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Branching morphogenesis is a fundamental developmental

program that generates large epithelial surfaces in a limited

three-dimensional space. It is regulated by inductive tissue

interactions whose effects are mediated by soluble signaling

molecules, and cell–cell and cell–extracellular matrix

interactions. Here, we will review recent studies on inductive

signaling interactions governing branching morphogenesis in

light of phenotypes of mouse mutants and ex vivo organ culture

studies with emphasis on developing mammary and salivary

glands. We will highlight advances in understanding how cell

fate decisions are intimately linked with branching

morphogenesis. We will also discuss novel insights into the

molecular control of cellular mechanisms driving the formation

of these arborized ductal structures and reflect upon how

distinct spatial patterns are generated.
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Introduction
The mammalian kidneys, lungs and many of the exocrine

glands such as salivary and mammary glands develop

through a process of branching morphogenesis where

an epithelial rudiment elongates and branches iteratively

to give rise to an arborized tree-like structure. Each type

of organ ends up with a unique shape, which reflects

organ-specific differences in its construction. Firstly, the

structure of the tree hierarchy is determined through

usage of two different modes of branching: splitting of

the branch tip (tip furcation or clefting) and budding from

an existing duct (lateral/side branching). Secondly,

branching can take place according to a stereotyped
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routine as seen in the lung, where each lung adheres to

a near identical order of branching events, or following

stochastic principles as suggested for the mammary gland,

where each mammary gland exhibits obvious differences

in overall branching appearance [1,2]. Finally, the fre-

quency of branching events yields trees of different

densities exemplified by the tightly packed salivary gland

and sparse pre-pregnancy mammary architecture [3,4]

(Figure 1).

The development of the salivary and the mammary gland

begins by formation of an invaginating bud, which elon-

gates and starts to branch as a solid epithelial structure

that is progressively hollowed into a bilayer of luminal and

basal cells. Branching is not stereotypical, and the exis-

tence of local paracrine signals acting as guidance cues has

not been confirmed. Submandibular salivary gland

branching morphogenesis is characterized by sequential

bud enlargement and clefting, which is completed during

embryogenesis [4]. Embryonic mammary gland develop-

ment is hormone independent and yields a rudimentary

ductal tree, whereas development in puberty and preg-

nancy is driven by reproductive hormones whose effects

are, however, mediated by locally produced growth fac-

tors [3]. The pubertal stage is characterized by invasive

ductal tips termed terminal end buds (TEB) that consist

of a single basal layer (cap cells) and a multilayered

luminal cell population (body cells).

Two experimental approaches, genetically modified

mouse models and ex vivo organ culture systems, have been

highly informative in identifying the critical signals con-

trolling branching morphogenesis. However, the explicit

functions of signaling molecules are often difficult to

define, because the arborization of the epithelial tree is

an integrated process of cell proliferation, branch point

generation, and branch elongation. In this review, we

reflect upon the recent mechanistic insights of inductive

signals guiding branching morphogenesis, with an empha-

sis on the mammalian mammary and salivary gland.

Cell fate and branching
Inductive signals regulate cell fate decisions as well as

morphogenetic cell behaviors and recent studies have

linked branching potential with differentiation state.

The importance of Fibroblast growth factor 10 (Fgf10)

in salivary gland development has been recognized for a

long time [4]. Chatzeli et al. revealed that salivary gland

branching morphogenesis is initiated when mesenchymal

Fgf10 induces specification of distally located progenitors
www.sciencedirect.com
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Figure 1
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Distribution of progenitor cells driving branching morphogenesis.

(a) The salivary epithelium is specified into distal and proximal progenitors that regulate the expansion of the tip and stalk domains of the gland,

respectively. (b) Mammary epithelium is specified into basal and luminal progenitors, whose coordinated behaviors are likely required for

branching. (c) In the pubertal mammary gland, progenitors have been proposed to reside in terminal end buds (TEBs) whereas the ducts contain

their quiescent progeny. Quiescent stem cells have been shown to contribute to side branching during pregnancy. Whether side branching

contributes to pubertal morphogenesis, is controversial in the field.
in the salivary bud [5] (Figure 1a). The branching poten-

tial may be limited to these cells, since when mechani-

cally separated, only the distal part, not the proximal

stalk, can initiate branching. In addition to signal input

coming from the nerves [4], the fate of the proximal

progenitors depends on the activity of Yap, a Hippo

pathway transcriptional regulator, which mediates its

effects, at least in part, by inducing the Epidermal growth

factor (Egf) family member Epiregulin [6��]. The Yap

deficient salivary glands had fewer end buds, a branching

defect shown to result from domain specification defects

rather than compromised proliferation. Therefore,

although distal cells may be competent to initiate

branches [5], coordinated behaviors of both distal and

proximal cells are required for branching morphogenesis.

The segregation of early mammary progenitors into dis-

tinct proximal–distal populations during embryonic

mammary branching morphogenesis remains largely

unexplored. Lineage tracing and single-cell RNA-

sequencing data suggest that the first lineage segregation

takes place along the basal–luminal axis around birth, that

is, after a couple of rounds of branching has already taken

place [7��,8]. Lilja et al., however, provided evidence that
www.sciencedirect.com 
the basal and luminal lineages become primed already

when branching begins and suggested that the two pro-

cesses may be mechanistically linked [9��]. Ectopic acti-

vation of the Notch1 receptor drives cells towards luminal

fate [9��], and transcription factor DNp63 towards basal

fate [7��], but the identity (chemical or mechanical) and

origin of signals that specify the lineages remain to be

identified (Figure 1b).

Later stages of mammary branching morphogenesis are

principally fueled by unipotent luminal and basal stem/

progenitor cells, although existence of multipotent stem

cells has not been ruled out [10]. A distally located stem

cell pool has been proposed to lie within TEBs, whose

progeny is left behind in the trailing duct as the TEB

advances [11��] (Figure 1c). Considering this model,

branching activity at puberty is driven by the bifurcating

tips only. Additionally, the proximal ductal area houses

stem cells that remain quiescent during puberty, but

contribute to pregnancy-induced epithelial expansion

[12]. Whether mammary epithelial cells in different parts

of the gland possess intrinsically different morphogenetic

potential or whether the ability to branch is bestowed by

transient signals, remains an open question.
Current Opinion in Cell Biology 2019, 61:72–78
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Epithelial growth and maintenance
Cell proliferation is necessary to produce building blocks

for the growing organ and expansion of a nascent branch.

One of the best characterized pathways regulating pro-

liferation is the Fgf/Erk pathway: stromally produced

Fgfs, in particular Fgf10, are essential for both salivary

bud outgrowth and mammary TEB formation [3,4,13].

Additionally, loss of epithelially produced Fgf20 compro-

mises mammary ductal growth [14]. Intriguingly, the

expression of Fgf20 wanes after embryogenesis, yet the

phenotype only arises at puberty. The underlying mech-

anism remains to be untangled but one possibility is that

absence of Fgf20 leads to qualitative changes in the stem/

progenitor cells that only manifest when robust stem cell

activation is needed. Fgf20 is not expressed in developing

salivary glands (our unpublished data).

During recent years, the Tumor necrosis factor (Tnf)

family member Ectodysplasin (Eda) has emerged as an

important mesenchymal cue: its loss compromises growth

and branching, while its overexpression has the opposite

effect in both salivary and mammary glands [14–17]. Eda

signaling activity is confined to the epithelium where it

regulates the expression Fgf20, as well as ligands of many

other pathways (Egf, Wnt, Sonic hedgehog) [18] suggest-

ing that Eda’s effects are likely mediated by multiple

signaling pathways. Loss of Fgf20 attenuates the Eda

overexpression mammary hypergrowth phenotype

thereby confirming the importance of Fgf20 downstream

of Eda signaling [14].

Although many of the molecular mechanisms regulating

mammary and salivary gland branching are shared, the

Wnt pathway is an exception. Salivary gland end buds are

devoid of Wnt activity, but mesenchymal Wnt signaling is

thought to regulate salivary gland growth indirectly by

inducing the expression of paracrine factors such as Eda

[15]. In contrast, epithelial Wnt signaling has an estab-

lished function as a regulator of TEB number and size and

is suggested to maintain the stem/progenitor status in the

TEB [13]. The study by Sreekumar et al. [19��] revealed

new mechanistic insights into Wnt action by showing that

Wnts promote survival of the TEB cap cells by prevent-

ing the nuclear accumulation of the pro-apoptotic FoxO

transcription factors. Macrophages, which enrich around

TEBs and are largely fetal-derived [20], were shown to be

the source of Wnts [21��]. A positive feedback loop

between cap cells and macrophages was identified: the

former produce Notch ligand Delta Like Canonical

Notch Ligand 1 (Dll1) which activates Notch2/3 recep-

tor-mediated signaling in macrophages, leading to

increased production of Wnts [21��].

A completely new molecular mechanism regulating epi-

thelial proliferation was identified by Hayashi et al. [22��],
who showed that mesenchymally produced micro-RNA

containing exosomes regulate proliferation in developing
Current Opinion in Cell Biology 2019, 61:72–78 
salivary glands. miRNA-133b-3p was identified as the

critical cargo and proposed to downregulate DIP2B, a

protein involved in DNA methylation, to epigenetically

control the expansion of distal progenitors. Weather exo-

some-mediated tissue interactions also regulate

mammary gland morphogenesis is currently unknown.

Branch elongation
From the construction point of view, branches are elon-

gated by deposition of cells from the tip to the duct or by

cell division and/or rearrangement within the duct itself.

Mammary ductal cells are the progeny of stem/progenitor

cells proliferating in the TEB, suggesting that elongation

is driven from the tip [11��]. The progenitors in the

salivary tip also give rise to the distal ducts [23], but their

proliferation contributes relatively more to tip enlarge-

ment than ductal elongation, which has been attributed to

the range of the growth-inducing signal [24]. The proxi-

mal ducts of the salivary gland are sustained by their own

supply of cells, suggesting that they elongate on a differ-

ent basis than the terminal branches [23].

Ducts may change their aspect ratio through convergent

extension, which has been reported for elongation of the

kidney tubules where Wnt9b regulates planar cell polarity

(PCP) activity [25,26]. Vangl1/2 membrane proteins are

essential mediators of convergent extension and oriented

cell divisions through PCP. About half of embryonic

mammary glands with compromised surface expression

of Vangl proteins (Vangl2 Looptail mutant) fail to sprout

and branch and instead form a large bud-like structure

suggesting involvement of cellular rearrangements in

elongation [27]. Yet, morphometric analysis of postnatal

glands suggests that the length of ducts becomes fixed,

implying that mammary ducts do not intrinsically

elongate [11��].

Although cell proliferation at the tip feeds cells into the

duct, it is not clear whether proliferation per se drives tip

displacement. Mammary ductal elongation has been

modeled purely based on cell proliferation/apoptosis in

the TEB, given that the geometry of the TEB remains

constant [28]. In this model, cell crowding in the TEB

creates a flux of cells to the duct, pushing the TEB

forward, but this has not been experimentally confirmed.

Experimental studies on mesenchyme-free organoids

have revealed that displacement of the tip may also be

regulated by collective cell migration and proliferation

only defines the number of migratory cells [29]

(Figure 2a). The migratory behavior is regulated by a

gradient of Erk signaling pathway activity, where the

fastest cells are found at the tip front. In contrast, the

migratory behavior of salivary epithelial cells follows a

different pattern and is characterized by faster outer-bud

cells and slower inner-bud cells, as revealed by organ

culture studies [30] (Figure 2b). The lateral mode of

movement of the outer-bud cells may be related to
www.sciencedirect.com



Inductive signals in branching morphogenesis Myllymäki and Mikkola 75

Figure 2
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(a) In the mammary gland, Fgf signaling activates Erk and Akt pathways to promote cell migration driving tip advancement, whereas cell

proliferation provides material for growth. Survival of epithelial cells in the basal layer is regulated by Wnt signals produced by mesenchymal

macrophages (blue). Remodeling of the stromal collagen fibers by MT1-MMP/Mmp14 of stromal fibroblasts (red) is required for branching. Cell

rearrangements are thought to regulate assortment of cells between equipotent tips during tip bifurcation. However, the signals and cell behaviors

that drive mammary TEB bifurcation are currently unknown. Canonical Wnt signaling has been implicated for budding of side branches from the

mammary duct, whereas maintenance of the ductal architecture is associated with non-canonical Wnt signaling. Side branches are generated by

CD61+ progenitors, whose local differentiation is controlled by the transcription factor Id2. (b) In the salivary gland, cell movement in the salivary

tip is compartmentalized into faster migrating outer-bud cells and slower migrating inner bud cells. The outer-bud cells move laterally along the

basement membrane (BM), remodeling it by creating microperforations, which allow the epithelium to expand. The pressure for epithelial

expansion is likely generated by cell proliferation in the tip, although contribution of inner bud cell motility is also possible. Clefts are initiated by

localized assembly of fibronectin (FN) by bud epithelial cells into a wedge-like structure that progressively splits the tip. FN also induces Btdb7,

which regulates cell–cell detachment through repression of E-cadherin and motility at the cleft site to aid cleft progression.
remodeling of the basement membrane (BM) at the

epithelial–stromal interface, which is required for radial

expansion of the bud [31].

Although mammary organoid studies have implicated

that the mechanism of ductal elongation can be intrinsic

to the epithelium, the stroma clearly plays a role in vivo,
not only as a source of growth factors but also through its

mechanical properties. Stromal collagen fibers have been

proposed to guide ductal elongation and branching based

on their pre-patterned orientation in the ECM [32].
www.sciencedirect.com 
Peuhu et al. [33] proposed that proper stromal stiffness

and collagen fibrillogenesis by stromal fibroblasts is instru-

mental for ductal elongation at puberty. The basis for this is

enigmatic as there is no evidence that mammary epithelial

cells would utilize the stromal ECM directly as a substrate

for, for example, cell migration in vivo. Fibrillar collagens

associated with mammary ducts are also substrates for

enzymatic digestion by matrix-metalloproteinases

(MMPs) [13]. MT1-MMP/Mmp-14-mediated collagen

remodeling by periductal fibroblasts rather than by epithe-

lial cells, was shown to be essential: its absence blocked
Current Opinion in Cell Biology 2019, 61:72–78
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ductal elongation and branching at puberty [34��]. How

fibroblasts are induced to perform these activities locally

remains to be investigated, although ECM remodeling can

be regulated at least via EgfR signaling [35].

Branch point generation
A number of cellular mechanisms have been shown or

proposed to govern branching in different organs: ori-

ented cell divisions, collective cell migration, differential

growth, epithelial folding, and ECM-driven tissue shape

changes [36]. The mechanism of tip splitting has been

most extensively studied in salivary glands where it is

associated with appearance of narrow clefts. The cue

inducing cleft initiation is unknown but the Egf pathway

has emerged as a candidate [37,38]. Cleft progression is

driven by deposition of fibronectin and involves actomy-

osin contractility [4]. Organ culture studies revealed that

fibronectin deposition leads to focal induction of BTB/

POZ domain-containing protein 7 (Btbd7) (Figure 2b)

[4], and generation of the Btbd7 null mouse model

confirmed its requirement for branching morphogenesis

in vivo [39�]. Btbd7 affected cell motility specifically in

outer (basal) cells by inducing E-cadherin ubiquitination

and degradation providing a mechanistic explanation for

the ability of Btbd7 to control cell adhesion and migra-

tion. Loss of Btbd7 disrupts branching morphogenesis

also in the lung and kidney [39�], but its role in mammary

gland development is unknown.

Lateral branching in postnatal mammary glands occurs in

the context of an epithelial bilayer and therefore likely

depends on a different morphogenetic program than tip

bifurcation (Figure 2a). Side branching is well documented

to occur during estrous cycle and pregnancy downstream of

progesterone whose effects are mediated, at least in part, by

Wnt4, and the Tnf family member Rankl [3]. Transcription

factor Id2 is another mediator of progesterone receptor-

mediated signaling, which appears to control side branch-

ing through differentiation of bi-potent luminal progenitors

into cells expressing CD61 that was identified as a marker

for side branches [40�]. In contrast to canonical Wnt path-

way, non-canonical Wnt5A/Ror2 signaling suppresses side

branching, a function attributed to its ability to modulate

the actin cytoskeleton [41,42].

Morphological analysis of wildtype and several geneti-

cally modified mice suggests involvement of side branch-

ing also during pubertal mammary gland development

[43], although this view has recently been challenged

[11��]. The distance between branch points in the nipple

proximal area does not decrease between five and eight

weeks of age as would be expected if side branching was

to occur [11��]. Further, by whole-mount EdU analysis,

Scheele et al. [11��] detected proliferation only in TEBs.

Previous studies have, however, reported significant cell

proliferation also in ducts during puberty by analyzing

Ki67 or BrdU incorporation in sections [44,45]. If side
Current Opinion in Cell Biology 2019, 61:72–78 
branch formation is not primarily driven by locally

enhanced cell proliferation, but rather, for example, by

cell shape changes as shown for the avian lung [46], it

might be difficult to conclusively detect an incipient

lateral branch in fixed samples, and once formed, could

not be distinguished from TEB formed by tip splitting.

Patterning
How spatial patterning and the geometry of branched

networks are generated and to what extent are the con-

struction principles shared between branched organs

remain outstanding questions in the field. One appealing

approach to tackle this question is computational model-

ing [47,48]. Recently, branch pattern formation in the

mammary gland, kidney and prostate was proposed to

be governed by simple generic rules involving the collec-

tive dynamics of progenitors present at ductal tips that

drive ductal elongation and stochastic tip bifurcation

[2,49]. Tips, however, compete for space and get termi-

nated in regions of high ductal density, and hence branch-

ing could be regarded as a stochastic, self-organized

process rather than a hard-wired genetic program. In

the kidney, cessation of tip growth was proposed to occur

when nephrons differentiate at individual tips [2]. How-

ever, other studies found no evidence for stochastic

cessation of tip growth by nephrogenesis, or any other

mechanism, and 3D renderings do not reveal ureteric bud

tips ‘inside’ the growing kidney [50,51]. Indeed, in the

lung and kidney, the initial rounds of branching are highly

stereotyped [1,50], arguing for a deterministic rather than

stochastic process. Ligand–receptor-based Turing type of

mechanism involving a positive signaling feedback loop

in combination with the tissue-restricted expression of

the ligand and receptor has been proposed to pattern both

the lung [52] and kidney [53�], Fgf10–FgfR2b forming

the key ligand–receptor pair in the former and glial cell-

line derived neurotrophic factor (GDNF)–Ret in the

latter. Whether a similar principle also applies to salivary

and embryonic mammary gland pattering – both critically

dependent on stromal Fgf10 and epithelial FgfR2b –

remains to be explored.

Concluding remarks
The relative ease of culturing embryonic salivary glands

in combination with advanced live microscopy has

enabled major leaps in understanding the cellular beha-

viors induced by inductive cues. However, in mammary

gland research, current knowledge is largely based on

static images of fixed 2D samples, although stroma-free

organoid studies have been highly informative in dissect-

ing many cellular level details in 3D [29]. Classic tissue

recombination experiments, however, underscore the

importance of stroma by showing that mammary gland

epithelium recombined with salivary mesenchyme

results in salivary-like epithelial morphogenesis [3].

The development of an ex vivo culture method for the

embryonic mammary gland [16], clearing protocols for 3D
www.sciencedirect.com
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analysis of postnatal mammary glands, intravital imaging

of postnatal glands at single cell resolution [11��] together

with the single-cell omics revolution is expected to lead to

major discoveries on the molecular and cellular mecha-

nisms governing mammary branching morphogenesis in

near future.
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Gerke H, Elima K, Rantakari P, Salmi M: Fetal-derived
macrophages dominate in adult mammary glands. Nat
Commun 2019, 10:281.

21.
��
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