Matrix Product States for Beginners

Luis Gregório Dias – IF USP

luisdias@if.usp.br

Today's menu

- Singular Value Decomposition.
- Tensors: Contractions and Projections
- Reduced density matrix.
- Entanglement (von Neumann) entropy.
- Matrix Product States: example with N=3.
- Important example: AKLT model.
- Why MPS?

Some basic references

Ulrich Schollwöck,
 Annals of Physics
 326 96–192 (2011)

The density-matrix renormalization group in the age of matrix product states

Ulrich Schollwöck*

Román Orús
Annals of Physics
349 117–158 (2014)

A practical introduction to tensor networks: Matrix product states and projected entangled pair states

Román Orús*

Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany

E. Miles
 Stoudenmire
 Lecture Notes/Slides
 IF-USP (2018)

Mini-course on Tensor Networks and Applications IFUSP, São Paulo, April 16-20, 2018.

http://www.fmt.if.usp.br/~gtlandi/courses/mini-course-tensor-networks

SVD

Consider a numerical SVD example:

$$M = \begin{bmatrix} 0.435839 & 0.223707 & 0.10 \\ 0.435839 & 0.223707 & -0.10 \\ 0.223707 & 0.435839 & 0.10 \\ 0.223707 & 0.435839 & -0.10 \end{bmatrix}$$

Can decompose as

$$\begin{bmatrix} 1/2 & -1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \\ 1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 0.933 & 0 & 0 \\ 0 & 0.300 & 0 \\ 0 & 0 & 0.200 \end{bmatrix} \begin{bmatrix} 0.707107 & 0.707107 & 0 \\ -0.707107 & 0.707107 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Keep fewer and fewer singular values:

$$\Lambda$$

$$\begin{bmatrix} 1/2 & -1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \\ 1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 0.933 & 0 & 0 \\ 0 & 0.300 & 0 \\ 0 & 0 & 0.200 \end{bmatrix} \begin{bmatrix} 0.707107 & 0.707107 & 0 \\ -0.707107 & 0.707107 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= M = \begin{bmatrix} 0.435839 & 0.223707 & 0.10 \\ 0.435839 & 0.223707 & -0.10 \\ 0.223707 & 0.435839 & 0.10 \\ 0.223707 & 0.435839 & -0.10 \end{bmatrix}$$

$$||M - M||^2 = 0$$

Keep fewer and fewer singular values:

$$\Lambda$$

$$\begin{bmatrix} 1/2 & -1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \\ 1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 0.933 & 0 & 0 \\ 0 & 0.300 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.707107 & 0.707107 & 0 \\ -0.707107 & 0.707107 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$=M_2= egin{bmatrix} 0.435839 & 0.223707 & 0 \ 0.435839 & 0.223707 & 0 \ 0.223707 & 0.435839 & 0 \ 0.223707 & 0.435839 & 0 \ 0.223707 & 0.435839 & 0 \ \end{bmatrix}$$

$$||M_2 - M||^2 = 0.04 = (0.2)^2$$

Keep fewer and fewer singular values:

$$= M_3 =$$

$$=M_3= egin{pmatrix} 0.329773 & 0.329773 & 0 \ 0.329773 & 0.329773 & 0 \ 0.329773 & 0.329773 & 0 \ 0.329773 & 0.329773 & 0 \ 0.329773 & 0.329773 & 0 \ \end{pmatrix}$$

Truncating SVD =

Controlled approximation for M

$$||M_3 - M||^2 = 0.13 = (0.3)^2 + (0.2)^2$$

Tensors

Quantum state:

$$|\Psi\rangle = \sum_{s_1 s_2 s_3} \Psi_{s_1 s_2 s_3} |s_1\rangle |s_2\rangle |s_3\rangle$$

Local operator:

$$\hat{A}(1) = \sum_{s_1 s_1'} A_{s_1} |s_1\rangle \langle s_1'|$$

Two-site operator:

$$\hat{U}(1,2) = \sum_{\substack{s_1 s_2 \\ s_1' s_2'}} U_{\substack{s_1 s_2 \\ s_1' s_2'}} |s_1\rangle |s_2\rangle \langle s_1' | \langle s_2' |$$

Graphic representation:

$$\Psi_{s_1 s_2 s_3}$$

 $As_1 \atop s_1'$

Contractions and projections

$$\langle \Psi | \Psi
angle$$

Projectors:

$$|\Psi\rangle\langle\Psi|$$

$$\operatorname{Tr}_{(3)}|\Psi
angle\langle\Psi|$$

Reduced Density Matrix

Entanglement Entropy

MPS

Key facts about matrix product states

- linear size of matrices (dimension of bond indices) known as the bond dimension ${\bf m}$ (sometimes χ or D)
- for large enough m, can represent any state $(m = 2^{N/2})$
- entanglement of left-right cut bounded by log(m), so boundary law guaranteed

Examples of Matrix Product States

Example #1: singlet state

$$|\Psi\rangle = \frac{1}{\sqrt{2}}|\uparrow\rangle|\downarrow\rangle - \frac{1}{\sqrt{2}}|\downarrow\rangle|\uparrow\rangle$$

$$= \left[\begin{array}{c|c} \frac{1}{\sqrt{2}} |\uparrow\rangle & \frac{1}{\sqrt{2}} |\downarrow\rangle \\ -|\uparrow\rangle \end{array}\right]$$

How to see this is an MPS?

$$\begin{bmatrix}
\frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}}
\end{bmatrix}$$

$$\begin{vmatrix}
\uparrow \\
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow
\downarrow
\end{pmatrix}$$

Example #2: AKLT wavefunction

The AKLT wavefunction is the exact ground state of the following S=1 Hamiltonian

$$H = \sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+1} + \frac{1}{3} \sum_{j} (\mathbf{S}_{j} \cdot \mathbf{S}_{j+1})^{2}$$

In the same phase as S=1 Heisenberg model, plus 'small' perturbation of $(S \cdot S)^2$ biquadratic term

Start with 2N spin 1/2's in singlet pairs

$$= \frac{1}{\sqrt{2}} |\uparrow\rangle|\downarrow\rangle - \frac{1}{\sqrt{2}} |\downarrow\rangle|\uparrow\rangle$$

Act on pairs of S=1/2's with projection operator P

$$= \hat{P} = |+\rangle\langle\uparrow\uparrow| + |0\rangle \frac{\langle\uparrow\downarrow| + \langle\downarrow\uparrow|}{\sqrt{2}} + |-\rangle\langle\downarrow\downarrow|$$

Act on pairs of S=1/2's with projection operator P

After projection, blue ovals are S=1 spins

After projection, blue ovals are S=1 spins

Can predict interesting properties:

- doubly degenerate entanglement spectrum
- emergent S=1/2 edge spins

$$= \frac{1}{\sqrt{2}} |\uparrow\rangle|\downarrow\rangle - \frac{1}{\sqrt{2}} |\downarrow\rangle|\uparrow\rangle$$

$$= \frac{1}{\sqrt{2}} |\uparrow\rangle|\downarrow\rangle - \frac{1}{\sqrt{2}} |\downarrow\rangle|\uparrow\rangle$$

$$\stackrel{\uparrow}{\longleftarrow} = \frac{1}{\sqrt{2}}$$

$$\stackrel{\downarrow}{\longleftarrow} \stackrel{\uparrow}{=} -\frac{1}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} |\uparrow\rangle|\downarrow\rangle - \frac{1}{\sqrt{2}} |\downarrow\rangle|\uparrow\rangle$$

$$= |+\rangle\langle\uparrow\uparrow|+|0\rangle\frac{\langle\uparrow\downarrow|+\langle\downarrow\uparrow|}{\sqrt{2}}+|-\rangle\langle\downarrow\downarrow|$$

$$= \frac{1}{\sqrt{2}} |\uparrow\rangle|\downarrow\rangle - \frac{1}{\sqrt{2}} |\downarrow\rangle|\uparrow\rangle$$

$$= |+\rangle\langle\uparrow\uparrow| + |0\rangle \frac{\langle\uparrow\downarrow| + \langle\downarrow\uparrow|}{\sqrt{2}} + |-\rangle\langle\downarrow\downarrow|$$

$$\begin{array}{c} + \\ + \\ + \\ - \end{array} = 1 \qquad \begin{array}{c} 0 \\ + \\ \hline \end{array} = \frac{1}{\sqrt{2}} \qquad \begin{array}{c} - \\ \hline \end{array} = \frac{1}{\sqrt{2}} \qquad \begin{array}{c} - \\ \hline \end{array} = 1$$

Put into MPS form

Put into MPS form

Contract pairs of tensors:

Put into MPS form

Contract pairs of tensors:

Nice form of AKLT matrix product state with periodic boundary conditions

Can actually show the following:

$$|\Psi_{\text{AKLT}}\rangle = \text{Tr}\left[M^{s_1}M^{s_2}M^{s_3}\cdots M^{s_N}\right]|s_1s_2s_3\dots s_N\rangle$$

where

$$M^+ = \sqrt{\frac{2}{3}} \ \sigma^+$$

$$M^0 = -\sqrt{\frac{1}{3}} \ \sigma^z$$

$$M^- = -\sqrt{\frac{2}{3}} \ \sigma^-$$

Key facts about matrix product states

- linear size of matrices (dimension of bond indices) known as the bond dimension ${\bf m}$ (sometimes χ or D)
- for large enough m, can represent any state $(m = 2^{N/2})$
- entanglement of left-right cut bounded by log(m), so boundary law guaranteed

Many-Body Entanglement

What is the maximum amount of entanglement?

$$ho_A$$
 is a $2^{N/2} imes 2^{N/2}$ matrix

 $2^{N/2}$ eigenvalues, trace has to be 1

maximum entropy if all eigenvalues same, $p_n \equiv 2^{-N/2}$

$$S_{\text{vN}} = -\sum_{n=1}^{2^{N/2}} p_n \ln(p_n) = -2^{N/2} \frac{1}{2^{N/2}} \ln(2^{-N/2})$$

$$= \frac{N}{2} \ln(2) \sim N$$
 "volume law"

Many-Body Entanglement

Fact: randomly chosen wavefunctions have maximum entropy with probability 1.0

Many-Body Entanglement

Which wavefunctions live in the special region that is not maximally entangled?

Consider ground states of 1D Hamiltonians

Heisenberg spin chain:

$$H = \sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}$$

Hubbard chain:

$$H = -t \sum_{j,\sigma} (c_{j,\sigma}^{\dagger} c_{j+1,\sigma} + c_{j+1,\sigma}^{\dagger} c_{j,\sigma}) + \sum_{j} U n_{j\uparrow} n_{j\downarrow}$$

1D "electronic structure" Hamiltonian:

$$H = \int_{x} \psi^{\dagger}(x) \left[-\frac{1}{2} \partial_{x}^{2} + v(x) \right] \psi(x) + \int_{x,x'} u(x - x') n(x) n(x')$$

By *ground state* we mean

$$H|\Psi_n\rangle = E_n|\Psi_n\rangle$$

$$E_0 \le E_1 \le E_2 \le \dots$$

Then the ground state is $|\Psi_0
angle$

(May be degenerate, meaning $|E_1-E_0|\sim e^{-aN}$)

Special cases of ground states

Case #1: Heisenberg ferromagnet

$$H = -\sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}$$

$$|\Psi_0\rangle = |\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\rangle = |\uparrow\rangle|\uparrow\rangle|\uparrow\rangle|\uparrow\rangle|\uparrow\rangle|\uparrow\rangle|\uparrow\rangle$$

Special cases of ground states

Case #1: Heisenberg ferromagnet

$$H = -\sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}$$

$$|\Psi_0\rangle = |\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\rangle = |\uparrow\rangle|\uparrow\rangle|\uparrow\rangle|\uparrow\rangle|\uparrow\rangle|\uparrow\rangle|\uparrow\rangle\rangle$$

zero entanglement

As system size N increases, is following possible?

$$|\Psi_0
angle = S = \ln(2)$$

As system size N increases, is following possible?

$$|\Psi_0
angle = S = 2\ln(2)$$

As system size N increases, is following possible?

$$|\Psi_0
angle = S = 3\ln(2)$$

As system size N increases, is following possible?

Would give a "volume law" of entanglement: $S \sim N$

But Hamiltonian would be non-local:

$$H = \mathbf{S}_1 \cdot \mathbf{S}_8 + \mathbf{S}_2 \cdot \mathbf{S}_7 + \mathbf{S}_3 \cdot \mathbf{S}_6 + \dots$$

What is the case for *local* Hamiltonians?

Around 2000-2005 many researchers observed for 1D systems, that $S_{\rm vN} \sim {\rm const.} \sim N^0$ for the ground state

But logarithmic violations also observed (Vidal, 2003)

What is the case for *local* Hamiltonians?

Around 2000-2005 many researchers observed for 1D systems, that $S_{\rm vN} \sim {\rm const.} \sim N^0$ for the ground state

But logarithmic violations also observed (Vidal, 2003)

Then in 2007, M. Hastings proved:

For 1D, **local** Hamiltonians with a **gap** between ground and excited states, the entanglement entropy of a bipartition is independent of system size as $N \to \infty$

this is the "area law" or "boundary law"

Intuition of boundary law

All entanglement between A and B due to entangled spins near their boundary

Intuition of boundary law

All entanglement between A and B due to entangled spins near their boundary

Local H and gap required implies a correlation length ξ

Takeaway

- MPS guaranteed to obey boundary law, as do all 1D ground states (of gapped, local Hamiltonians)
- MPS can capture certain interesting states exactly
- maybe they are a useful class of wavefunction to optimize!

Future seminar/lecture (?)

- Matrix Product Operators.
- DMRG in the MPS language.
- Can it be extended to 2D?

"2D-DMRG" (cylinders)

PEPS, MERA,...

Consider norm of MPS bond dimension m, site dimension d

$$\langle \Psi | \Psi \rangle = \begin{array}{c} O - O - O - O \\ O - O - O - O \end{array}$$

Consider norm of MPS bond dimension m, site dimension d

Consider norm of MPS bond dimension m, site dimension d

Consider norm of MPS bond dimension m, site dimension d

What is the scaling of the computational cost?

Consider norm calculation, MPS bond dimension m, site dimension d

$$(2) \bigcirc = \bigcirc$$

What is the scaling of the computational cost?

Consider norm calculation, MPS bond dimension m, site dimension d

What is the scaling of the computational cost?

Consider norm calculation, MPS bond dimension m, site dimension d

So overall scaling of norm calculation is

 $m^3 d$

Rule of thumb: most every operation needed to manipulate MPS can be made to scale as

 m^3

Intuition: MPS involves multiplying mxm matrices

Scaling of mxm matrix multiplication is m³