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A B S T R A C T

Nucleosome occupancy changes across cell types and environmental conditions and such changes often have
profound influence in transcription. It’s of importance to identify the differential nucleosome regions (DNRs)
where the nucleosome occupancy level differs across cell types. Here we developed DNMHMM, a Hidden Markov
Model (HMM) based algorithm, to detect the DNRs with nucleosomal DNA sequenced dataset. The performance
evaluation indicates that DNMHMM is advisable for multi-cell type comparison. Upon testing this model in yeast
mutants, where the modifiable histone residues were mutated into alanine, we found that DNA sequences of the
dynamic nucleosomes lack 10–11 bp periodicities and harbor binding motifs of the nucleosome remodelling
complex. Moreover, the highly expressed genes have more dynamic nucleosomes at promoters. We further
compared nucleosome occupancy between resting and activated human CD4+ T cells with this model. It was
revealed that during the activation of CD4+ T cells, dynamic nucleosomes are enriched at regulatory sites,
hence, up to some extent can affect the gene expression level. Taken together, DNMHMM offers the possibility to
access precise nucleosome dynamics among multiple cell types and also can describe the closer association
between nucleosome and transcription.

1. Introduction

Nucleosome, a basic unit of eukaryotic chromatin, is composed with
147-bp DNA wrapping on the surface of histone octamer (Luger et al.,
1997). By controlling the accessibility to transcription factor binding
sites on DNA, nucleosome plays an important role in transcription
regulation (Jiang and Pugh, 2009). Like other type of the epigenetic
marks, nucleosomes are highly dynamic in different cell types and can
undergo sliding, unwrapping and even dissociation from the DNA.
Therefore, the nucleosome position decides the fate of many cellular
processes. It has been shown that in aging yeast cells, nucleosome oc-
cupancy decreased by 50% across the whole genome, and genes that are
normally repressed by promoter nucleosomes simply up-regulated the
transcriptional expression (Hu et al., 2014). In embryonic stem cells,
where the substantial chromatin related changes occur very frequently
and extensively throughout the course of differentiation, there again,

nucleosome positions act as a key factor to maintain the genome in-
tegrity. During differentiation of embryonic stem cells, nucleosome
exhibits a lower occupancy level in pluripotent cells than in somatic
cells at enhancers (West et al., 2014). Furthermore, nucleosome com-
plexes, e.g. PBAF/BAF complexes tightly co-associate with the nucleo-
some related changes. This can be evident from the fact that> 20% of
human cancers with loss-of-function mutations in PBAF or BAF complex
results into cell-type-specific abnormal nucleosome structure and fur-
ther misregulation in the transcription (Henikoff, 2016; Wilson and
Roberts, 2011). Moreover, nucleosome occupancy is found to link with
mutation rate (Makova and Hardison, 2015).

Since next generation sequencing (NGS) technologies, such as
MNase-Seq (Schones et al., 2008), genome-wide nucleosome profiles at
a single-nucleotide resolution can be determined. From a computing
perspective, it is necessary to identify genomic regions where nucleo-
somes change across the cell types. As for nucleosome comparison
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Fig. 1. Illustration of method DNMHMM to identify differential nucleosome regions in multiple samples.
A, Shown is the calculation procedure of DNMHMM. Prior to being inputted into the model, reads counts were calculated by averaging the reads depth of each
genomic locus per sample. The first step is to calculate an observed variable sequence. In a sliding window, a hypothesis test is used to test the difference of reads
counts in the window among the cell types with a P-value. According to the P-value, an observed variable is determined for the window. If P-value < P-cutoff-D, the
observed variable will be “D”; if P-value > P-cutoff-S, the variable will be “S”; if P-value is between the two cutoffs, the variable will be “B”. The two cutoffs are
estimated with a given false discovery ratio (FDR). The second step is to infer an optional hidden state sequence using the observed sequence with Viterbi algorithm.
The hidden state sequence indicates the genomic regions with differential nucleosomes. The parameters of the HMM are trained from a dataset in which we manually
marked the differential nucleosome regions. In the end, the differential nucleosome regions which are close to each other (distance< 15 bp) are combined. The
DNMHMM reports the position, FDR and p-value of each differential nucleosome region.
B, Identification of the differential nucleosome regions in six cell types of Saccharomyces cerevisiae with DNMHMM. Shown is for one segment of chr. 2. The second
panel shows the normalized reads counts (nucleosome occupancy profile). The third panel indicates the DNRs identified by DNMHMM (FDR=1×10–10, window
width=25 bp, hypothesis test=ANOVA). The fourth panel is the observed variables at each genomic locus. The probability of the observed variables sequence on
the HMM (left axis) and the probability of the hypothesis test (right axis) are also plotted in the bottom panel.
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between two cell types, methods that based on basic statistical model
have been proposed (Polishko et al., 2012; Becker et al., 2013). Shi-
vaswamy S et al. introduced a nucleosome positioning periodicity
(NPP) score to evaluate the stability of nucleosome positioning, which
is sequencing-depth independent (Shivaswamy et al., 2008). Kai Fu
et al. developed an approach DiNuP that uses two-sample Kolmogor-
ov–Smirnov (K-S) test to identify regions of differential nucleosome
positioning (Fu et al., 2012). In order to give a robust cutoff, DiNuP
estimates false discovery ratio (FDR) by re-sampling reads, thus redu-
cing the influencing of sequencing depth and noise in data (Fu et al.,
2012). Chen K et al.’s method DANPOS provided another strategy in
which the nucleosome differential signal between control and treat-
ment samples was calculated based on Poisson or binomial distributions
(Chen et al., 2013). One advantage of DANPOS is that it can detect all
three categories of nucleosome dynamics, position shift, fuzziness
change, and occupancy change (Chen et al., 2013). Also, DANPOS is
comprehensive and provides options in both normalization and differ-
ence test.

The methods mentioned above are mainly suitable for two-sample
(cell types) comparison. However, in a cell, nucleosome change is a
continuous biological process, namely a multiple-step process. In stu-
dies about cell tumorigenesis and differentiation, it would be critical to
understand the details of each middle step. In this situation, a com-
parison of nucleosomes among multiple cell types is needed. Several
models are the candidates to serve to this kind of task at present.
MultiGPS is designed to detect the ChIP-seq enrichment across multiple
cell types (Mahony et al., 2014). NucTools is nucleosome-specific
software package, also allowing comparison of nucleosome occupancy
landscapes between different conditions. It identifies “stable” and
“unstable (fuzzy)” nucleosome through calculating the relative error of
nucleosome occupancy signal in the replicates (conditions) (Vainshtein
et al., 2017). In our previous work, we developed a Chi-square test
based method, called Dimnp, to detect nucleosome difference among
multiple cell types (Liu et al., 2017). West et al employed negative
binomial distribution to identify regions of differential in nucleosome
occupancy (West et al., 2014). To accurately find the boundaries and
centers of the differential nucleosome regions, researchers agreed to
have strategy with a hard cutoff for differential significance (often P-
value) like used in DANPOS, DiNuP, Dimnp and NucTools (West et al.,
2014; Fu et al., 2012; Chen et al., 2013; Vainshtein et al., 2017; Liu
et al., 2017). Alternatively, to incorporate a computational frame into
the raw nucleosome signal can act like a “soft cutoff”. In this regards,
Hidden Markov Model (HMM) appeared to be advantageous mainly to
locate nucleosome position in Microarray and DNA sequence signal by
setting the linker state and well positioned/ delocalized nucleosome
states (Yuan and Liu, 2008; Yuan et al., 2005).

In present work, we introduced another model, called DNMHMM,
for the identification of differential nucleosome regions (DNRs) in
multiple cell types or conditions. Here, DNRs means the regions where
nucleosome occupancy levels change across cell types or during the
changing conditions. Using sequenced reads of nucleosome DNA as
inputs, DNMHMM can call DNRs through a HMM. By calculating each
genomic window with a hypothesis test, DNMHMM acquires observed
variable sequence to infer the most likely path of hidden states, which
indicates the nucleosome occupancy difference. We showed that the
model can capture the differential nucleosome regions in multiple cell
types, especially in locating centers of the differential nucleosomes.
With the model, in yeast mutants where the modifiable histone residues
were mutated into alanine, we found that DNA sequences of the dy-
namic nucleosomes lack 10–11 bp periodicities and harbor the motifs of
the nucleosome remodelling complex (ABF1 and CBF1). During the
activation of human CD4+ T cells, the dynamic nucleosomes are around
regulatory sites and partly account for changes of gene expression.

2. Methods

2.1. An approach to identify differential nucleosome regions in multiple
samples based on Hidden Markov Mode (DNMHMM)

We proposed DNMHMM to identify the differential nucleosome
regions (DNRs) where nucleosome occupancy levels usually change.
DNMHMM is designed to perform through three basic steps (Fig. 1A).
First, it begins with the normalized reads count data of n cell types. In
normalization, reads count at each genomic locus is divided by the
average reads count of the chromosome. The first step is to call ob-
served variables for each genomic locus (window), which forms an
observed variable sequence as input for HMM. Observed variable for
locus i depends on the difference of reads count across the n cell types.
Significance (p-value) of the difference is calculated with hypothesis
test which is based on Analysis of Variance (ANOVA), Wilcoxon test and
Bartlett’s test. Based on the p-value, an observed variable is assigned to
the locus. Generally, the observed variable can be “S” for a great p-
value, and “D” for a small p-value, and “B” for a moderate p-value,
corresponding to three grades of the reads count difference. By sliding
the window, the observed variables are assigned to each genomic locus
to form the observed variable sequence. Two cutoffs are used to de-
termine which observed variable should be assigned to the locus ac-
cording the p-value. In order to find appropriate cutoffs, DNMHMM
randomly chooses one thousand genomic regions and call p-value of the
reads count difference in each region across cell types, resulting into
one thousand p-values. With the p-values, given a false discovery ratio
(FDR) which is defined by user, DNMHMM directly estimates the cutoff
that classifies the p-value for the observed variables “B” and “D”. The
cutoff classifying for variables “B” and “S” is mainly a value which
is> 35% of the p-values.

In the second step, DNMHMM calls DNRs with a HMM using the
observed variable sequence of three consecutive windows ([i-1, i, i+1])
as the inputs. Here, for the HMM parameters (A, B, π), two hidden
states “dynamic” and “stable”, corresponding to the DNR and stable
nucleosome region are applied [A: transition probability matrix (2× 2)
between the hidden states; B: 3× 2 matrix, represents distribution of
the observed variables in the hidden states; π: the initial probability of
each hidden state]. Under “dynamic” state, the observed variable “D”
has a higher proportion than the observed variable “S”; inversely, under
the “stable” state the observed variable “S” has a higher proportion.
HMM model will give a most likely path of the hidden states for the
observed variable sequence with Viterbi algorithm as well as the
probability of the path, thus assigning one of the hidden states to each
genomic locus. The genomic regions marked with state hidden “dy-
namic” are then considered as DNRs. The parameters A, B and π are
estimated with a reads-count dataset in which the hidden states are
manually identified and then empirically adjusted. DNMHMM also al-
lows to update the parameters by maximum likelihood estimation
(MLS) on the genomic regions for which the hidden states have been
inferred by itself.

Finally, the adjacent DNRs with distance less than 15 base pair (bp)
is combined together as final DNRs. DNMHMM exclusively defines the
position and p-value for each DNR. The source code of the model is
available at website http://bioseu.seu.edu.cn/matweb/index. It should
be noted that the purpose of adding HMM onto the hypothesis test is to
suppress the noise in case of a low sequencing depth and to provide a
precise location of differential nucleosome.

2.2. Enrichment analysis

Enrichment analysis was carried out with KEGG pathway and GO
term data using the functional annotation table module of DAVID
(http://david.abcc.ncifcrf.gov/).
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2.3. Matching percentage between differential nucleosome regions (DNRs)
identified by different methods

A matching percentage was calculated to obtain the matching de-
gree between the two methods. Given the deviation (d) from 1 bp to
100 bp, the matching percentage (P) represented the number of mat-
ched DNRs between two methods relative to the total number of
identified peaks in the first method. That is: P=n/N1, where n is the
matching DNRs given d, N1 is number of DNRs calculated by the first
method.

2.4. Identifications of nucleosomal dyad sites

Nucleosomal dyad coordinates were identified from the normalized
nucleosome occupancy profile with a wavelet transformation-based
peak-finding algorithm under the setup of (i) peak height> 1.2 and (ii)
full width at half height ≥73 bp (the “mspeaks” function in bioinfor-
matics toolbox in MATLAB [R2015]). Function “mspeaks” returns local
maxima of a signal by incorporating wavelet transformation-based de-
noising method. Here, we set Mexican hat function as mother wavelet,
and 3 as decomposing level.

2.5. Nucleosome occupancy profile

The raw reads were mapped to genome using Bowtie (Langmead
et al., 2009). Prior to call reads count at each genomic locus, each read
was extended to 73 bp in the 3′ direction and shifted by 73 bp towards
the 3′ direction. The reads count at a genomic locus represents the
count of the reads covering the locus. The reads counts were then
normalized by dividing the average reads count of the chromosome.

2.6. Correlation functions

Correlation functions measure the probability to find certain nu-
cleotide pair at a distance of k bp (Eq. (1)).

=

×

k
N k L
P P

C ( )
( )/xy

y
xy

x (1)

Where, C represents the correlation of nucleotides x and y at a distance
of k bp; Nxy(k) is number of x–y pairs in a distance k bp in a DNA
sequence with length of L bp; Px and Py are the probabilities of the
nucleotides x and y, respectively.

2.7. Motifs in nucleosomal DNA sequence

We extracted 500 DNA sequences from the most dynamic and most
stable nucleosomes with each sequence of 147 base pairs in length.
Considering that the more transcription factor binding sites would be
found in the dynamic nucleosome DNA than in the stable one, we
therefore, employed a bioinformatics tool Homer to find the motifs in
these two kinds of DNA sequences (Heinz et al., 2010).

3. Datasets

We determined nucleosome occupancy in 22 mutant strains of S.
cerevisiae, listed in Table S1 (Liu et al., 2015). In each mutant, a mod-
ifiable histone residue was mutated into alanine (A). The reads count at
each genomic site was counted to indicate the nucleosome occupancy.
The data of reads count of each strain is available at website http://
bioinfo.seu.edu.cn/Nu_dynamics_data_public/ (Liu et al., 2015). Also,
we retrieved nucleosome occupancy data and gene expression data of
human resting and activated CD4+ T cells from the literature (https://
dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcellnucleosomes.aspx)
(Schones et al., 2008). Data of transcription frequency for wild-type
strains of S. cerevisiae was also retrieved from the literature (Holstege

et al., 1998).

4. Results and discussion

4.1. DNMHMM

Schematic overview of DNMHMM is shown in Fig. 1A. This HMM-
based model consists of three steps: calling observed variable sequence
as HMM’s input, inferring hidden state sequence with Viterbi algorithm
as DNRs, and by combining the short DNRs to make final differential
regions. The observed variable is calculated with the concrete hy-
pothesis tests for each genomic locus. There are two hidden states,
“dynamic” and “stable”, in the HMM, corresponding to the stable and
dynamic nucleosomes. The further parameters like transition matrix (A)
and distribution matrix (B) are derived from an empirical estimation.

In order to test the capacity of DNMHMM, we arbitrarily chose six
cell types of yeasts carrying the histone mutations (Table S2), namely,
H3WT, H3K56A, H3K36A, H3K4A, H3K79A and H3S10A, and identi-
fied their respective DNRs. The nucleosome occupancy profiles of the
cell types are shown in the second panel of Fig. 1B. The normalized
reads data was first evaluated through an ANOVA which generated an
observed variable sequence (the fourth panel, Fig. 1B) according the p-
value cutoffs which were obtained by FDR estimation (1×1010 as
default, see Method section). HMM then calculated a most likely path of
the hidden states that indicated the nucleosome difference across the
cell types (the third panel, Fig. 1B).

As expected, the DNRs correspond to the loci where the nucleosome
occupancy varies greatly (Fig. 1B). Hence, the DNRs contained more
dynamic observed variables (D), and the centers of DNRs appeared to
be almost like a nucleosome dyad sites (Fig. 1B). Moreover, we found
that DNRs were enriched in the intergenic regions. In the bottom panel
of Fig. 1B, the model p-values (left axis) represents the probabilities of
the observed variables given by the model and the right axis indicates
the p-values of ANOVA for each locus. One additional example sup-
porting our findings is also shown in Fig. S1. Briefly, the results indicate
that DNMHMM is a reliable algorithm to identify DNRs among multiple
cell types.

4.2. Performance evaluation

The DNRs identified by DNMHMM were compared with DNRs
predicted by three independent models, namely DANPOS, MultiGPS
and Dimnp. We used datasets from 4 cell types (H3WT, H3S10A,
H4K16A and H4K20A) and the default parameters were set to the tools
for multiple comparisons. Fig. 2A exhibits the identified DNRs for a
randomly selected genomic region with all models. The DNRs by
DNMHMM showed great variation of the reads counts in the four cell
types. MultiGPS and DANPOS identify much more DNRs. But some of
the DNRs have very low reads counts (Fig. 2A), which were mainly at
the nucleosome-depleted regions in all cell types. Dimnp only used a p-
value cutoff to identify DNRs, thus excluded some DNRs that can be
detected by other three models. To make a comprehensive evaluation,
we calculated the matching percentage between the DNRs identified by
these methods. DNMHMM and Dimnp in case of multiple cell types
showed a very high matching percentage (75%, deviation ≤ 40 bp)
(Fig. 2B). The other comparisons showed a quite low matching per-
centage (Fig. 2B), which might be due to the fact that DNAPOS is
stringent for comparing of two cell types while MultiGPS is very specific
for ChIP-Seq data. The matching percentage between DNMHMM and
MultiGPS sharply increases when the deviation is> 60 bp (Fig. 2B). In
short, the results suggested DNMHMM among all models is suitable and
reliable for the identification of DNRs in multiple cell types.

4.3. Parameters for DNMHMM

The two parameters of DNMHMM (the width of the sliding window
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(Win-width) and the FDR cutoff) affect the number of the DNRs.
Therefore, we tested the effect of these parameters by calculating the
percentage of length of the DNRs to the genome. Given a smaller
window width (≤ 35 bp) and a greater FDR cutoff (≥ 10–4), more

DNRs were identified; while a greater window width (≥ 55 bp) and a
smaller FDR cutoff (≤ 10–7) resulted into few DNRs (Fig. 2C and Fig.
S2). The percentage did not vary sharply with the change of the para-
meters, thus indicating the robustness of the model. Sequencing depth

(caption on next page)
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is another factor that affects the identification. In general, the number
of identified DNRs increases with the number of the mapped reads
(Fig. 2D).

4.4. Application Ⅰ, analysis for nucleosome alteration in the yeast strains of
histone mutation

DNMHMM was applied to the study of histone mutations in yeast
which could influence the nucleosome alteration. Initially, we selected
four groups of cell types (Table S2) and identified the DNRs for each
group. Near transcription start sites (TSSs), nucleosomes appear to be
altered in both occupancy levels and their positions (Fig. 3A and Fig.
S3). The +1 nucleosome downstream of TSSs showed variations in
occupancy level (Fig. 3A and Fig. S3). The first (–1) nucleosome up-
stream of TSSs were mainly dynamic at the position (Fig. S3). The +1
nucleosome was thought as a barrier and was directly positioned
(Mavrich et al., 2008; Mobius and Gerland, 2010). Its position appears
to be less susceptible/ changed to the TSS. The –1 nucleosome is sta-
tistically positioned via a nucleosome-repelling DNA region (Mobius
and Gerland, 2010) and it would be shifted or removed when TFs bind
to promoter, which leads to a great changes in position of the nucleo-
some.

Previous studies indicated that the 10–11 bp periodicities of certain
dinucleotides (such as AA, TT, TA and GC) also play an important role
in positioning nucleosomes (Segal et al., 2006; Liu et al., 2011). Here,
we speculated that the periodicities of DNA sequences in stable nu-
cleosomes are more pronounced than that in dynamic nucleosomes (in
DNRs). Thus, we tested this hypothesis by calculating a correlation
function of the dinucleotides AA, TT, TA and GC in both stable as well
as in dynamic nucleosomes (Fig. 3B and Fig. S4). Obviously, the oc-
currence of the dinucleotides oscillates with ˜10-bp periodicity in stable
nucleosomes, and the phase difference between TA and AA/GC/TA was
˜5 bp. Conversely, in dynamic nucleosomes, the oscillating signal was
very weak (Fig. 3B and Fig. S4).

Considering the impact of TF binding sites/motifs at the nucleo-
somal DNA, which could potentially remodeled the nucleosomes, we
therefore checked the enrichment of such motifs in the stable and dy-
namic nucleosomes. As expected, several TFs motifs were found in the
dynamic nucleosome, including the motifs of TFs like ABF1 and CBF1,
both of which are previously known to participate in nucleosome re-
positioning processes (Fig. 3C and Fig. S5), thus suggesting that the
dynamic nucleosomal DNA sequences do harbor the motifs of chro-
matin-remodeling complex. However, we did not found a significant
enrichment of such motifs in the stable nucleosomes. We also noticed
the four groups show a different enrichment in terms of TFs.

If the nucleosome alteration associates with TFs’ binding, percen-
tage of the length of DNRs should be related to gene transcription. To
this end, we plotted transcription frequency of wild type versus per-
centage of the DNRs at promoters and found a positive correlation
between them (r≥ 0.19) (Fig. 3D). This also suggests that the highly
expressed genes have more of dynamic nucleosomes at the promoters.
Interestingly, we found that the genes with dynamic nucleosomes
(DNRs) at promoters are common among four sets of comparison (Fig.
S6). These results were consistent with our one previous study (Liu
et al., 2015).

Taken together, with DNMHMM, some new characteristics are re-
vealed for the dynamic nucleosomes, such as weak 10–11 bp periodi-
cities, enriched TFs’ motifs and the link to gene transcription, hence,
suggesting the strong validity of DNMHMM method.

4.5. Application Ⅱ, analysis for nucleosome alteration between human
resting and activated CD4+ T cells

We also identified the DNRs between the resting and activated
CD4+ T cells. Additionally, we calculated the distributions of DNRs
around these regulatory sites (Fig. 4A). Here again, we observed that
the nucleosomes were dynamic around enhancer sites, TSSs and junc-
tion sites between introns and exons; while nucleosomes were stable in
the intron and around the 3′ end of genes (Fig. 4A). These findings
together with the results from application Ⅰ, suggests that the nucleo-
some occupancies are different at the regulatory sites in the different
cell types.

We then further investigated the association between gene expres-
sion changes and the nucleosomes dynamics. For this, we divided
human 15,944 genes into 1000 groups (bins) according to the percen-
tages of the length of the DNRs at promoters, and then calculated the
percentages of the differentially expressed genes in each bin. Fig. 4B
shows the percentage of the differentially expressed genes against the
percentage of the length of the DNRs to the promoter. The result sug-
gested that a gene with a high percentage of DNRs at its promoter tends
to associate with a great change in expression (blue line in Fig. 4B),
indicating an effect of nucleosome alterations on transcription. We also
noticed that some of the genes with the dynamic nucleosomes at pro-
moters do not exhibit a significant change in the expression (square
dots close to 0). This might be due to two factors, 1) false positive of the
identifications; 2) nucleosomes alterations just link to the transcription
and chromatin regulators, not directly to the changes of expression, as
previously discussed (Karlic et al., 2010; Huebert et al., 2012). In some
cases, nucleosome alterations closely associates with expression change
(Fig. 4C). For instance, at promoter of gene DUSP1, nearly 40% (10/25)
of nucleosomes were dynamic and the expression of the gene was
drastically reduced during activation of CD4+ T cells (Fig. 4C). The
product of DUSP1 can dephosphorylate MAP kinase MAPK1/ERK2, thus
could impact the cellular response to stress and promote the negative
regulation of cellular proliferation (Robitaille et al., 2017; Lopes et al.,
2017). The enrichment analysis also suggested that genes that are re-
lated to GTPase activity and PI3K-Akt signaling pathway have a high
percentage of DNRs at promoters (Fig. 4D).

Briefly, we could show that the DNMHMM can provide deeper in-
sights into the association between nucleosome and transcription.

4.6. Web server

Finally, we built up a web server to provide online demonstration
service of DNMHMM (http://bioseu.seu.edu.cn/matweb/index). This
web server is built with Django (https://www.djangoproject.com/) on
apache 2.4. Users’ request through internet and apache is transferred to
the Django through mod_wsgi-3.0 (a python package to deal with
communication between Django and Apache) (Fig. S7). Django re-
cognizes different requests and call different function by Matlab Engine

Fig. 2. Performance comparisons of DNMHMM and other existing methods.
A, The differential nucleosome regions identified using different methods for randomly selected genomic region. DNMHMM, FDR < 1.0× 10–6, window width= 30
bp; Danpos, the DNRs with p-value ≥1.0×10–6 were filtered; and the DNRs of every two cell types were combined and compared with results by other methods;
MultiGPS, q-value<0.1, “diffp”=0.05; Dinmp, p-value cutoff<1.0× 10–5, window width= 10 bp, and also with global normalization method.
B, The matching percentages of the DNRs between the models under different deviations. Given a deviation d (x-axis), the matching percentage (P) represented the
number of matched DNRs between two models relative to the total number of the DNRs in the first method. The parameters are same as in Fig. 1A.
C, Effect of window width and false discovery ratio on the identification of DNRs. The test was evaluated on the data of the four cell types (H3WT, H3S10A, H4K16A
and H4K20). Percentage of DNRs (z-axis) means that the percentage of length of the DNRs to total length of the genomes.
D, Influence of sequencing depth on identification of DNRs. The test was also on the data of the four cell types (Table S2). Window width and FDR are fixed at 35 bp
and 1.0×10–6, respectively.
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API for Python that code for Matlab as a computational engine from
Python.

5. Discussion

Nucleosome alteration profoundly affects the gene transcription and

closely associates with many cellular processes during development and
tumorigenesis. Identifying such differential nucleosomes is a prime in-
terest of the researchers, especially to define in the multiple cell types.
In this work, we reported DNMHMM, an approach to identify DNRs,
and demonstrated its two applications. DNMHMM performs with three
key steps calculating the observed variable sequence based on

(caption on next page)
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Fig. 3. Characteristics of dynamic nucleosomes in the yeast cells with mutations in modifiable histone residues.
A, Distribution of the DNRs around transcription start sites of 5419 genes of yeast in four groups of the multiple cell types comparison by DNMHMM; “dynamic” and
“stable” states respectively represent with 1 to 0 in heating maps; the cell types of each group are listed in Table S2.
B, The correlation functions (see method) of dinucleotides AA, TT, TA and GC in 500 most stable nucleosomes (top panel) and in 500 most dynamic nucleosomes
(bottom panel). Shown is for the comparison of four cell types (Table S2). Definition of the correlation function is in Eq.1 in method section.
C, The most common motifs that were found in dynamic nucleosomes; x-axis indicates the comparison group; y-axis shows the transcription factors corresponding to
the motifs; z-axis is the enrichment significance (–log10 (q-value)) of the motifs in the top 500 dynamic nucleosomes (FDR < 0.01) (also see Table S3). We did not
find any motif enriched in the top 500 stable nucleosomes. The number at the top of each pillar is the percentage of motif-containing nucleosomes to total
nucleosomes (500).
D, Genes with a high transcription level in wild type will have more of dynamic nucleosomal regions at promoters (–0.5 kbp ˜ +0.3 kbp) with the mutation at the
modifiable histone residues. Shown is the plotting of the transcription frequency (mRNA/hour) of each gene in wild type to the percentage of DNRs to promoters. The
transcription frequency was sorted and then averaged for every 20 genes.

Fig. 4. The dynamic nucleosomes in activation of human CD4+ T cell types.
A, Percentages of DNRs around regulatory sites. The DNRs are identified with FDR≤ 1.0× 10–6, window length is 35 bp.
B, Percentage of DNRs at promoters partly accounts for gene expression changes. Shown is plotting of the percentage of DNRs at promoters (–2k bp ˜ +0.5k bp
relatively to TSSs) against the percentage of the differentially expressed (DE) genes (square dots). The percentage of DNRs was calculated at promoter for each gene
and then was sorted out. The sorted percentages were divided into 1000 bins. In each bin, the percentages of the DE genes were calculated. A DE gene means the
expression of the gene with a fold change (FD) of either ≥ 4 or ≤ 1/4 in activation of CD4+T cells. The blue line shows the data after a 21-point smoothing.
C, The DNRs for gene DUSP1, top panel shows reads counts in resting and activated CD4+ T cells; bottom panel shows the DNRs identified (FDR=1.0× 10–6,
window width=35 bp;); The gene exhibits a more than eight fold decrease in the resting cells than in the activated cells.
D, Enrichment analysis for the top 200 genes with the most DNRs.
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hypotheses test, inferring the DNRs with HMM and finally combining
the DNRs.

Furthermore, DNMHMM harbors two major advantages: 1) it is
suitable for multiple cell types (n ≥ 2) which makes it unique among
other previously known methods. It can reveal some interesting char-
acteristics of dynamics nucleosomes, which we have showed success-
fully by using histone mutants of yeast and activation of human CD4+ T
cells. 2) The robustness and convenience of this approach with high
efficiency just only by using two basic parameters (FDR of 1.0×10–6

and window width of 35 bp). Furthermore, DNMHMM can work on the
dataset with a poor sequencing depth. This was evident from our ana-
lysis in application II, where the average reads coverage were ˜1 bp in
CD4+ T cells, still the approach worked efficiently. The distribution of
the DNRs and the association between the DNRs and the expression
justify reasonability of the identification.

Although, this model cannot describe the types of nucleosome al-
teration such as position shift, occupancy alteration or fuzzy posi-
tioning, still, this can be optimized by pair comparison after DNRs’
identifications in multiple cell types. However, due to step of the sliding
window the analysis will take bit longer, which can be further improved
by using a bigger step.

Taken together, DNMHMM provides all the necessities which are
required to identify the dynamic nucleosomes in multiple cell types.
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