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a b s t r a c t

Financial price series trend prediction is an essential problem which has been discussed
extensively using tools and techniques of economic physics and machine learning. Time
dependence and volatility issues in this problem havemade HiddenMarkovModel (HMM)
a useful tool in predicting the states of stock market. In this paper, we present an approach
to predict the stockmarket price trend based on high-order HMM. Different from the com-
monly used first-order HMM, short and long-term time dependence are both considered in
the high order HMM. By introducing a dimension reductionmethodwhich could transform
the high-dimensional state vector of high-order HMM into a single one, we present a
dynamic high-order HMM trading strategy to predict and trade CSI 300 and S&P 500 stock
index for the next day given historical data. In our approach, wemake a statistic of the daily
returns in the history to demonstrate the relationship between hidden states and the price
change trend. Experiments on CSI 300 and S&P 500 index illustrate that high-order HMM
has preferable ability to identify market price trend than first-order one. Thus, the high-
order HMMhas higher accuracy and lower risk than the first-order model in predicting the
index price trend.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Financial time series trend prediction is one of the most active research areas for economics and investments [1–4].
Specifically, the trend of stockmarket index price refers to themovement of the price index or the direction of fluctuation in
the stockmarket index in the future. The prediction of price trend is a valuable issuewhich heavily influences the correctness
of the financial participants’ decisionmaking. Leung, Daouk [5] believed that trading could bemade profitable by an accurate
prediction of the trend of stock index price. However, prediction of financial time series is tough due to uncertainties and
nonlinear factors involved in the data. In fact, a stockmarket is a highly complex system,which consists ofmany components
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Fig. 1. The graph structure of HMM.

whose price move up and down without having significant patterns. Moreover, the behavior of stock markets also depends
on various qualitative factors such as political, economic, natural factors and so on, which makes the stock market highly
nonlinear and complex dimensionality. The complex nature of stock market challenges us on making a reliable prediction
of its future trend.

During the past decades, researches have been constantly seeking for an efficient and reliable way to predict trend in
financial time series [6–9]. In recent years, the machine learning methods have been applied to the areas of financial time
series prediction. There are various forecasting models of financial time series using machine learning tools such as Neural
Networks [10], Support Vector Machines [11], Ensemble Learning [12], Hidden Markov model(HMM) et al. Among these
models, HMM is a very popular approach formodeling sequential data, such as time series, typically based on the assumption
of a first-order Markov chain. In fact, Markov property plays an important role in financial time series prediction due to
the short-term and long-term correlations found in empirical time series. A large amount of research of using HMM to
predict financial markets have been done in recent years. Most of them consider first-order HMM based on the assumption
that short-term memories exist in financial temporal dynamics. Hassan and Nash [13] made use of first-order HMM to find
some day in the past which is the most similar with the current day in order to predict next day’s stock price. Gupta and
Dhingra [14] forecasted the next day by making a maximum a posteriori decision over all the possible stock values. Park
and Lee [15] used continuous first-order HMM to forecast change direction of next day’s closing price. Seethalakshmi and
Krishnakumari [16] took advantage of first-order HMM to classify data in crisis and steady periods. Rebagliati, Sara and Sasso,
Emanuela [17] used the HMMs to establish a set of methods to recognize the M trading patterns in finance.

The stochastic and nonstationary characteristics of financial time series make it challenging for forecasting trend in
an uniform manner. Particularly, for the current stock markets, first-order HMM is strictly limited to cases where the
observation at each time step is conditionally independent of the observation history and state history, given the current
state [18]. However, in the field of finance, financial time series are observed to have time memories of various scales. If
one only use first-order HMM, which means it only postulate first-order temporal dynamics while ignores the possibility
of longer temporal dynamics in the finance time series. In this sense, one should consider longer range memories while
selecting proper HMM forms. In fact, high-order hidden Markov model could provide a possible way to incorporate long
memory in the dynamic of states. Different from the first-ordermodel, high-orderHMMconsider the next state in theMarkov
chain depends on several prior states, instead of considering only one previous state.

2. First-order continuous Hidden Markov Model for prediction

Generally we use a continuous Hidden Markov Model to model the stock index data as a time series. An HMM is
a stochastic process connecting a Markov chain which has a finite number of states with a set of random functions
(observations) associated with each hidden state [15]. It can be denoted by a compact notation λ = (A, B, π ), where A is
the transition matrix, whose elements aij = P(it+1 = j|it = i) representing the probability of a transition from one state i to
another j. B is the emission matrix giving the observation symbol probability bi(ot ), which is the probability of observing ot
when in state i. That is, bi(ot ) = P(ot |it = i). π is the initial state distribution, πi = P(i1 = i). In Fig. 1, we demonstrate the
relationship between the hidden states and the observations.

Generally the hidden states have no practical meanings. However, in real applications, there is often some physical
significance corresponding to the hidden states [19]. In practice, the corresponding hidden state sequence to an observation
sequenceO = (o1, o2, . . . , oT ) is denoted as I = (i1, i2, . . . , iT ), where ot = (o1t , o

2
t , . . . , o

d
t ), d is the dimension of observation

value. For a continuous HMM, the emission probability is generally modeled as Gaussian mixture distributions

bi(ot ) =

K∑
k=1

cikg(ot , µik, Σik). (1)

Here K is the number of Gaussian mixture components, cik is the mixture coefficient for the kth mixture in state i,
g(ot , µik, Σik) is the multivariate Gaussian probability density function:

g(ot , µik, Σik) =
1

(
√
2π )d

√
det(Σik)

exp[−
1
2
(ot − µik)Σ−1

ik (ot − µik)T ]. (2)
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Table 1
CSI 300 Data Format.
Date Open Close High Low Volume

2005-4-08 984.66 1003.45 1003.7 979.53 14762500
2005-4-11 1003.88 995.42 1008.73 992.77 15936100
· · · · · · · · · · · · · · · · · ·

2017-7-07 3647.64 3655.93 3657.11 3631.87 103735497
2017-7-10 3647.94 3653.69 3667.85 3641.53 120591910

Table 2
Descriptive statistics of gt .
Statistics Values

Size 2978
Min value −5.358
Max value 4.889
Mean value 0.000
Standard deviation 1.000
Skewness −0.537
Kurtosis 3.541
Skewtest p-value 0.000
Kurtotest p-value 0.000
Kolmogorov–Smirnov test p-value 0.000

Thus, all the parameters of first-order HMM could be denoted as

λ = {π, A, cik, µik, Σik, i ∈ S},

where S = {0, . . . ,N − 1} and N is the number of hidden states. Training algorithms are used to determine the
parameters{π, A, cik, µik, Σik, i ∈ S} by maximizing the probability of the observation sequence. Generally one may
maximize the posterior likelihood function

P(O|λ) =

∑
I

πi1bi1 (o1)
T−1∏
t=1

ait it+1bit+1 (ot+1)

by maximizing Baum’s auxiliary function [20] with Expectation–Maximization (EM) algorithm of statistics, which is known
as the Baum–Welch algorithm [21–23].

In our discussion, we firstly apply the simple first-order HMM to the CSI 300 Index data, which is a capitalization-
weighted stock market index designed to replicate the performance of 300 stocks traded in the Shanghai and Shenzhen
stock exchanges (hereafter CSI 300). The data set is obtained from the Wind database.1 The sample period is from April 8th
2005 to July 1st 2017. Each data point contains the daily close, open, high, low price and trading volume. The daily data
format is given in Table 1.

Here the observation sequence ot is set to be the normalized daily logarithmic return series gt , which is defined as

gt =
ct − E(ct )
std(ct )

. (3)

Here ct = log pt − log pt−1 where pt is the closing price of day t . To describe the emission probability, we first check whether
gt follow the Gaussian distribution. In Table 2, we show the statistical characteristics of gt of the CSI 300. Since gt is the data
after normalized, the mean value is 0 and the standard deviation is 1. Skewness is a measure of symmetry, which indicates
the skewness for a normal distribution is zero. In our data set, the negative value −0.537 for the skewness indicates the
distribution of data is skewed left. Kurtosis is ameasure of estimatingwhether the distribution of data is fat-tailed compared
to a normal distribution. The standard normal distribution has a kurtosis of zero, here the positive value 3.541 implies that
the daily returns of the CSI 300 have leptokurtosis and fat tails. The p-value of kurtosis and skewness test is zero,whichmeans
the hypothesis that the kurtosis and skewness of the population is the same as that of a corresponding normal distribution
is rejected. The non-Gaussianity can be confirmed by the p-value of approximately zeros of Kolmogorov–Smirnov (KS) test.

In order to inspect non-Gaussianity, we further fit a normal distribution to the empirical data and compare it to the
empirical kernel density in Fig. 2 (left). It is shown the empirical kernel density has the leptokurtosis in the middle and the
fat tails at both sides. Fig. 2 (right) shows a Quantile–Quantile(QQ) plot of the empirical distribution to a theoretical normal
distribution. It is found that the empirical quantiles fit the normal quantiles well in the middle part, while diverge at tails,
which confirms the heavy tail of the daily returns . These two figures indicates that the distribution of gt deviate significantly
from the normal distribution.

1 www.wind.com.cn/en/edb.html.

http://www.wind.com.cn/en/edb.html
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Fig. 2. Non-Gaussianity of gt distribution. Left panel:Empirical Kernel Density vs Fitted Normal Density. Right Panel:Quantile–Quantile Plot.

Table 3
Various parametric distribution fittings.
Distribution Log likelihood AIC BIC KS test

Normal −4225.598 8455.198 8467.169 0.00%
Gaussian mixture(2) −3960.356 7931.618 7979.611 86.20%
Gaussian mixture(3) −3957.809 7930.712 7960.707 12.20%

In order to evaluate which parametric distributions is suitable for the daily returns of the CSI300. We use four evaluation
indicators, log likelihood, Akaike information criterion (AIC), Bayesian information criterion (BIC), and Kolmogorov–Smirnov
test P-value, to measure the quality of the fitting. AIC penalizes the number of parameters and the BIC considers both the
number of parameters as well as the sample size. A better model has a smaller AIC and BIC.

As can be seen in Table 3, the normal distribution has the lowest log likelihood, and the highest AIC and BIC, which
confirmed the aforementioned explanation of non-Gaussianity. The Gaussian mixture distribution with three components
produces the highest log likelihood, lowest AIC and BIC, with a Kolmogorov–Smirnov test P-value of 12.20 (a Kolmogorov–
Smirnov test cannot reject Gaussian mixture(3) at the 5% level). The study of the fitting of various parametric distributions
suggests that Gaussianmixture (3) is a good candidate to capture the distributional properties of Chinese stock index returns.
In this way, we model the observation sequence gt as Gauss Mixture Distribution as mentioned in Eq. (1) and Eq. (2) with
K = 3 components. The fitting parameters are list as follows, for component1, mean is −0.022, std is 0.254 with weight
0.644, for component2, mean is −1.327, std is 1.606, with weight 0.137, for component3, mean is 0.896, std is 0.898 with
weight 0.219.

Once the HMM model is trained, Viterbi algorithm [24,25] is used to determine a hidden state sequence {it} which can
best explains the observations. Here we propose a classification strategy to explain the corresponding market meaning of
the assumed hidden states. Suppose the current day is t , the corresponding hidden state of the current day is it , we make a
statistic of gt+1, which is the next day’s log return. By checking gt+1 over all the hidden states it , the number of days when
gt+1 > 0 and gt+1 < 0 can be achieved for each hidden states i. As shown in Fig. 3, we show intuitive features of the three
hidden states. For hidden state 0, the number of gt < 0 dominates, while for hidden state 2, the number of gt > 0 dominates.
For hidden state 1, the number of gt > 0 and gt < 0 iswell-marched. Therefore, we argue that the hidden state 2 corresponds
to the increasing trend of price, while hidden state 0 corresponds to the decreasing trend and hidden state 1 may indicate a
fluctuation trend. For each hidden state, we can also illustrate the overall increasing or decreasing trend by calculating the
cumulative logarithmic return, which is shown in Fig. 4. In this way, we show that there is a relationship between themarket
index prices performance and the hidden states, which can be used to interpret the possible state ofmarket and predict price
trend.

3. High-order Hidden Markov Model for prediction

In this section, we propose a high-order HHM based strategy for stock index time series forecasting. The suggested high-
order HMM is first tested on CSI 300 Index data. The sample period is from April 8, 2005 (the launch date of the CSI300)
to July 1, 2017. The normalized log return {gt} is chosen as the observation sequence for high-order HMM. Concretely, the
hidden state transition probability contains the condition of previous n states, that is

P(it |{il}l<t ) = P(it |{il}t−1
l=t−n), it ∈ S. (4)

Different from the first-order HMM, the observation not only depends on the current state but also depends on previous
m − 1 hidden states, that is

P(ot |{ol}l<t , {il}l≤t ) = P(ot |{il}tl=t−(m−1)). (5)

In thisway,we construct a high-orderHMMof order (n,m). Particularly, the hidden state sequence {it}Tt=1 is an homogeneous
Markov process of order n over a finite state set S. To train the above high-order HMM from given sequence of observation,
the following parameters should be optimized,
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Fig. 3. Distribution of the number of days with logarithmic returns gt greater than 0 and less than 0 corresponding to different hidden states.

Fig. 4. The cumulative logarithmic return of the classified observation sequences gt corresponding to different hidden states. The red line, black line and
blue line corresponds to hidden state 0, 1, 2 respectively.

• State Transition Probability,

ait−n···it = P(it |it−1, . . . , it−n).

• Observation Probability,

bit−m+1···it (ot ) = P(ot |it , it−1, . . . , it−m+1).

• Initial state probabilities

πi1···ir = P(i1, i2, . . . , ir ),

where r = max{n,m}.

Thus, the parameters of high-order HMMs {ot , it}Tt=1 can be written as

λ = {{πi1···ir }, {bit−m+1···it (ot )}, {ait−n···it }}.

The special case of n = m = 1 is degenerated to the first-order HMM. In Fig. 5, we illustrate the structure of a 2-order HMM
with n = 2 andm = 1.

In order to facilitate the training process and improve the calculation efficiency of parameter estimation in high-order
HMM,we introduce the state-transformation approach, which is proposed by Hadar andMesser [18], to solve the high-order
HMM.

Let r = max{n,m}, denote

qt = (it , it−1, . . . , it−r+1),
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Fig. 5. The graph structure of the 2-order HMM.

then {qt}Tt=1 forms a new first order homogeneous Markov process. In this way, the original transition probability ait−n···it =

P(it |it−1, . . . , it−n) in the high order HMM could be rewritten as

ãqt−1qt = P(it |qt−1).

However, the original state variable it is still involved in the form of transition probability. To reconstruct the model into a
self-consistent form, we introduce a new hidden state variable q̂t which is defined as:

q̂t = f (qt )

= (N r−1, . . . ,N, 1) · (it , it−1, . . . , it−r+1)T

=

r−1∑
l=0

it−lN r−1−l, (6)

where f is a mapping of any base N number to its decimal value proposed in Hadar and Messer’s algorithm [18]. After some
simple algebra, the new state transition probability

âij = P(q̂t = j|q̂t−1 = i).

Consequently, the process q̂t becomes a first order homogeneous Markov process. Sequence {q̂t} and {ot} constitute a first-
orderHMM {ot , q̂t}which is equivalent to the high-orderHMM {ot , it}. In thisway,we could solve the problems of high-order
HMM by applying the well known first-order HMM formulation [19].

4. Trading strategy based on high-order HMM

In this section, we use high-order HMM to predict CSI300 index change trend and present a trading strategy according
to the predicted results. The main idea is using HMM to obtain the well-fitted hidden state it of the current day t . Once the
current hidden state it is obtained, the next step is to find the days ts in the past which have the same hidden state as day
t . For each ts, we collect the price returns on the day after ts, i.e., gs+1 in the history to be the predicted trend for tomorrow
index price of t .

Suppose that one try to predict tomorrow’s index price trend, the prediction process can be explained as follows. At
first, one choose a sequence {gt}Tt=1 of the index price as the input observation sequence {ot}Tt=1. T is today and oT represents
today’s observation. {ot}Tt=1 is used to estimate thehigh-orderHMM’s parameters λ̂. By usingViterbi algorithm,wedetermine
a hidden state sequence {q̂t}Tt=1 that best explains the observations {ot}Tt=1. According to Eq. (6), the accurate hidden state it
can be represented by the transformed hidden state q̂t as

it = ⌊
q̂t

N r−1 ⌋.

In order to use iT to predict the next day’s trend, we summarize {it}T−1
t=1 to find all the days sj of which the corresponding

hidden state isj = iT . Next, we estimate the total return RiT as the sum of all the next days’ log return of day sj, that is

RiT =

∑
j

gsj+1. (7)

Usually we consider the price trend has three different states: rise, constant or drop. Generally, the three states related to
RiT can be described in Table 4.

Next, an dynamic training algorithm is developed instead of the previous static training algorithm. An observation
sequence {ok}tt−W+1 is set to be the input of the high-order HMM. {ok}tt−W+1 moves along with time t such that many
correspondingmodels λ̂ can be obtained. In this sense, the length of each observation sequenceW is called the timewindow
size. For each observation sequence {ok}tt−W+1, after training and decoding, one can obtain the corresponding hidden state
sequence {ik}tt−W+1 and hidden states posterior probability P(it |{ok}tk−W+1).
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Table 4
Trend states prediction by RiT .

State Meaning Definition

1 Rise RiT > ∆

0 Constant −∆ ≤ RiT ≤ ∆

−1 Drop RiT < −∆

For each time window, we use the current hidden state it to generate a trading signal yt+1 for the next trading day t + 1.
yt+1 can take values of 1, −1, 0. If yt+1 is 1, the index price trend is predicted to rise, i.e. the closing price is higher than the
opening price on t + 1 day. while yt+1 = −1, the index price trend is predicted to drop, i.e. the closing price is lower than
the opening price on t + 1 day. If yt+1 = 0, the index price is predicted to be constant.

Then, we explain how to generate trading signal according to the sequence {ok}tt−W+1 in each sliding window. After
training the HMM model through the observation sequence {ok}tt−W+1 to obtain the model parameter λ, one can estimate
the probability of the hidden state it according to

it = argmaxiP(it = i|{ok}tk−W+1, λ), i = 0, . . . ,N − 1. (8)

Usually one might encounter two problems, one is that the difference in posterior probability of different hidden states is
relatively too small, which makes it difficult to determine the hidden state, the other is that the hidden state one obtained
appears rarely in the history. In order to reduce the risk of trading, we generate signal yt+1 = 0 for these situations. We
also define the cumulative return and the win rate of the hidden states in the window respectively to determine the trading
signals. The cumulative return in the sliding window is

t−1∑
k=t−W+1

gk+1I{ik = it}.

In this way, long position win rate and short selling win rate in the window are∑t−1
k=t−W+1 I{gk > 0} · I{ik = it}∑t−1

k=t−W+1 I{ik = it}

and ∑t−1
k=t−W+1 I{gk < 0} · I{ik = it}∑t−1

k=t−W+1 I{ik = it}

respectively. We determine the generation of trading signals by judging the values of the above different indicators. The
detailed process of the above trading signal generation algorithm is as follows:

Step1: Input:{ok}tt−W+1, if

P(it |{ok}tt−W+1, λ) >
1
N

and
t−1∑

k=t−W+1

I{ik = it} >
W
3N

go to Step2, where

I{A} =

{
1, if A is true
0, if A is false.

1/N andW/3N are predefined thresholds to ensure the probability P(it |{ok}tt−W+1, λ) of hidden state and the number
of occurrences of the predicted hidden state

∑t−1
k=t−W+1 I{ik = it} in the historical data to be not too small.

Else, go to Step3.
Step2: If

t−1∑
k=t−W+1

gk+1I{ik = it} > 0

and ∑t−1
k=t−W+1 I{gk > 0} · I{ik = it}∑t−1

k=t−W+1 I{ik = it}
> ω
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Fig. 6. Forecasting using dynamic trading algorithm.

then, yt+1 = 1.
Else if

t−1∑
k=t−W+1

gk+1I{ik = it} < 0

and ∑t−1
k=t−W+1 I{gk < 0} · I{ik = it}∑t−1

k=t−W+1 I{ik = it}
> µ

then, yt+1 = −1.
Else, go to Step3.

Step3: yt+1 = 0.

The entire dynamic training and trading process is illustrated by Fig. 6.
In this sense the trading can be executed as follows: if the trading signal yt+1 = 1, buy the stock index at the opening

price of the next day, if the trading signal yt+1 = −1, sell the stock index future at the closing price of the day, if the trading
signal yt+1 = 0, stay still. The following hyper-parameters is needed to be determined before proceeding the strategy:

• W : the size of sliding window
• N: the number of underlying hidden state.
• d: the dimension of observation state, namely, the number of time series features.
• ω: the threshold that long position win rate in trading algorithm.
• µ: the threshold that take short wining rate in trading algorithm.
• n: the order of Markov chain.

5. Experiment

In this section, we first introduce some indicators to evaluate the quality of the trading strategy. Thenwe show the results
of using high-order HMM to predict and trade on CSI 300 Index and S&P 500 Index. For both data sets, the performances of
the first-order HMM and the high-order HMM are compared.

5.1. Evaluation indicators

In order to evaluate the performance of the trading strategies, in addition to the traditional indicators such as recall and
precision, we also introduce the following indicators.

Winning rate: The winning rate(WR) is the ratio of the total number of trade profits to the total number of trade during
the trading periods of the trading strategy. WR is defined as:

WR =

∑
{yt |gt<0} I{yt = −1} +

∑
{yt |gt>0} I{yt = 1}∑

D I{yt ̸= 0}
× 100%, (9)

where D is all trading signal during the trading period.
Maximumdrawdown: Themaximum drawdown (MDD) [26] is themaximum loss from a peak to a trough of a portfolio,

before a new peak is attained. MDD is an indicator of downside risk over a specified time period. MDD is expressed in
percentage terms and computed as:

MDD = (TroughValue − PeakValue)/PeakValue × 100% (10)
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Fig. 7. Comparison of indicators for different W values of Result 1.

Fig. 8. Comparison of indicators for different W values of Result 2.

Intuitively, the MDD describes the worst case scenario possible for a trading strategy. In practice, we prefer to choose a
trading strategy with a small MDD.

Annual return: Annual return is the return an investment provides over a period of time, expressed as a time-weighted
annual percentage:

Annual Return = ((1 + P)252/n − 1) × 100%, (11)

where P is total return of trading strategy, n is the number of days of trading strategy execution.
Sharpe ratio: The Sharpe ratio [27] is a way to examine the performance of an investment by adjusting for its risk in

finance. The Sharpe ratio is defined as:

Sharpe Ratio =
Rp − Rf

σp
× 100%, (12)

where Rp, Rf and σp are the annual return, risk free rate and portfolio standard deviation of trading strategy, respectively.
The Sharpe ratio characterizes howwell the return of an asset compensates the investor for the risk taken. When evaluating
two trading strategies, the one with a higher Sharpe ratio provides better return for the same risk.

The hyper-parameters are optimized via extensive grid search on the validation set, and the best hyper-parameter are
selected by the trading strategy optimal mean of WR, recall, precision on the data set. The Hyper-parameter searching
interval is as follows: W: {200, 250, 300, 350, 400, 450}, n: {2,3}, N: {3, 4}, w and u: {0.6, 0.62.0.64, 0.66, 0.68}. In order
to facilitate calculation and evaluation, axes, trading spreads, trading commissions, and fees were not included in the back
test calculations.

5.2. CSI 300 data

In order to ensure that the model operates in a relatively stable market, we divide the CSI300 into three parts. Each
part of the data set corresponds to a relatively stable stock market period with stable policies and strong market. We select
different hyper-parameters under the same trading framework for different data sets. This is also consistent with the actual
quantitative trading operation, adjusting the model according to market changes. The first half of the testing data is used as
a validation set to adjust the hyper-parameters.

Result1: Data from January 1st 2013 to June 1st 2013 is used as validation set for adjusting hyper-parameters, we set
N = 4,W = 300, w = 0.62, u = 0.62, n = 2 according to the performance of the trading strategy on the validation set.
Data from June 1st 2013 to June 1st 2014 is used for testing, the results are shown in Table 5. We also compare WR, Recall
and Precision as W takes 200, 250, 300, 350, 400 and 450 respectively, see Fig. 7.

Result2: Data from January 1st 2014 to June 1st 2014 is used as validation set for adjusting hyper-parameters, we set
N = 4,W = 200, w = 0.6, u = 0.68, n = 2. Data from June 1st 2014 to June 1st 2015 for testing, the results are shown in
Table 6. The comparison of WR, Recall, Precision under the differentW can be found in Fig. 8.

Result3: Data from June 1st 2015 to December 31st 2015 is used as validation set, N = 4,W = 400, w = 0.6, u =

0.6, n = 3, data from January 1st 2016 to January 1st 2017 is used for testing, the results are shown in Table 7. The comparison
of WR, Recall, Precision for differentW can be found in Fig. 9.
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Fig. 9. Comparison of indicators for different W values of Result 3.

Table 5
Results for 2013-06-01 to 2014-06-01.
Evaluation indicators 1-order HMM 2-order HMM

WR 56.00% 62.11%
Long times 19 39
Short times 31 56
Annual return 10.31% 37.51%
Sharpe ratio 1.04 3.63
MDD 6.15% 4.60%
Recall 46.88% 52.73%
Precision 78.95% 74.36%

Table 6
Results for 2014-06-01 to 2015-01-01.
Evaluation indicators 1-order HMM 2-order HMM

WR 55.88% 58.82%
Long times 62 71
Short times 6 14
Annual return 19.77% 26.58%
Sharpe ratio 1.30 2.44
MDD 8.85% 5.65%
Recall 90% 87.5%
Precision 58.06% 59.15%

Fig. 10. Comparison of indicators for different W values of S&P 500.

5.3. S&P 500 data

In order to validate the validity and generality of our trading strategy, we also tested our trading strategy on the S&P500
Index data set. The S&P500 is an American stock market index based on the market capitalization of 500 large companies
having common stock listed on the NYSE or NADAQ. The data set is obtained from YAHOO Finance.2 We selected a relatively
fixed model hyper-parameters. The observation distribution is set to be Gaussian distribution. We use data from January
1st 2015 to December 31st 2015 for turning hyper-parameters, use data from June 1st 2016 to June 1st 2018 for testing.
According to the validation set, we set the strategy parameters: N = 4,W = 400, w = 0.6, u = 0.6, n = 2, the results are
shown in Table 8. The comparison of WR, Recall, Precision for differentW can be found in Fig. 10.

2 https://finance.yahoo.com/.

https://finance.yahoo.com/
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Table 7
Results for 2016-01-01 to 2017-01-01.
Evaluation indicators 1-order HMM 3-order HMM

WR 54.55% 63.83%
Long times 27 47
Short times 0 5
Annual return 1.17% 16%
Sharpe ratio 0.22 1.63
MDD 7.85% 6.86%
Recall 1 93.75%
Precision 54.55% 63.83%

Table 8
Results for 2016-01-01 to 2018-01-01.
Evaluation indicators 1-order HMM 2-order HMM

WR 55.88% 59.84%
Long times 45 59
Short times 57 63
Annual return 16% 23%
Sharpe ratio 0.89 1.54
MDD 8.85% 5.29%
Recall 50% 57.35%
Precision 55.56% 66.11%

5.4. Analysis

For the CSI300 data set, by using the same hyper-parameters, we can see trading strategy based on high-ordermodel take
short and long position more frequently than the strategy based on the first-order model. However, the Sharpe ratio of high
order model is significantly higher than the first-order one, which indicates that the trading strategy based on high-order
model have higher risk resistance and can better identify risks and avoid trading risks. The MDD of high-order model is
also much smaller than the first-order model, indicating that the stability of trading strategy based high-order is stronger
than strategy based on first-order one. Moreover, the annual return of the trading strategy is at a high level, which shows
that this trading strategy is effective in Chinese stock market. For the S&P 500 data, our method also achieves better results.
These results indicate that the trading framework based on high-order model is effective and performs much better than
the traditional first-order one. We argue the high-order HMM could capture the trend of the stock index and outperforms
in various time intervals.

6. Conclusion

In this paper, we present a stock market price trend forecasting method by using the high-order hiddenMarkovmodel. A
state dimension reduction method is used to solve the problem of parameters estimation and decoding of high-order HMM.
By making statistical analysis of the daily return of the CSI 300 index, we demonstrate the relationship between the hidden
states and the market index price change trend. Based on a dynamic training strategy, we propose an efficient predicting
and trading algorithm which requires only a limited amount of historical training data. Experimental results show that our
approach performs well in CSI 300 and S&P 500 index trend prediction. Compared to the commonly used first-order HMM,
this high-order HMM has higher prediction accuracy and trading frequency. We argue that the high-order HMM might be
powerful in modeling long-range time dependence financial phenomena. In the future research, we will study the scale
effects of financial time series by using turning parameter techniques in high-order HMMs.

Acknowledgment

This work is supported by National Key Research and Development Program of China under Grants No. 2017YFB0701702.
and No. 2018YFB11074.

References

[1] M. Ghanavati, R.K. Wong, F. Chen, J. Lee, J. Lee, A hierarchical beta process approach for financial time series trend prediction, in: Pacific-Asia
Conference on Knowledge Discovery and Data Mining, 2016, pp. 227–237.

[2] J.R. Koza, S. Bookstore, Trend prediction in financial time series, J. Perinat. Med. 30 (4) (2010) 333–335.
[3] N.F. Johnson, D. Lamper, P. Jefferies, M.L. Hart, S. Howison, Application of multi-agent games to the prediction of financial time series, Physica A 299

(1) (2001) 222–227.
[4] M.A. Kaboudan, Genetic programming prediction of stock prices, Comput. Econ. 16 (3) (2000) 207–236.
[5] M.T. Leung, H. Daouk, A.S. Chen, Forecasting stock indices: a comparison of classification and level estimation models, Int. J. Forecast. 16 (2) (2000)

173–190.

http://refhub.elsevier.com/S0378-4371(18)31401-8/sb2
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb3
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb3
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb3
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb4
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb5
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb5
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb5


12 M. Zhang, X. Jiang, Z. Fang et al. / Physica A 517 (2019) 1–12

[6] H.S. Zhang, X.Y. Shen, J.P. Huang, Pattern of trends in stock markets as revealed by the renormalization method, Physica A 456 (2016) 340–346.
[7] Y. Yang, G. Liu, Z. Zhang, Stock market trend prediction based on neural networks, multiresolution analysis and dynamical reconstruction, Syst.

Eng.-Theory Prac. 391 (12) (2001) 155–156.
[8] J. Yang, Y. Zhang, Application Research of Support Vector Machines in Condition Trend Prediction of Mechanical Equipment, Springer Berlin

Heidelberg, 2005, pp. 857–864.
[9] B.B. Nair, V.P. Mohandas, N.R. Sakthivel, A decision tree- rough set hybrid system for stock market trend prediction, Int. J. Comput. Appl. 6 (9) (2010)

1–6.
[10] D.M.Q. Nelson, A.C.M. Pereira, R.A.D. Oliveira, Stock market’s price movement prediction with LSTM neural networks, in: International Joint

Conference on Neural Networks, 2017, pp. 1419–1426.
[11] W. Huang, Y. Nakamori, S.Y. Wang, Forecasting stock market movement direction with support vector machine, Comput. Oper. Res. 32 (10) (2005)

2513–2522.
[12] L. Shi, X. Ma, L. Xi, X. Hu, Financial data mining based on support vector machines and ensemble learning, in: International Conference on Intelligent

Computation Technology and Automation, 2010, pp. 313–314.
[13] M.R. Hassan, B. Nath, StockMarket forecasting using hidden Markov model: A new approach, in: International Conference on Intelligent Systems

Design and Applications, 2005. Isda ’05. Proceedings, 2006 pp. 192–196.
[14] A. Gupta, B. Dhingra, Stock market prediction using Hidden Markov Models, in: Engineering and Systems, 2012, pp. 1–4.
[15] S.H. Park, J.H. Lee, J.W. Song, T.S. Park, Forecasting ChangeDirections for Financial Time Series UsingHiddenMarkovModel, Springer BerlinHeidelberg,

2009, pp. 184–191.
[16] R. Seethalakshmi, B. Krishnakumari, V. Saavithri, Gaussian kernel based HMM for time series data analysis, in: Management Issues in Emerging

Economies, 2012, pp. 105–109.
[17] S. Rebagliati, E. Sasso, Pattern recognition using hidden markov models in financial time series, Acta Comment. Univ. Tartu. Math. 21 (1) (2017) 25.
[18] U. Hadar, H. Messer, High-order hiddenMarkovmodels - estimation and implementation, in: Statistical Signal Processing, 2009. SSP ’09. IEEE/SP 15th

Workshop on, 2009, pp. 249–252.
[19] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Read. Speech Recognit. 77 (2) (1990) 267–296.
[20] L.E. Baum, G.R. Sell, Gro wth transformations for functions on manifolds, Pacific J. Math. 27 (2) (1968) 211–227.
[21] L. Liporace, Maximum likelihood estimation for multivariate observations of Markov sources, IEEE Trans. Inform. Theory 28 (5) (1982) 729–734.
[22] B.H. Juang, Maximum-likelihood estimation for mixture multivariate stochastic observations of markov chains, Bell Labs Tech. J. 64 (6) (1985) 1235–

1249.
[23] B.H. Juang, S.E. Levinson, M.M. Sondhi, Maximum likelihood estimation for multivariate mixture observations of markov chains, IEEE Trans. Inform.

Theory (1986) 307–309.
[24] A. Viterbi, Error bounds for convolutional codes and an asymptotically optimumdecoding algorithm, IEEE Trans. Inform. Theory 13 (2) (1967) 260–269.
[25] G. Pulford, The viterbi algorithm, in: IEE Seminar on Target Tracking: Algorithms and Applications, 2006, pp. 53–65.
[26] A. Chekhlov, S. Uryasev, M. Zabarankin, Drawdown measure in portfolio optimization, Int. J. Theor. Appl. Finance 8 (01) (2005) 13–58.
[27] W.F. Sharpe, The sharpe ratio, J. Portf. Manag. 21 (1) (1994) 49–58.

http://refhub.elsevier.com/S0378-4371(18)31401-8/sb6
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb7
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb7
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb7
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb8
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb8
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb8
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb9
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb9
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb9
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb11
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb11
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb11
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb14
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb15
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb15
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb15
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb16
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb16
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb16
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb17
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb19
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb20
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb21
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb22
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb22
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb22
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb23
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb23
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb23
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb24
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb26
http://refhub.elsevier.com/S0378-4371(18)31401-8/sb27

	High-order Hidden Markov Model for trend prediction in financial time series
	Introduction
	First-order Continuous Hidden Markov Model for prediction
	High-order Hidden Markov Model for prediction 
	Trading Strategy based on High-order HMM
	Experiment
	Evaluation Indicators
	CSI 300 Data
	S&P 500 data
	Analysis

	Conclusion
	Acknowledgment
	References


