Theory of Colloid Stability

1. Introduction

Colloid science in a nutshell

2. Solutions and dispersions

3. Colloid stability

The main cast and DLVO theory

Colloid science

To mix or not to mix, that is the question !

A colloid scientist wants to:

1. mix the unmixable → colloidal dispersions
 2. keep it mixed → colloid stability

Examples of colloidal dispersions

2. To mix or not to mix ?

Solutions

- Mixing is **SPONTANEOUS**
- Mixtures are Thermodynamically STABLE
- Inhomogeneities on molecular level
- Mixing is *REVERSIBLE*

• Properties of solution independent on the way it is prepared

Dispersions

- Mixing is *NON-SPONTANEOUS* (requires mechanical energy)
- UNSTABLE (requires stabilizing agents) i.e. unmix spontaneously
- Inhomogeneities on length scales large compared to molecular dimensions
- Mixing is irreversible

• Properties are strongly dependent on the way the dispersion is prepared

-> Empirical preparation procedures

Equilibrium thermodynamics

(predicts spontaneous changes)

- Equilibrium state = state with lowest Gibbs energy (at constant T and P)
- Spontaneous change toward states with lower Gibbs energy $\Delta G_{T,p} < 0$

SOLUTIONS

Dispersions

- ? Kinetics of unmixing ?
 - if slow enough kinetic stable system

Main trick

Protect dispersed particles against aggregation/flocculation and coalescence by

REPULSIVE INTERACTIONS

3. Colloid stability

= Balance of attractive and

repulsive interactions

The main cast

London-Van der Waals forces (attractive)

Attraction between atoms/molecules in vacuo

R » molecular dimensions

$$V_A(\boldsymbol{R}) \approx -\frac{1}{\boldsymbol{R}^6}$$

Macroscopic bodies (dependent on geometry)

$$V_A(d) \approx -\frac{A}{d^2}$$

Hamaker constant (dependent on material properties: density, polarizability)

$$h = V_A(R) \approx -\frac{A}{h}$$

Effective Hamaker constant A_{eff} also dependent on dispersion medium

$$A_{eff} = \left(\sqrt{A_{11}} - \sqrt{A_{22}}\right)^2$$

Order of magnitude 10⁻²⁰- 10⁻²¹ J

Electrostatic (repulsive) forces

Interaction between overlapping doublelayers

Repulsive force

$$V_R(d) \approx e^{-\kappa d}$$

DLVO - theory

Derjaguin-Landau-Verwey-Overbeek

Total interaction = sum of attractive + repulsive interactions

 $V_T(d) = V_A(d) + V_R(d)$

Stability $V_{max} \gg kT$ kT = thermal kinetic energy

V_{sec} > kT weak flocculation in secondary minimum (reversible)

Factors affecting stability (electrostatic)

15

- V_{max} / with particle size
- V_{max} / with surface potential

(in practice ζ potential)

practical rule $|\zeta| \ge 25 \text{ mV}$

+ 6 months stable

• Electrolyte (salt) concentration

with Csalt *i* with z (charge number)

death of the dispersion ! desired in water purification

Steric stability

Protective action of adsorbed macromolecules (natural and synthetic)

(Volume restriction)

$$V_S = V_m + V_{VR}$$

Several possibilities for polymers at interfaces

Principal factors of steric stabilization

- average loop or tail size
- number of loops or tails per unit area
- polymer-solvent interaction parameter χ
- mode of polymer-surface attachment

Steric + attractive interactions

How to avoid flocculation ?

- Full coverage of particles otherwise bridging flocculation
- Firm anchoring of polymer
 AB block co-polymers perform better

- Sufficiently thick layer d
 small minimum
- The stabilizing moiety B must be in good solvent environment

Flory Huggins Parameter $\chi < 0.5$

effect T !

Steric + electrostatic stabilization

Can be achieved by polyelectrolytes (gelatin, proteins, ...) or by charged surfaces + neutral polymers \longrightarrow caution about ζ potential

