α = 1, ρ1 = ρ2 = 1→ at least one normal solution of period T appears;

• If α = −1, ρ1 = ρ2 = −1→ at least one normal solution of period 2T appears;
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How to use?

1 We choose a set of parameters of the mathematical model;

2 We numerically obtain A by integrating the mathematical model using two
di�erent pairs of initial conditions. One pair has unitary initial displacement and
null initial velocity. The second pair has null initial displacement and unitary
velocity;

3 For the chosen set of parameters, we compute the eigenvalues of A (Floquet
multipliers) and we save the one presenting the largest absolute value (|ρ∗|);

4 We change the set of parameters of the mathematical model and repeat steps 2
and 3.

5 We plot |ρ∗| as functions of the parameters of the mathematical model. If
|ρ∗| > 1, we have unbounded responses. On the other hand, |ρ∗| < 1 leads to
bounded solutions.
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Stability map: Undamped Mathieu's equation

Figure: Stability map.

Using a standard notebook (i7, 10th generation, 16Gb RAM), this plot has been
obtained in approximately 15 minutes with a 2, 000× 2, 000 grid.
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Stability map: Damped Mathieu's equation

Figure: Stability map. ζ = 0.10.

• ü + 2ζu̇ + (δ + 2ε cos 2t)u = 0

• The increase in the damping shrinks the region of unbounded responses.
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Stability map: Damped Mathieu's equation

Figure: Stability map. ζ = 0.20.
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Use of the harmonic balance method (HBM)

• Focus herein: Obtain the transition curves for the undamped Mathieu's
equation ẍ + (δ + 2ε cos 2τ)x = 0;

• Notice that the parametric excitation period is T = π;

• As already discussed, the transition curves are associated with periodic solutions
of period T or 2T .

• We write these solutions in the form of Fourier series, as follows:

x(t) =
∞∑
n=0

(
ãn cos n2τ + b̃n sin n2τ

)
+
∞∑
n=0

(
c̃n cos nτ + d̃n sin nτ

)
(45)

• Notice that the even harmonics (i.e., those with the form 2nτ, n = 1, 2, . . .)
appear in the two sums. Hence, we can write just one sum:

x(t) =
∞∑
n=0

(an cos nτ + bn sin nτ) (46)
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Use of the harmonic balance method (HBM)

• The following identities are useful:

cos 2t cos nτ =

(
e i2τ + e−i2τ

2

)(
e inτ + e−inτ

2

)
=

=
1

2
cos((2 + n)τ) +

1

2
cos((2− n)τ)

cos 2τ sin nτ =

(
e i2τ + e−i2τ

2

)(
e inτ − e−inτ

2i

)
=

=
1

2
sin((2 + n)τ) +

1

2
sin((n − 2)τ)

x cos 2τ =

=
∞∑
n=0

[
an

(
cos((2 + n))τ + cos((2− n))τ

2

)
+ bn

(
sin((2 + n))τ + sin((n − 2))τ

2

)]

ẍ =
∞∑
n=0

−n2 (an cos nτ + bn sin nτ) (47)

73/82
PEF 6000



Use of the harmonic balance method (HBM)

• Obviously, for the sake of computation, we must choose a number of harmonics
to be considered in the expansion.

• Firstly, we consider an expansion considering three harmonics. In this scenario,
we have:

δx = δa0 + δa1 cos τ + δb1 sin τ + δa2 cos 2τ + δb2 sin 2τ

x cos 2τ =
a0

2
(cos 2τ + cos 2τ) +

a1

2
(cos 3τ + cos τ) +

b1

2
(sin 3τ − sin τ)+

+
a2

2
(cos 4τ + 1) +

b2

2
sin 4τ

ẍ = −(a1 cos τ + b1 sin τ + 4a2 cos 2τ + 4b2 sin 2τ) (48)

• Substituting Eq. 48 into the Mathieu's equation and collecting the terms of the
same trigonometric function (harmonic balance), we obtain:

(−a1 + δa1 + εa1) cos τ + (−b1 + δb1 − εb1) sin τ + (−4a2 + δa2 + 2εa0) cos 2τ+

+ (−4b2 + δb2) sin 2τ + (δa0 + εa2) + . . . = 0 (49)

• In the above equation, . . . represents harmonic of higher-order, not considered in
the expansion.
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Use of the harmonic balance method (HBM)

• Equation 49 can be written in the matrix form as


0 −1 + δ + ε 0 0 0
0 0 −1 + δ − ε 0 0
2ε 0 0 −4 + δ 0
0 0 0 0 δ − 4
δ 0 0 ε 0



a0
a1
b1
a2
b2

 =


0
0
0
0
0

 (50)

• Non-trivial solutions exist if∣∣∣∣∣∣∣∣∣
0 −1 + δ + ε 0 0 0
0 0 −1 + δ − ε 0 0
2ε 0 0 −4 + δ 0
0 0 0 0 δ − 4
δ 0 0 ε 0

∣∣∣∣∣∣∣∣∣ =

= (4δ − δ2 + 2ε2)(−4 + δ)(−1 + δ − ε)(−1 + δ + ε) = 0 (51)

• Equation 51 de�nes an approximation for the transition curves.
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Transition curves
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Figure: Extracted from Franzini (2019).
• Points above the transition curves are associated with unbounded solutions;

• If we include more terms in the expansion, the transition curves are better
represented. Notice, however, that the mathematical work highly increases and
symbolic computation is mandatory.
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Transition curves

• This plot has been obtained using seven harmonics in the expansion.
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Figure: Extracted from Franzini (2019).
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HBM versus Floquet theory

Figure: Stability map. Detail around the principal parametric instability region.
ζ = 0.

• A marked adherence is obtained when comparing the stability map and the
transition curves obtained with the HBM using three harmonics (gray curves).
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Floquet multipliers
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Figure: Floquet multipliers. Detail around the principal parametric instability region.
ε = 0.4 and ζ = 0.

• Bifurcation occurs when at least one Floquet multiplier crosses the
circumference of radius 1. Particularly, if the crossing is through −1, we have a
period-doubling bifurcation.
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Floquet multipliers
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Figure: Floquet multipliers. ε = 1.5 and ζ = 0.
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E�ects of damping

Figure: Stability map. Detail around the principal parametric instability region.
ζ = 0.10.
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Floquet multipliers: ζ = 0.10
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Figure: Floquet multipliers. Detail around the principal parametric instability region.
ε = 0.4 and ζ = 0.10.

• For certain values of δ, there are Floquet multipliers inside the circumference of
radius 1.
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