Matrix Product States for Beginners

Luis Gregorio Dias — IF USP
luisdias@if.usp.br



Today’'s menu

* Singular Value Decomposition.

* Tensors: Contractions and Projections
* Reduced density matrix.

* Entanglement (von Neumann) entropy.
* Matrix Product States: example with N=3.
* Important example: AKLT model.
 Why MPS?
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SVD



Consider a numerical SVD example:
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Keep fewer and fewer singular values:
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Keep fewer and fewer singular values:
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Keep fewer and fewer singular values:
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Tensors

Quantum state: Graphic representation:
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Contractions and projections

Full contractions (scalars): (U|W) (U|A(1)|D)

*
Z \P818283\Ij‘913283

5158283

Projectors:
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Reduced Density Matrix

Entanglement Entropy



MPS



Key facts about matrix product states

O-0-0=0-0

m

e |linear size of matrices (dimension of bond indices) known as
the bond dimension m (sometimes X or D)

* for large enough m, can represent any state (m = 2V?)

e entanglement of left-right cut bounded by log(m), so
boundary law guaranteed



Examples of Matrix Product States



Example #1: singlet state
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How to see this is an MPS?






Example #2: AKLT wavefunction

The AKLT wavefunction is the exact ground state of the
following S=1 Hamiltonian

1
H = Z Sj - Sj+1t 3 Z(Sj Sjt1)°
J J

In the same phase as S=1 Heisenberg model, plus 'small’
perturbation of (S-S)? biquadratic term



Can construct AKLT wavefunction as follows

Start with 2N spin 1/2's in singlet pairs
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Can construct AKLT wavefunction as follows

Act on pairs of S=1/2's with projection operator P
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Can construct AKLT wavefunction as follows

Act on pairs of S=1/2's with projection operator P




Can construct AKLT wavefunction as follows

After projection, blue ovals are S=1 spins
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Can construct AKLT wavefunction as follows

After projection, blue ovals are S=1 spins

—R SR S S & o—

Can predict interesting properties:
* doubly degenerate entanglement spectrum

e emergent 5=1/2 edge spins



Tensor approach to AKLT
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Tensor approach to AKLT
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Tensor approach to AKLT
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Tensor approach to AKLT




Tensor approach to AKLT
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Tensor approach to AKLT




Put into MPS form




Put into MPS form

Contract pairs of tensors:




Put into MPS form

Contract pairs of tensors:
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Nice form of AKLT matrix product state with
periodic boundary conditions

Can actually show the following:

‘\PAKLT> = Ir [M81M82M83 . 'MSN] |818283 c . SN>

where 9
M*T =4/= 0"
3
1
MO__ _O_z
3
2
M~ = —/=- 0"



Key facts about matrix product states

\

m

e |linear size of matrices (dimension of bond indices) known as
the bond dimension m (sometimes X or D)

* for large enough m, can represent any state (m = 2V?)

e entanglement of left-right cut bounded by log(m), so

boundary law guaranteed
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Many-Body Entanglement

What is the maximum amount of entanglement?

G

: : : _ 5—N/2
maximum entropy if all eigenvalues same, P, = 2 /

PA isa 2V/2 « 9N/2 matrix

9N/2 eigenvalues, trace has to be 1

oN/2
1 _
SyN = Z Pn ln pn = —2V/7 IN/2 111(2 N/Q)

— gln(z) ~ N  "volume law"

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Many-Body Entanglement

Fact: randomly chosen wavefunctions have Lon
maximum entropy with probability 1.0 \""\\’j

Hilbert space:

S~N
max entangled

™~ S not max
entangled
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Many-Body Entanglement

Which wavetfunctions live in the special region
that is not maximally entangled?

Hilbert space:

S~N
max entangled

S not max
entangled

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Consider ground states of 1D Hamiltonians

Heisenberg spin chain:

H=) S; Sju
j

Hubbard chain:

H = —t Z(C;r',acﬂl,a ™ C;L'—I—l,acjﬁ) T Z Unjpngy

J,0 J

1D "electronic structure" Hamiltonian:

H = / 6@ - 302 +v@]e@ + [ ule -2 n(n@)

x,x’
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By ground state we mean

H\Y,) =FE,|¥,) Eoy<E{<E,<...

Then the ground state is |¥()

(May be degenerate, meaning |E; — Ey| ~ e~V )
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Special cases of ground states

Case #1: Heisenberg ferromagnet

H=-) S;-Sj
J
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Special cases of ground states

Case #1: Heisenberg ferromagnet

H=-) S;-Sj
J

o) = [ 11111 1) =111 )

T

zero entanglement
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How typical are these cases?

As system size N increases, is following possible?

N
|

In(2)
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How typical are these cases?

As system size N increases, is following possible?
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How typical are these cases?

As system size N increases, is following possible?

W) = ///‘\N\

S = 3In(2)

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



How typical are these cases?

As system size N increases, is following possible?

W) = NN

S =41n(2)

Would give a "volume law" of entanglement: S ~ N

But Hamiltonian would be non-local:

H=S1-Sg+5S5-S7-+8S3-S¢+...

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



What is the case for local Hamiltonians?

Around 2000-2005 many researchers observed for 1D systems,
that S,x ~ const. ~ NV for the ground state

But logarithmic violations also observed (Vidal, 2003)

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



What is the case for local Hamiltonians?

Around 2000-2005 many researchers observed for 1D systems,
that S,x ~ const. ~ NV for the ground state

But logarithmic violations also observed (Vidal, 2003)

Then in 2007, M. Hastings proved:

For 1D, local Hamiltonians with a gap between
ground and excited states, the entanglement
entropy of a bipartition is independent of system

sizeas N — oo

this is the "area law" or "boundary law"
Hastings, J. Stat. Mech. P08024 (2007)
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Intuition of boundary law

All entanglement between A and B due to entangled spins
near their boundary

A

B

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Intuition of boundary law

All entanglement between A and B due to entangled spins
near their boundary

A

B

S

Local H and gap required implies a correlation length ¢

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Takeaway

e MPS guaranteed to obey boundary law, as do all 1D ground
states (of gapped, local Hamiltonians)

* MPS can capture certain interesting states exactly

* maybe they are a useful class of wavefunction to optimize!



Future seminar/lecture (?)

e Matrix Product Operators.
* DMRG in the MPS language.
e Can it be extended to 2D?

“2D-DMRG” (cylinders)
PEPS, MERA,...



What is the scaling of calculations with MPS?



What is the scaling of calculations with MPS?

Consider norm of MPS bond dimension m, site dimension d
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What is the scaling of calculations with MPS?

Consider norm of MPS bond dimension m, site dimension d

m

Two key operations

m
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What is the scaling of the computational cost ?

Consider norm calculation, MPS bond dimension m,
site dimension d

m

Two key operations
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What is the scaling of the computational cost ?

Consider norm calculation, MPS bond dimension m,
site dimension d

m

Two key operations
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What is the scaling of the computational cost ?

Consider norm calculation, MPS bond dimension m,
site dimension d

(VW) = d

So overall scaling of norm calculation is

m3 d



Rule of thumb: most every operation needed to manipulate
MPS can be made to scale as

Intuition: MPS involves multiplying mxm matrices

Scaling of mxm matrix multiplication is m?3
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