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Abstract

We prove that a C2+α-smooth orientation-preserving circle diffeomorphism with rota-

tion number in Diophantine class Dδ, 0 < δ < α ≤ 1, is C1+α−δ-smoothly conjugate to

a rigid rotation. We also derive the most precise version of Denjoy’s inequality for such

diffeomorphisms.

1 Introduction

An irrational number ρ is said to belong to Diophantine class Dδ if there exists a constant
C > 0 such that |ρ − p/q| ≥ Cq−2−δ for any rational number p/q. The aim of this short note
is to present the new and complete proof of the following

Theorem 1. Let T be a C2+α-smooth orientation-preserving circle diffeomorphism with rotation
number ρ ∈ Dδ, 0 < δ < α ≤ 1. Then T is C1+α−δ-smoothly conjugate to the rigid rotation by
angle ρ.

(Note, that C2+α with α = 1 throughout this paper means C2+Lip rather than C3.)
This result was first announced in [1]. However, the complete proof was never published.

Moreover, the argument in [1] contained a wrong intermediate estimate.
The first global results on smoothness of conjugation with rotations were obtained by

M. Herman [2]. Later J.-C. Yoccoz extended the theory to the case of Diophantine rota-
tion numbers [3]. The case of C2+α-smooth diffeomorphisms was considered by K. Khanin,
Ya. Sinai [4, 1] and Y. Katznelson, D. Ornstein [5, 6].

In the present paper we use a conceptually new approach, which considerably simplifies the
proof. We also believe that this approach will prove useful in other problems involving circle
diffeomorphisms.

Let us remark that our result is stronger than the statement proven in [5], although their
scope is wider (namely, we do not consider smoothness higher than C3). It is also sharp, i.e.
smoothness of conjugacy higher than C1+α−δ cannot be achieved in general settings, as it follows
from the examples constructed in [5].

The paper is self-consistent although requires good understanding of combinatorics of circle
homeomorphisms and Denjoy’s theory, for which we refer a reader to the book [7].

∗Department of Mathematics, University of Toronto
†Institute of Mathematics, Kiev, Ukraine
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2 Cross-ratio tools

The cross-ratio of four pairwise distinct points x1, x2, x3, x4 is

Cr(x1, x2, x3, x4) =
(x1 − x2)(x3 − x4)

(x2 − x3)(x4 − x1)

Their cross-ratio distortion with respect to a strictly increasing function f is

Dist(x1, x2, x3, x4; f) =
Cr(f(x1), f(x2), f(x3), f(x4))

Cr(x1, x2, x3, x4)

Clearly,

Dist(x1, x2, x3, x4; f) =
D(x1, x2, x3; f)

D(x1, x4, x3; f)
, (1)

where

D(x1, x2, x3; f) =
f(x1)− f(x2)

x1 − x2
:
f(x2)− f(x3)

x2 − x3

is the ratio distortion of three distinct points x1, x2, x3 with respect to f .
In the case of smooth f such that f ′ does not vanish, both the ratio distortion and the

cross-ratio distortion are defined for points, which are not necessarily pairwise distinct, as the
appropriate limits (or, just by formally replacing ratios (f(a)− f(a))/(a− a) with f ′(a) in the
definitions above).

Notice that both ratio and cross-ratio distortions are multiplicative with respect to compo-
sition: for two functions f and g we have

D(x1, x2, x3; f ◦ g) = D(x1, x2, x3; g) ·D(g(x1), g(x2), g(x3); f) (2)

Dist(x1, x2, x3, x4; f ◦ g) = Dist(x1, x2, x3, x4; g) · Dist(g(x1), g(x2), g(x3), g(x4); f) (3)

Proposition 1. Let f ∈ C2+α, α ∈ [0, 1], and f ′ > 0 on [A,B]. Then for any x1, x2, x3 ∈ [A,B]
the following estimate holds:

D(x1, x2, x3; f) = 1 + (x1 − x3)

(

f ′′

2f ′
+O(∆α)

)

, (4)

where ∆ = max{x1, x2, x3} −min{x1, x2, x3}, and the values of both f ′′ and f ′ can be taken at
any points between min{x1, x2, x3} and max{x1, x2, x3}.

Proof. First of all, it is easy to see why the arguments of f ′′ and f ′ in the estimate (4) be taken
arbitrarily: f ′′(θ1)− f ′′(θ2) = O(∆α), f ′(θ1)− f ′(θ2) = O(∆), and (f ′(θ))−1 = O(1).

To prove (4), we need to consider three cases of relative locations of the points.
Case 1: x2 lies between x1 and x3. It is easy to calculate that

f(x1)− f(x2)

x1 − x2
−

f(x2)− f(x3)

x2 − x3
= (x1 − x3)

(

1

2
f ′′ +O(∆α)

)

,

and (4) follows.

2



Case 2: x1 lies between x2 and x3. One can check that

D(x1, x2, x3; f) = 1 +

[

x1 − x3

x2 − x3

(

f(x2)− f(x1)

x2 − x1
−

f(x1)− f(x3)

x1 − x3

)]

:
f(x2)− f(x3)

x2 − x3
.

The expression in the round brackets equals (x2 − x3)(
1
2
f ′′ +O(∆α)), so in the square brackets

we have (x1 − x3)(
1
2
f ′′ +O(∆α)).

Case 3: x3 lies between x1 and x2. Similar to Case 2.

Proposition 2. Let f ∈ C2+α, α ∈ [0, 1], and f ′ > 0 on [A,B]. For any x1, x2, x3, x4 ∈ [A,B]
the following estimate holds:

Dist(x1, x2, x3, x4; f) = 1 + (x1 − x3)O(∆α)

where ∆ = max{x1, x2, x3, x4} −min{x1, x2, x3, x4}.

Proof. Follows immediately from Proposition 1 due to (1).

Remark 1. While the ratio distortion satisfies an obvious estimate

logD(x1, x2, x3; f) = O(x1 − x3), (5)

Proposition 2 implies a stronger (for small ∆) estimate for cross-ratio distortion:

logDist(x1, x2, x3, x4; f) = (x1 − x3)O(∆α) (6)

3 Circle diffeomorphisms

3.1 Settings and notations

For an orientation-preserving homeomorphism T of the unit circle T
1 = R/Z, its rotation

number ρ = ρ(T ) is the value of the limit limi→∞ Li
T (x)/i for a lift LT of T from T

1 onto R.
It is known since Poincare that rotation number is always defined (up to an additive integer)
and does not depend on the starting point x ∈ R. Rotation number ρ is irrational if and only
if T has no periodic points. We restrict our attention in this paper to this case. The order of
points on the circle for any trajectory ξi = T iξ0, i ∈ Z, coincides with the order of points for
the rigid rotation

Rρ : ξ 7→ ξ + ρ mod 1

This fact is sometimes referred to as the combinatorial equivalence between T and Rρ.
We shall use the continued fraction expansion for the (irrational) rotation number:

ρ = [k1, k2, . . . , kn, . . .] =
1

k1 +
1

k2 +
1
· · ·

kn +
1

· · ·

∈ (0, 1) (7)
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which, as usual, is understood as a limit of the sequence of rational convergents pn/qn =
[k1, k2, . . . , kn]. The positive integers kn, n ≥ 1, called partial quotients, are defined uniquely
for irrational ρ. The mutually prime positive integers pn and qn satisfy the recurrent relation
pn = knpn−1+pn−2, qn = knqn−1+qn−2 for n ≥ 1, where it is convenient to define p0 = 0, q0 = 1
and p−1 = 1, q−1 = 0.

Given a circle homeomorphism T with irrational ρ, one may consider a marked trajectory
(i.e. the trajectory of a marked point) ξi = T iξ0 ∈ T

1, i ≥ 0, and pick out of it the sequence
of the dynamical convergents ξqn, n ≥ 0, indexed by the denominators of the consecutive
rational convergents to ρ. We will also conventionally use ξq−1 = ξ0 − 1. The well-understood
arithmetical properties of rational convergents and the combinatorial equivalence between T
and Rρ imply that the dynamical convergents approach the marked point, alternating their
order in the following way:

ξq−1 < ξq1 < ξq3 < · · · < ξq2m+1 < · · · < ξ0 < · · · < ξq2m < · · · < ξq2 < ξq0 (8)

We define the nth fundamental segment ∆(n)(ξ) as the circle arc [ξ, T qnξ] if n is even and

[T qnξ, ξ] if n is odd. If there is a marked trajectory, then we use the notations ∆
(n)
0 = ∆(n)(ξ0),

∆
(n)
i = ∆(n)(ξi) = T i∆

(n)
0 . What is important for us about the combinatorics of trajectories

can be formulated as the following simple

Lemma 1. For any ξ ∈ T
1 and 0 < i < qn+1 the segments ∆(n)(ξ) and ∆(n)(T iξ) are disjoint

(except at the endpoints).

Proof. Follows from the combinatorial equivalence of T to Rρ and the following arithmetical
fact: the distance from iρ to the closest integer is not less than ∆n for 0 < i < qn+1 (and equals
∆n only for i = qn, in which case ∆(n)(ξ) and ∆(n)(T iξ) have a common endpoint T qnξ).

In particular, for any ξ0 all the segments ∆
(n)
i , 0 ≤ i < qn+1, are disjoint.

Let us denote ln = ln(T ) = maxξ |∆
(n)(ξ)| = ‖T qn − Id‖0 and ∆n = ln(Rρ) = |qnρ − pn|.

Obviously ln,∆n ∈ (0, 1) for n ≥ 0, while l−1 = ∆−1 = 1.

Lemma 2. ln ≥ ∆n.

Proof. Denote by µ the unique probability invariant measure for T . It follows from the ergod-
icity of T qn with respect to µ that

∫

T1

(T qn(ξ)− ξ)dµ(ξ) = ρ(T qn) mod 1

Since ρ(T qn) = ρ(Rqn
ρ ) = (−1)n∆n mod 1, we have

∫

T1

|∆(n)(ξ)|dµ(ξ) = ∆n,

which implies the statement of the lemma.

It is well known that ∆n ∼ 1
qn+1

, thus the Diophantine properties of ρ ∈ Dδ can be equiva-
lently expressed in the form:

∆1+δ
n−1 = O(∆n) (9)
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3.2 Denjoy’s theory

The following set of statements essentially summarizes the classical Denjoy theory (see [7]),
which holds for any orientation-preserving circle diffeomorphism T ∈ C1+BV (T1) with irrational
rotation number ρ.

A. log(T qn)′(ξ0) = O(1).

B. There exists λ ∈ (0, 1) such that
|∆

(n+m)
0 |

|∆
(n)
0 |

= O(λm).

C. There exists a homeomorphism φ that conjugates T to Rρ:

φ ◦ T ◦ φ−1 = Rρ (10)

In order to prove Theorem 1 one has to show that φ ∈ C1+α−δ(T1) and φ′ > 0.

3.3 Denjoy-type inequality

The aim of this subsection is to prove the following result that does not require any restrictions
on the rotation number of T .

Proposition 3 (Denjoy-type inequality). Let T be a C2+α-smooth, α ∈ [0, 1], orientation-
preserving circle diffeomorphism with irrational rotation number. Then

(T qn)′(ξ) = 1 +O(εn), where εn = lαn−1 +
ln
ln−1

lαn−2 +
ln
ln−2

lαn−3 + · · ·+
ln
l0

(11)

Remark 2. The inequality (11) can be re-written as

log(T qn)′(ξ) = O(εn)

Remark 3. In the paper [1] there was a wrong claim (Lemma 12) that one can simply put
εn = lαn−1 in (11). This is not true in the case when ln−1 is too small in comparison with ln−2,
though comparable with ln.

In order to prove Proposition 3, we introduce the functions

Mn(ξ) = D(ξ0, ξ, ξqn−1;T
qn), ξ ∈ ∆

(n−1)
0 ;

Kn(ξ) = D(ξ0, ξ, ξqn;T
qn−1), ξ ∈ ∆

(n−2)
0 ,

where ξ0 is arbitrary fixed. The following three exact relations (all of them are easy to check)
are crucial for our proof:

Mn(ξ0) ·Mn(ξqn−1) = Kn(ξ0) ·Kn(ξqn); (12)

Kn+1(ξqn−1)− 1 =
|∆

(n+1)
0 |

|∆
(n−1)
0 |

(

Mn(ξqn+1)− 1
)

; (13)

(T qn+1)′(ξ0)

Mn+1(ξ0)
− 1 =

|∆
(n+1)
0 |

|∆
(n)
0 |

(

1−
(T qn)′(ξ0)

Kn+1(ξ0)

)

(14)

We also need the following lemmas.
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Lemma 3.
|∆

(n+m)
i |

|∆
(n)
i |

∼
|∆

(n+m)
j |

|∆
(n)
j |

, 0 ≤ j − i < qn+1.

Proof. Due to (2) and (5)

∣

∣

∣

∣

∣

log
|∆

(n+m)
j | · |∆

(n)
i |

|∆
(n+m)
i | · |∆

(n)
j |

∣

∣

∣

∣

∣

= | logD(ξi+qn+m
, ξi, ξi+qn;T

j−i)|

≤

j−1
∑

k=i

| logD(ξk+qn+m
, ξk, ξk+qn;T )| = O

(

j−1
∑

k=i

(|∆
(n+m)
k |+ |∆

(n)
k |)

)

= O(1)

since the circle arcs ∆
(n)
k , i ≤ k < j, are disjoint due to Lemma 1; the same is true for the arcs

∆
(n+m)
k , i ≤ k < j.

Lemma 4.
|∆

(n+m)
0 |

|∆
(n)
0 |

= O
(

ln+m

ln

)

.

Proof. Pick out the point ξ∗ ∈ T
1 such that |∆(n)(ξ∗)| = ln. Due to combinatorics of trajecto-

ries, there exists 0 ≤ i < qn+1+qn such that ξi+qn ∈ ∆(n)(ξ∗), and so ∆(n)(ξ∗) ⊂ ∆
(n)
i ∪∆

(n)
i+qn . It

follows that there exists 0 ≤ i∗ < qn+1+2qn (either i∗ = i or i∗ = i+ qn) such that ∆
(n)
i∗ ≥ ln/2,

and so
|∆

(n+m)
i∗

|

|∆
(n)
i∗

|
≤ 2ln+m

ln
. The statement now follows from Lemma 3 (since qn+1 + 2qn < 3qn+1,

we need to apply Lemma 3 at most three times).

Lemma 5.

logDist(ξ0, ξ, ξqn−1, η;T
qn) = O(lαn−1), ξ, η ∈ ∆

(n−1)
0 ;

log Dist(ξ0, ξ, ξqn, η;T
qn−1) = O(lαn), ξ, η ∈ ∆

(n−2)
0

Proof. Follows from (3), (6) and Lemma 1 similar to the proof of Lemma 3.

Lemma 6.
ln+m

ln
= O(λm).

Proof. Pick out the point ξ∗ ∈ T
1 such that |∆(n+m)(ξ∗)| = ln+m. It is easy to see that

ln+m

ln
≤ |∆(n+m)(ξ∗)|

|∆(n)(ξ∗)|
= O(λm) due to the statement A above.

Proof of Proposition 3. Since Mn(ξ)/Mn(η) = Dist(ξ0, ξ, ξqn−1, η;T
qn) and Kn(ξ)/Kn(η) =

Dist(ξ0, ξ, ξqn, η;T
qn−1), Lemma 5 implies that Mn(ξ)/Mn(η) = 1+O(lαn−1) and Kn(ξ)/Kn(η) =

1 +O(lαn). Due to the statement B above, the functions Mn and Kn are bounded from above
and from below uniformly in n. This gives us

Mn(ξ) = mn +O(lαn−1), Kn(ξ) = mn +O(lαn) (15)

where m2
n denotes the products in (12). Due to (13) and (15) we have

mn+1 − 1 =
|∆

(n+1)
0 |

|∆
(n−1)
0 |

(mn − 1) +O(lαn+1), (16)
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which is iterated into

mn − 1 = O

(

n
∑

k=0

lαn−k

|∆
(n)
0 |

|∆
(n−k)
0 |

|∆
(n−1)
0 |

|∆
(n−k−1)
0 |

)

= O

(

lαn

n
∑

k=0

(

ln
ln−k

)1−α
ln−1

ln−k−1

)

= O

(

lαn

n
∑

k=0

(λ2−α)k

)

= O(lαn)

due to Lemmas 4 and 6. Hence,

Mn(ξ) = 1 +O(lαn−1), Kn(ξ) = 1 +O(lαn) (17)

Due to (14) and (17) we have

(T qn+1)′(ξ0)− 1 =
|∆

(n+1)
0 |

|∆
(n)
0 |

(1− (T qn)′(ξ0)) +O(lαn) (18)

which is iterated into

(T qn)′(ξ0)− 1 = O

(

n
∑

k=0

lαn−k−1

|∆
(n)
0 |

|∆
(n−k)
0 |

)

The statement of the proposition now follows from Lemma 4.

Remark 4. Due to Lemma 6, εn = O(λαn) for 0 ≤ α < 1 and εn = O(nλn) for α = 1, so εn
decays exponentially for α > 0.

3.4 Exponential bound on kn+1εn

Let r(n+m,n), m ≥ 0, be the number of indices 0 ≤ i < qn+m+1 such that ∆
(n+m)
i ⊂ ∆

(n)
0 . It

is easy to see that r(n, n) = 1, r(n+1, n) = kn+2, r(n+m,n) = r(n+m− 1, n)kn+m+1 + r(n+
m− 2, n) for m ≥ 2.

Lemma 7. There exists a constant C > 0 such that

ln
ln+m

≥ r(n+m,n)

(

1− C

n+m
∑

s=n+1

ks+1εs

)

(19)

Proof. If ∆
(n+m)
i and ∆

(n+m)
j , 0 ≤ i, j < qn+m+1, are contained in ∆

(n)
0 , then

log
|∆

(n+m)
i |

|∆
(n+m)
j |

= O

(

n+m
∑

s=n+1

ks+1εs

)

due to the combinatorics of dynamical partitions and Proposition 3. (One of the segments

∆
(n+m)
i and ∆

(n+m)
j is mapped onto another by a composition of no more than kn+2 maps

T qn+1, no more than kn+3 maps T qn+2, . . . , and no more than kn+m+1 maps T qn+m.) It follows
that there exists C > 0 such that

|∆
(n)
0 | ≥ r(n+m,n)|∆

(n+m)
i |

(

1− C

(

n+m
∑

s=n+1

ks+1εs

))

7



for any fixed 0 ≤ i < qn+m+1 such that ∆
(n+m)
i ⊂ ∆

(n)
0 . Now we choose ξ0 in such a way that

|∆
(n+m)
i | = ln+m and obtain (19).

Proposition 4. For any chosen λ0 ∈ (λα−δ, 1), the following asymptotics hold:

kn+1εn = O(λn
0 )

Proof. Consider the sequence ni, i ≥ 0, of all indices n such that kn+1εn > λn
0 , and assume it to

be infinite. Similarly to proof of Lemma 7, we have |∆
(n)
qn−1+kqn

| ≥ |∆
(n)
qn−1|(1−Ckεn). Choosing

k∗
ni+1 ≤ kni+1 in such a way that k∗

ni+1εni
> λni

0 but Ck∗
ni+1εni

≤ 1
2
(it is possible for large enough

i since both λn
0 and εn decay exponentially), we achieve |∆

(ni−1)
0 | ≥

∑k∗ni+1−1

k=0 |∆
(ni)
qni−1+kqni

| ≥
1
2
k∗
ni+1|∆

(ni)
qni−1|. With ξ0 such that |∆

(ni)
qni−1| = lni

, this implies

lni−1

lni

>
λni

0

2εni

(20)

From the equality εni
= lαni−1 +

lni

lni−1
εni−1, in view of (20) we get εni

(1 − 2εni−1λ
−ni

0 ) < lαni−1.

Since εnλ
−n
0 decays exponentially (see Remark 4), this proves that εni

= O(lαni−1). Hence, (20)
implies

lni
= O(l1+α

ni−1λ
−ni

0 ) (21)

Due to Lemma 7,
lni−1

lni−1
≥ r(ni − 1, ni−1)

(

1− C
∑ni−1

s=ni−1+1 λ
s
0

)

≥ 1
2
r(ni − 1, ni−1) for large

enough i, so

lni−1 = O

(

lni−1

r(ni − 1, ni−1)

)

(22)

The estimate (21) and Lemma 6 imply lni
= O(l1+δ+κ

ni−1 λ(α−δ−κ)niλ−ni

0 ) for any κ ∈ (0, α − δ).
Having taken κ so small that λα−δ−κ < λ0 and using (22), we achieve

lni
≤

(

lni−1

r(ni − 1, ni−1)

)1+δ+κ

(23)

for large enough i.
Now we start to use the Diophantine properties of rotation number ρ. We have ∆n =

r(n+m,n)∆n+m + r(n+m− 1, n)∆n+m+1, so ∆ni−1
= O(r(ni − 1, ni−1)∆ni−1). The property

(9) implies ∆
1+δ+κ/2
ni−1 = O(∆ni

∆
κ/2
ni−1), hence

(

∆ni−1

r(ni − 1, ni−1)

)1+δ+κ/2

≤ ∆ni
(24)

for large enough i.
Notice, that 0 < ∆n ≤ ln < 1 for all n. It follows from (23) and (24) that

log lni

log∆ni

≥
1 + δ + κ

1 + δ + κ/2
·
log lni−1

− log r(ni − 1, ni−1)

log∆ni−1
− log r(ni − 1, ni−1)

≥ K
log lni−1

log∆ni−1

(25)

for large enough i, with K = 1+δ+κ
1+δ+κ/2

> 1, so the sequence γi =
log lni

log∆ni

> 0 is unbounded. But

γi ≤ 1 due to Lemma 2. This contradiction proves that kn+1εn ≤ λn
0 for large enough n.

8



3.5 C1-smoothness of φ

There is more than one way to derive C1-smoothness of the conjugacy from the convergence
of the series

∑

n kn+1εn. We will construct the continuous density h : T1 → (0,+∞) of the
invariant probability measure for T , as in [1].

Proposition 5. φ is a C1-smooth diffeomorphism.

Proof. Consider arbitrary trajectory Ξ = {ξi, i ∈ Z}, ξi = T iξ0, and define a function γ : Ξ → R

by use of the following recurrent relation:

γ(ξ0) = 0; γ(ξi+1) = γ(ξi)− log T ′(ξi), i ∈ Z

As soon as ξj ∈ ∆
(n)
i , j > i, we have

γ(ξi)− γ(ξj) = O

(

εn +

+∞
∑

s=n+1

ks+1εs

)

= O(λn
0 ) → 0, n → +∞

due to combinatorics of a trajectory and Proposition 3. It follows that γ ∈ C(Ξ). Since Ξ
is dense in T

1, the function γ can be extended continuously onto T
1. The function h(ξ) =

eγ(ξ)
(∫

T1 e
γ(η)dη

)−1
is continuous and positive on T

1, satisfies the homological equation

h(Tξ) =
1

T ′(ξ)
h(ξ), ξ ∈ T

1, (26)

and
∫

T1 h(ξ)dξ = 1. It is easy to check that the C1-smooth diffeomorphism

φ(ξ) =

∫ ξ

ξ0

h(η)dη, ξ ∈ T
1

conjugates T to Rρ.

3.6 Cα−δ-smoothness of h

A straightforward corollary of Proposition 5 is that ln ∼ ∆n.

Lemma 8. εn = O(∆
α

1+δ
n ).

Proof. The Diophantine condition ∆1+δ
n−1 = O(∆n) implies that

εn = O

(

n
∑

m=0

∆n

∆n−m
∆α

n−m−1

)

= O

(

∆n

n
∑

m=0

∆
α

1+δ
−1

n−m

)

=

O

(

∆
α

1+δ
n

n
∑

m=0

(

∆n

∆n−m

)
1−α+δ
1+δ

)

= O(∆
α

1+δ
n ),

since ∆n

∆n−m
= O(λm) is exponentially small in m.
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Remark 5. Since kn+1∆n < ∆n−1 = O(∆
1

1+δ
n ), Lemma 8 implies that

kn+1εn = O(∆
α−δ
1+δ
n ) = O(∆α−δ

n−1)

This improves Proposition 4 a posteriori.

Proposition 6. h ∈ Cα−δ(T1).

Proof. Consider two points ξ0, ξ ∈ T
1 and such n that ∆n ≤ |φ(ξ)− φ(ξ0)| < ∆n−1. Let k be

the greatest positive integer such that |φ(ξ) − φ(ξ0)| ≥ k∆n. (It follows that 1 ≤ k ≤ kn+1.)
Due to the combinatorics of trajectories, continuity of h and the homologic equation (26), we
have

|log h(ξ)− log h(ξ0)| = O

(

kεn +
+∞
∑

s=n+1

ks+1εs

)

The right-hand side here is bounded and so is h, hence the same estimate holds for |h(ξ)−h(ξ0)|.
By Lemma 8, we have

kεn = O

(

kα−δ∆α−δ
n

(

k∆n

∆n−1

)1−α+δ
)

= O((k∆n)
α−δ)

and
+∞
∑

s=n+1

ks+1εs = O

(

+∞
∑

s=n+1

∆α−δ
s−1

)

= O(∆α−δ
n ),

so |h(ξ)− h(ξ0)| = O((k∆n)
α−δ) = O(|φ(ξ)− φ(ξ0)|

α−δ) = O(|ξ − ξ0|
α−δ).
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