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Abstract— Ambient assisted living and smart home technolo-
gies are a good way to take care of dependent people whose num-
ber will increase in the future. They allow the discovery and the
recognition of human’s activities of daily living (ADLs) in order
to take care of people by keeping them in their home. In order
to consider the human behavior nondeterminism, probabilistic
approaches are used despite difficulties encountered in model
generation and probabilistic indicators computing. In this article,
a global method based on probabilistic finite-state automata and
the definition of the normalized likelihood and perplexity is
proposed to manage ADLs discovery and recognition. In order
to reduce the computational complexity, some results about a
simplified normalized likelihood computation are proved. A real
case study showing the efficiency of the proposed method is
discussed.

Note to Practitioners—This article is motivated by the problem
of the automatic recognition of activities that are daily performed
by elderly or disabled people in a smart dwelling. The set
of activities to be recognized is defined by a medical staff
(e.g., to prepare meal, to do housework, to take leisure, etc.) and
correspond to pathologies that have to be monitored by doctors
(e.g., loss of memory, loss of mobility, etc.). The proposed method
is based on a systematic procedure of offline construction of a
model for each activity to be monitored (the activity discovering
step). The online recognition of activities actually performed (the
activity recognition step) is afterward based on these models
of activities. Since the human behavior is nondeterministic,
and may even be irrational, probabilistic activity models are
built from a learning database. In the same way, probabilistic
indicators are used for determining online the most probable
activities actually performed. The efficiency of the proposed
approach is illustrated through a case study performed in a smart
living lab.

Index Terms— Activity of daily living (ADL), activity dis-
covery (AD), activity recognition (AR), normalized likelihood,
probabilistic finite-state automata (PFA), smart home.

Manuscript received January 16, 2020; revised March 30, 2020; accepted
April 8, 2020. Date of publication May 8, 2020; date of current version
October 6, 2020. This article was recommended for publication by Editor
Q. Zhao upon evaluation of the reviewers’ comments. (Corresponding author:
Kévin Viard.)

Kévin Viard, Gregory Faraut, and Jean-Jacques Lesage are with the
Université Paris-Saclay, ENS Paris-Saclay, LURPA, 94235 Cachan, France
(e-mail: kevin.viard@ens-paris-saclay.fr; gregory.faraut@ens-paris-saclay.fr;
jean-jacques.lesage@ens-paris-saclay.fr).

Maria Pia Fanti is with the Dipartimento di Ingegneria Elettrica
e dell’Informazione, Politecnico di Bari, 70125 Bari, Italy (e-mail:
mariapia.fanti@poliba.it).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2020.2989226

I. INTRODUCTION

ACCORDING to several demography studies, the depen-
dence rate of the world population is continuously

increasing since 2010. In 2050, the part of the population aged
60 or more will rise to 30% in the majority of countries [1].
This societal evolution is becoming an important human and
economic issue for next years. In fact, current health and wel-
fare institutions will not be sufficient to treat this proportion of
elderly people. Hence, severe pressure on the public healthcare
sector and lack of adequate facilities are driving the way in
which health services are delivered to the patients [2], [3].
Therefore, alternative solutions have to be found and rapidly
developed in order to supply help and independence to people
suffering from not too severe pathologies.

Smart homes, which integrate medical equipment and other
ambient assisted living technologies, can play a lead role in
revolutionizing the way in which healthcare services are being
provided to the elderly people [4], [5]. Health at home systems
is an efficient possible solution that consists of keeping old
people at home as long as possible, thanks to an automatic
monitoring of their daily life.

The activities of daily living (ADLs) analysis is one of
the main investigation fields in health-assistive smart homes
and smart environments [6]–[15]. To live independently at
home, individuals need to be able to complete ADLs such
as eating, dressing, cooking, drinking, and taking medicine.
Current studies about ADLs mainly treat two problems:
activity discovery (AD) and activity recognition (AR) [6].
In particular, AD is a technique employed to reduce the need
for expert knowledge by using learning algorithms to discover
activities in sensor events raw sequences [6]–[8]. In addition,
the objective of AR is to detect the activity actually performed
by the inhabitant [9]–15]. The generally accepted approach to
AR is to design and/or use machine learning techniques to
map a sequence of sensor events to a corresponding activity
label.

Kim et al. [9] and van Kasteren et al. [12] describe
all inhabitant activities by only one hidden Markov model
(HMM), one of the most frequent models used in literature
for AD and recognize each activity by applying the Viterbi
algorithm [11]. Unfortunately, the complexity of the model
drastically increases with the number of activities and sensors.
Furthermore, the used model has no intermediary semantic
levels between activities and sensors and the precision of
the recognition is not guaranteed. In a previous work [8],
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each activity is modeled by only one HMM for discovery
purpose and in [10] a new probabilistic indicator for AR, called
normalized likelihood, is proposed.

Kellokumpu et al. [13] and Hongeng et al. [14], [15]
present a system that recognizes a set of activities modeled by
HMMs. Moreover, activities are classified by a probability that
allows recognizing the performed activity as being the one,
which is represented by the most probable model. Typically,
the works focusing on recognition give few details about
how the probabilistic models are built. By using a similar
model, article [16] addresses the problem of recognizing ADLs
in smart homes in a hidden semi-Markov model (HSMM)
framework. In addition, comparing different kinds of HMMs,
the authors show that the proposed novel form of HSMM,
called Coaxian Hidden Semi-Markov Model, performs online
activity classification and segmentation from a segmented
training data. The performance of the model is compared
with various counterparts by a likelihood computation that
can be used only if the systems exhibit the same event sets.
On the contrary, typically activities are linked to different
events (i.e., sensors) because they occur in different home
areas and are detected by using equipment located in different
areas. A common drawback of these approaches is that they
do not explain how the probabilistic model of scenarios is built
and, typically, they are manually built by an expert.

This article proposes a novel approach for AR and AD
in order to fill the gap that is present in the works of
the related literature. Indeed, most contributions suggest AR
methodologies, but they do not give precise information on
the way activities are discovered and whether the recognition
works well when there are variations during the performance
of the activities.

The novelty of this article is threefold.
First, the activities are modeled by using probabilistic finite-

state automata (PFA), a superclass of HMMs [17] that are
powerful modeling techniques when the system states are
partially or completely unknown. On the other hand, PFA
models are chosen for three main reasons: 1) the structure of
the PFA can be automatically deducted from the input data
of AD, hence, the use of HMMs is not necessary; 2) the
proposed framework allows automatically building the models
of scenarios by overcoming the drawback of the Markov
models; and 3) the PFA allows exploiting existing tools and
consolidated theoretical results that give the possibility of
automatically building the activity models (see for example
the algorithms presented in [30] and [31]).

Second, in order to identify ADLs linked to different sets
of events and having some nondeterministic variations, a new
method is developed to allow distinguishing activities. To this
aim, we adopt the perplexity evaluation by introducing the
normalized likelihood to select the most probable activity.
This methodology allows overcoming the limit of considering
models sharing the same set of events. Moreover, in order to
reduce the computational complexity some results simplifying
the normalized likelihood computation are proved.

Third, the presented methods are applied to a real smart flat
provided by the ENS Paris-Saclay (France) and experimental
results are discussed for both AD and AR methodologies.

Finally, an important benefit of the proposed approach con-
cerns the collection of the needed expert data in comparison
with the methods of the related literature. Indeed, the proposed
method allows building the AD module and performing the
recognition by using short strings of data: hence, the approach
can be suitably applied in real situations.

In this article, assumptions and related works are first
presented in Section II and Section III proposes a formal
statement of the problem. Sections IV and V present the AD
and AR methods, respectively, and Section VI discusses a real
case study. Finally, Section VII draws the conclusions.

II. LITERATURE REVIEW AND ASSUMPTIONS

In this section, we start by listing the main assumptions
of the proposed framework, in relation to the results and
the contributions of the related literature. The methodology
proposed for solving the AR and AD problems is based on
the following assumptions.

1) Only binary sensors are used for observing patient
activities.

2) Human behavior is nondeterministic and may even be
irrational.

3) The smart dwelling is supposed to be occupied by a
single inhabitant.

4) The database which has been recorded during the learn-
ing period, and which is the input data of AD, does
not include the knowledge of activities which have been
actually performed.

The rationality of considering such assumptions is based on the
following justifications that are discussed on the basis of the
literature review.

Assumption 1: In most works of the related literature,
the use of cameras is needed in at least one step of ADLs
monitoring [18]–[20]. Indeed, cameras provide information
of very high level of semantics for discovering activities.
Nevertheless, they are often considered too intrusive and raise
problems of acceptance by monitored people [21]. This is the
main reason why cameras are not used in this article, but only
binary sensors, such as motion detectors or door barriers. Such
sensors are furthermore low cost, what is very interesting in the
context of health at home, which is becoming a mass problem.

Assumption 2: Human behavior is nondeterministic and
characterized by small changes every day. Therefore, ADL
models which are not robust to minor variations, like data
mining approach [7], [22], are nonconsidered to maximize the
robustness and applicability of the proposed method.

Assumption 3: In order to assume that more inhabitants are
in the dwelling, it is necessary to consider that each inhabitant
wears a sensor that allows identifying himself [e.g., a radio-
frequency identification (RFID) sensor] and therefore knowing
who has generated which event. Such wearable sensors are
very often used for AD and AR [20], but the efficiency
of this kind of sensors strongly depends on the ability and
the willingness of the patients to wear them every day, and
sometimes during the night. As in the case of cameras, this
sensor technology also raises some problems of acceptance
and it is sometimes not compatible with the pathology of
patients to be monitored (e.g., loss of memory).
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Fig. 1. Hierarchical decomposition of activities in actions and moves.

Hence, according to Assumption 1, only binary sensors are
used for both AD and AR and it is necessary to assume that a
single inhabitant is living in the smart home. This assumption
is quite restrictive but allows proposing a complete solution
for AD and AR that is based on the use of binary sensors
only.

Assumption 4: In the main part of the works based
on assumptions 1–3, a perfect knowledge of activities per-
formed by the inhabitant during the learning period is needed
[12], [23]. This information is in practice very difficult to
obtain. In [23], the monitored patient indicates what activity
is performed. Of course, the efficiency of this approach is
compared with the ability and the willingness of the person
to declare his activity: in general, numerous reported activities
errors are introduced in the database [23]. In other works [19],
experts are in charge of enriching the database by studying
sensor logs or using cameras exclusively during the learning
phase. This approach is expensive, intrusive, and not accurate.
In both cases, the labeling step is difficult and unreliable:
in this article, the AD does not require the knowledge of
actually performed activities during the learning phase.

III. FRAMEWORK AND NOTATIONS FOR THE AD AND AR

In this section, we describe the main components of the
proposed discovery and recognition framework that allows
automatically building models representing activities, mod-
els that are used to recognize the ADL performed by the
inhabitant. This framework has to consider the privacy of the
inhabitant, the nondeterminism of the human behavior, and
the different ways to perform the same ADL, i.e., the slight
variations to perform an activity has to lead to a recognition
of the activity. Hence, we describe the structure of the AD and
AR tasks and the used notations for the definition of the PFA.

A. Framework of the AD and AR

ADLs are regularly performed by a person and can be
decomposed into several actions [18], [24], [25]. For instance,
“cooking” can be decomposed in “preparing pasta,” “preparing
a ready-cook dish,” “ordering meal on the net,” etc. Moreover,
actions can be described as a sequence of elementary moves.
The hierarchical decomposition of activities in actions and
observable moves is represented in Fig. 1. Note that an observ-
able move can be linked to several actions and can be observed
by binary sensors.

The structure of the framework developed to perform AD
and AR procedures is represented in Fig. 2 showing the main
modules of the strategy: the AD and AR modules.

In some preliminary operations, the set of activities to
be monitored are determined and the related actions and
moves are singled out. On the basis of the considered moves,
the sensors are chosen and positioned in the house.

Fig. 2. Structure of the AD and AR.

The AD module is applied offline for a learning period with
the objective of generating formal models of ADLs. To this
aim, in coherence with assumptions presented in Section II,

two sets of inputs denoted I 1
AD and I 2

AD are employed.
1) I 1

AD symbolizes the items that are provided by an expert.
a) The set of activities to be monitored.
b) The set of actions composing each activity.
c) The moves connected with the actions and linked

with the sensors in the dwelling.
d) I 2

AD is a log obtained by observing an inhabitant
life during a learning period, i.e., streaming data
represented by sequences of events detected by the
sensors.

Starting from such inputs, the AD module provides the set
A = {Ak} of PFA models of the activities. Note that in this
article, symbol ∈ Ak ∈ A is used to represent both the activity
and the PFA modeling this activity.

The AR module works online to identify in real time the
activity actually performed by the inhabitant. The inputs of
this module are the following.

1) The observation IAR provided by the binary sensors of
the real-time behavior of the monitored person.

2) The set of the activity models A = {Ak} obtained by
the AD.

The output OAR of the AR module is the recognition of the
activity performed by the inhabitant.

B. PFA: Notations and Definitions

In order to describe the nondeterministic behavior of the
house inhabitant, the activities are modeled in a PFA frame-
work as follows [17].

Definition 1: A PFA Ak is a tuple Ak = 〈QAk , �Ak , δAk ,
IAk , FAk , PAk 〉, where:

1) QAk is a finite nonempty set of states q;
2) �Ak is a nonempty alphabet of events e;
3) δAk ⊆ QAk × �Ak × QAk is a set of transitions;
4) IAk : QAk → [0, 1] : the initial-state probabilities;
5) PAk : δAk → [0, 1] : the transition probabilities;
6) FAk : QAk → [0, 1] : the final-state probabilities.

Note that IAk , PAk , and FAk are functions such that [17]∑
q∈QAk

IAk (q) = 1 (1)
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Fig. 3. Generation of model structure from the activities semantic description.

and

∀q ∈ QAk , FAk (q) +
∑

e∈�Ak ,q ′∈QAk

PAk (q, e, q ′) = 1. (2)

When used in subscript of a symbol, Ak represent the PFA
to which the symbol is linked.

Now, according to Definition 1, the PFA model of activity
Ak is specified as follows.

1) ql ∈ QAk represents an action performed during the
activity; transitions starting from this state represent the
probabilities to switch from this action to another one.

2) q0 ∈ QAk is the initial dummy state that we consider as
the initial condition of the activities where no action is
performed.

3) An event ei∈ �Ak describes a move that may occur in
a state of activity Ak .

4) A transition (qm, e j , qs) ∈ δAk if starting from state qm

event e j may occur and activity Ak reaches state qs .
5) Each activity starts in the initial dummy state q0 with

probability equal to 1, it holds IAk (q0) = 1 and
IAk (ql) = 0 for each ql ∈ QAk .

6) PAk (qm, e j , qs) is the probability, in activity Ak ,
of observing event e j and destination state qs starting
from state qm .

7) FAk (qm) = 0 for each qm ∈ QAk .
An example of PFA is illustrated in Fig. 3.

On the basis of Definition 1, several objects can be defined
as follows.

1) w = ei e j . . . en is a sequence of observed events and the
length of w (denoted |w|) corresponds to the number of
events in the sequence.

2) θ = (ql, ei , qm , e j , qs, . . . , qp, en, qr ) is a path of tran-
sitions for w in Ak , i.e., the sequence of transitions
(ql, ei , qm), (qm, e j , qs), . . . , (qp, en, qr ) ∈ δAk consis-
tent with w = ei e j . . . en .

3) L(w) denotes the language, i.e., a set of sequences of
events generated from the observed sequence w.

4) �m
Ak

is the set of all possible sequences of length m

which can be generated with symbols of the alpha-
bet �Ak . For example, let �Ak = {e1, e2, e3 be

an alphabet, then �3
Ak

= {e1e1e1, e1e1e2, e1e1e3,
e1e2e1, . . . , e3e3e3} is the set of all possible sequences
of length 3.

5) wpk ⊂ w is the projection of sequence w on alphabet
�Ak of activity Ak , where the projection of w ∈ �∗ on
alphabet �Ak is defined as follows [29]:

Proj : �∗ → �∗
Ak

(3)

with

Proj(ε) : = ε

Proj(e) : =
{

e, if e ∈ �Ak

ε, if e ∈ �\�Ak

Proj(we) : = Proj(w)Proj(e) for w ∈ �∗, e ∈ �Ak

where � is the set of system events, �∗ and �∗
Ak

represent the Kleene-closure [29] of � and �Ak , respec-
tively, and ε is the empty symbol, i.e., the sequence
of length 0. In other words, the mathematical pro-
jection function allows obtaining a sequence including
only events of a specific activity Ak . For instance, let
w = e1e2e1e3e2e4e1e5e2e3 be an observed sequence: the
projection of w on �AK = {e1, e3, e5} is the sequence
wpk = e1e1e3e1e5e3.

6) L(w) is a language generated from sequence w and
composed by all substrings of w such that |w| ≥ 2.

IV. ACTIVITY DISCOVERY

In this section, the AD method to model ADLs in a PFA
framework is developed by following three steps: 1) generating
the PFA structure; 2) analyzing and processing a set of
streaming data; and 3) computing the probabilities of the
PFA model.

A. Generation of the PFA Structure

Starting from the hierarchical description of each activity
(given in Fig. 1), the PFA structure of each activity Ak is
determined by building the associated transition digraph (direct
graph) D(Ak) = (QAk , δAk ). More precisely, the set of nodes
of D(Ak) corresponds to the states set QAk and the set of
direct arcs is associated with the transitions in δAk , i.e., there
exists a direct arc starting from node qg and ending to node
qh , if (qm, e j , qs) ∈ δAk . Fig. 3 shows an example of digraph
describing the structure of an activity.

B. Analysis and Process of Streaming Data

This section briefly describes the approach for processing
the streaming data in the context of the smart home data set.
The sensors embedded in the considered smart apartments are
binary sensors that are in two states — “ON” and “OFF.” Then
they can generate two events: one is linked to the rising edge
of the binary information (sensor|1), the other one is linked
to the falling edge (sensor|0) (see as an example Fig. 4).

In the related literature, different approaches are proposed
for processing streaming data represented by sequences of
the sensor firings [26], [27]. The explicit windowing is not
adapted to our hypotheses because it requires an expert to
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Fig. 4. Event emission from sensor binary information.

segment sequence. The time windowing could be interesting
in case of timed approach, but our approach is event-based.
Furthermore, with time windowing, some windows could have
no event. By consequence, we choose the sensor event-based
windowing approach that consists in dividing the sequence
into windows containing a fixed number of sensor events.
In this case, the windows vary in their duration and this is fine
considering that during the performance of activities, multiple
sensors could be triggered, while during silent periods, there
will not be many sensor firings. Hence, we consider a long
observation that we divide in windows w containing a fixed
number of events and we denote by wpk the projection of w
on activity alphabet �Ak .

C. Probabilities Computation

The goal of this section is to show how to compute the
probabilities associated with each transition of the PFA model,
that is the output of the AD module.

Let Ak be the PFA of the activity Ak ; let ei , e j ∈ �Ak be
two events of the activity Ak ; let wpk be a sequence of events
of �Ak obtained by projection function of the sequence w on
alphabet �Ak ; let ql, qm ∈ QAk be two actions performed in
the activity Ak . The probability to move from action ql into
action qm by the event ei is defined by

P(ql , ei , qm) = P(ql → qm |ql) × P(ei |ql → qm, ql). (4)

In words, the probability to move from ql to qm by event ei

is defined by the probability to move from ql to qm multiplied
by the probability to generate ei during this move.

Moreover, the probabilities of the (4) are computed by
a standard approach: the likelihood of one or more events
happening divided by the number of possible outcomes. More
precisely, it holds

P(ql → qm |ql) = Ñ (ql → qm |ql)∑
qn∈QAk

Ñ(ql → qn|ql)
(5)

P(ei |ql → qm, ql) = Ñ(ei |ql → qm)∑
e j ∈�Ak

Ñ (e j |ql → qm)
(6)

where Ñ (ql → qm |ql) denotes the number of occurrences of
transitions from ql to qm and Ñ(ei |ql → qm) the occurrence
of event ei conditioned to the transition ql → qm during the
run period.

Unfortunately, the number of the performed actions in each
activity is unknown. By consequence, we can only consider
the sequence wpk to evaluate probabilities (5) and (6). Then,
in order to compute Ñ(ql → qm |ql) and Ñ (ei |ql → qm),

we use observable occurrences or successions of events by
the following indicators.

1) Nk
ei

: number of times event ei is observed in the
sequences wpk .

2) Nk
init ei

: number of times event ei is observed as first
event in the sequences wpk .

3) Nk
ei →e j

: number of times event e j follows event ei in
the sequences wpk .

Let Cei (resp. Ce j ) be the number of actions (states) having
the event ei (resp. e j ) as input, and let �ql (resp. �qm ) be
the set of events that are in input of state ql (resp. qm). Now,
Ñ(ql → qm |ql) and Ñ (ei |ql → qm) are determined as follows:
Ñ (ql → qm |ql)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
ei ∈�qm

1

Cei

× N
k

init ei ,

if ql = q0

∑
ei ,e j ∈�ql

Nk
ei →e j ,

if ql = qm �= q0

∑
ei ∈�ql ;e j ∈�qm ;e j /∈�ql

1

Ce j

× Nk
ei →e j ,

if qm �= ql �= q0

(7)

and

Ñ (ei |ql → qm) = Nk
ei

if ei ∈ �qm ; 0 otherwise. (8)

In (7) and (8), we consider the fact that when a human starts
a new action, the performed move is not dependent on the past
action. In (7), the number of occurrences of transitions from
ql to qm is determined considering three cases: 1) if ql = q0
we consider the number of times event ei that is in input of
qm is observed as first event, averaged by the number of states
having the event ei as input; 2) if ql = qm �= q0 we count the
number of times event e j follows event ei where e j and ei are
in input of ql ; and 3) if qm �= ql �= q0 then the count is similar
to case 1) but for the computation of Nk

ei →e j
that represents

number of times e j follows ei in the considered sequence.
Moreover, in (8), we consider the occurrence of ei indepen-

dent of the starting state ql but it depends only on the reached
state qm . Hence, the occurrence of event ei conditioned to the
transition ql → qm during the run period is equal to number
of times ei , which is in input of qm , is observed during the
run period.

D. Complexity of the AD Algorithm

The complexity of the three steps of the AD algorithm is
the following:
CAD = O

([
(|LearningDB| − |w|) max

Ak

((card(QAk )))
2

+ max
Ak

(card(�Ak ))
] × card(A)

)
where

1) symbol card stands for cardinality of the set;
2) |LearningDB|− |w| is the number of windows obtained

by sliding;
3) maxAk (card(QAk )) is the maximum number of actions

linked to the same activity;
4) maxAk (card(�Ak )) is the maximum number of events

linked to the same activity.
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Note that the complexity of the AD algorithm is polynomial
and mainly depends on the maximum number of actions linked
to the same activity. Since the number of actions is not large,
the algorithm is easily computable.

V. ACTIVITY RECOGNITION

A. Recognition Protocol

The AR consists in recognizing online (i.e., in reasonable
time), which activity is actually performed by the inhabitant.

Recognition is done by computing an indicator evaluating
the probability that a PFA generates an observed sequence w.
The activity having the maximum probability of generating
sequence w can be considered as being the activity currently
performed. In [17], perplexity is presented as a useful indicator
to compute distances between a language L(w) generated from
the observed sequence w and a PFA Ak .

Definition 2 (Likelihood): Let �Ak (w) be the set of paths
for w in Ak . The probability of generating w with Ak is the
likelihood of w considering Ak and can be computed by

PAk (w) =
∑

θ∈�Ak (w)

PAk (θ). (9)

Note that PAk (θ) is the probability of the sequence of transi-
tions θ = (ql, ei , qm), (qm, e j , qs), . . . , (qp, en, qr ), consistent
with w = ei , e j , . . . , en in Ak and calculated as PAk (θ) =
P(ql , ei , qm)P(qm , e j , qs), . . . , P(qp , en , qr ), assuming the
independence among transitions.

Two definitions of the perplexity are reported [17]: perplex-
ity “per string” and perplexity “per symbols.” Here, we con-
sider the perplexity “per string.”

Definition 3 (Perplexity): The perplexity “per string” is
defined as the inverse of the geometric mean of the likelihood

PP(L(w)|Ak) =
⎡
⎣ ∏

v∈L(w)

PAk (v)

⎤
⎦

− 1
card(L(w))

. (10)

The perplexity is based on the computation of likelihood
PAk (v) for v ∈ L(w) and can be used to distinguish between
two automatons A1 and A2 only if the same sequence v is used
for the two models, i.e., if v ∈ �∗

A1
and v ∈ �∗

A2
. However,

the values of the perplexity are not significant if the alphabet
of the sequence is not included in the alphabet of automaton.

In the considered problem two issues prevent applying the
standard likelihood-based approaches. First, all the PFAs Ak

do not share the same alphabet �Ak . Second, it is necessary to
project the observed sequence on the PFA’s alphabet in order
to filter the events not belonging to the PFA alphabet.

In order to overcome these two issues, we propose an AR
protocol that is composed by four steps.

1) The windowing of observed events considers a sequence
w composed with a fix number of events.

2) For each PFA Ak , the projection wpAk
of the considered

sequence w is obtained.
3) A language L(wpAk

) is generated for each projected

sequence wpAk
as described in Section III-B.

4) The probability for each model Ak to generate the
language L(wpAk

) is computed by likelihood algorithm.

B. Normalized Likelihood and Perplexity

Note that methods based on the likelihood computation
are not pertinent to the projected sequences since it can
lead to compare likelihood or perplexity of sequences having
different lengths. The risk is the shorter sequences will always
more probable than longer ones as a consequence of the
projection of the observed sequences. In order to be able
to compare sequences having different lengths, we propose
a normalization of the classical likelihood computation.

Definition 4: (The Normalized Likelihood): Let us consider
the PFA Ak and a given sequence w ∈ �∗

Ak
. The normalized

likelihood of sequence w in Ak is defined as

‖PAk (w)‖ = PAk (w)

max
v∈�

|w|
Ak

[PAk (v)] . (11)

In other words, for a given length of the sequences, the
normalized likelihood normalizes the probability of a sequence
with regards to the probability of the sequence having the
highest probability to be generated by the PFA. This is to
address the problem of the probability which decreases with
the sequence size.

Analogously, the normalized perplexity is defined as
follows.

Definition 5 (The Normalized Perplexity): Let us consider
the PFA Ak , a language L(w) generated from the observed
sequence w and the normalized likelihood ‖PAk (v)‖ of
v ∈ L(w). We define the normalized perplexity “per string” as
the inverse of the geometric mean of the normalized likelihood

‖PP(L(w)|Ak)‖ =
⎡
⎣ ∏

v∈L(w)

‖PAk (v)‖
⎤
⎦

− 1
card(L(w))

. (12)

Since the perplexity (resp. normalized perplexity) represents
the distance between a language and the probability that it
is generated by a model, we impose minimizing its value.
Moreover, the inverse of the perplexity (resp. normalized per-
plexity) represents the probability, for the considered model,
to generate the considered sequence and has to be maximized.
In order to simplify the computation, maximizing the inverse
of the normalized perplexity (1/‖PP(L(w)|Ak)‖) is preferred.

C. Normalized Likelihood Computation

The computation of the normalized likelihood has a high
complexity. In particular, the complexity of the computation
of PAk (w) is polynomial with |w| thanks to the optimized
forward algorithm [28]: CL = O(card(QAk )

2 × |w|).
On the other hand, the complexity of max

v∈�
|w|
Ak

[PAk (v)]
is exponential with |w| and polynomial with the event set
cardinality

CM = O(card(�Ak )
|w| × card(QAk )

2 × |w|). (13)

However, the normalized likelihood computation can be
decomposed in to two parts corresponding to two different
steps of the computation.
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1) PAk (w) can be computed online when the estimation is
done.

2) max
v∈�

|w|
Ak

[PAk (v)] can be computed offline for each Ak

and for all possible values of |w|.
Even if the maximum likelihood is computed offline, the

computational effort can be too high, and the complexity of
this step has to be reduced.

Two complementary methods of complexity reduction are
presented: model reduction and dynamic computation.

1) Complexity Reduction by Model Reduction: In order to
reduce the computational complexity, a reduction of the model
can be envisaged. Indeed, by keeping, for each couple of states,
only the transitions with higher probabilities, it is possible to
obtain an abstraction of the considered PFA having the same
maximum of likelihood.

In the following, we define the reduced PFA and the rules
to obtain it.

Definition 6 (The Reduced PFA): Let Ak = 〈QAk , �Ak ,
δAk , IAk , FAk , PAk 〉 be a PFA, we denote by Ar

k = 〈QAk ,
�Ak , δAk , IAk , FAk , PAk 〉 the reduced PFA associated with
Ak where �r

Ak
, δr

Ak
, and Pr

Ak
are obtained by the reduction

procedure Ak → Ar
k .

In order to specify the reduction procedure Ak → Ar
k ,

the following definitions are necessary.
First, we denote by Geqql ,qm

(ei ) (resp. Equql ,qm
(ei )) the

set of events e j ∈ �Ak having probability P(ql , e j , qm) to
occur from state ql to state qm greater than or equal to (resp.
equal to) ei ∈ �Ak having a probability P(ql , ei , qm) to occur.
More formally, it holds

Geqql ,qm
(ei )

= {e j |e j ∈ �Ak and P(ql , e j , qm) ≥ P(ql , ei , qm)} (14)
Equql ,qm

(ei )

= {e j |e j ∈ �Ak and P(ql , e j , qm) = P(ql , ei , qm)}. (15)

In the following, the reduction procedure Ak → Ar
k is

presented.
Reduction procedure Ak → Ar

k
Step 1 (Selection of Candidate Events): We first keep events

having the same intersection sets of Geq and Equ are selected

�r
Ak

=
{

e j |
e j ∈ �Ak and

⋂
ql ,qm∈Q2

Ak
Geqql ,qm

(e j )

= ⋂
ql ,qm∈Q2

Ak
Equql ,qm

(e j )

}
. (16)

Step 2 (Deletion of Equivalent Events): For all the event
sets

⋂
ql ,qm∈Q2

Ak
Equql ,qm

(e j ), only one event is kept: a new

�r
Ak

is thus obtained.

Step 3 (Conservation of Transitions Linked to the Kept
Events): Only transitions implying kept events are conserved,
all the others are deleted. Probability of those transitions are
not changed

δ
rk
A = {

(ql, e j , qm)|(ql, e j , qm) ∈ δAk and e j ∈ �
rk
A

}
(17)

Prk
A = {

P(ql , e j , qm)|(ql, e j , qm)

∈ δ
rk
A and P(ql , e j , qm) ∈ PAk

}
. (18)

The problem reduction leads to a new model with a lower
number of events than the original one. Thus, the number
of combinations to compare in the determination of the

normalized perplexity is reduced. The following proposition
proves that the likelihood maximum value is conserved after
the reduction.

Proposition 1: Let Ak = 〈QAk ,�Ak , δAk , IAk , FAk , PAk 〉
be a PFA and

Ar
k = 〈QAk , �Ak , δAk , IAk , FAk , PAk 〉 be the reduced

PFA obtained by the reduction procedure Ak → Ar
k . Then

∀w ∈ �∗
A of length |w| it holds

max
v∈�

|w|
Ar

k

[PAr
k
(u)] = max

v∈�
|w|
Ak

[PAk (v)]. (19)

The proof is in Appendix.
By applying the reduction procedure and thanks to

Proposition 1, the computational complexity of the normalized
likelihood is reduced by substituting �Ak with �r

Ak
in (13).

Now, the following proposition shows that the complexity
can be further reduced by the reduction procedure Ak → Ar

k .
Proposition 2: Let Ak = 〈QAk ,�Ak , δAk , IAk , FAk , PAk 〉

be a PFA and Ar
k = 〈QAk ,�Ak , δAk , IAk , FAk , PAk 〉 be the

reduced PFA obtained by the reduction procedure Ak → Ar
k .

Then, the computational complexity of the normalized likeli-
hood is the following:

CM = O(2[card(QAk )−1]|w| × card(QAk )
2 × |w|). (20)

The proof is in Appendix.

D. Complexity Reduction by Dynamic Computation

In addition to the model reduction, a computational simpli-
fication can be employed. In fact, it is necessary to find the
max

v∈�
|w|
Ak

[PAk (v)].
To this aim, the probabilities P[v2, qfinal = qi ] to generate

a subsequence v2 of the considered v to reach state qfinal =
qi can be computed only one time for all sequences v ∈
�

|w|
Ak

sharing v2. This dynamic reduction removes the linear
component |w| in (20) as follows:

CM = O(2[card(QAk )−1]|w| × card(QAk )
2). (21)

Remark 1: It is important to note that (21) represents the
complexity of the AR algorithm that is reduced by the pro-
posed model reduction and dynamic computation. Moreover,
also in this case, the complexity is a function of the number of
actions connected with an activity. However, since a complex
activity may be decomposed in no more than ten/twelve
actions and the sliding window length is selected by the
observer, the proposed AR algorithm is suitable for real-time
computation.

VI. CASE STUDY

In this section, a case study is discussed by considering
a real flat and some experiments performed by experts in
order to show the application of the presented AD and AR
approaches. To this aim, we describe in detail the considered
flat, the choice and the location of the sensors, the semantic
classification of the activities, and the used database. The
experiments are implemented by considering the real life of
the flat not elderly inhabitant.
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Fig. 5. Smart flat and the positioned binary sensors.

Fig. 6. Kitchen view of the smart flat.

Fig. 7. Semantic decomposition of activities in actions and moves.

A. Smart Flat Description

The studied flat is provided by the ENS Paris-Saclay in
France and is composed of two rooms that can be divided
into four zones: entrance, bathroom, kitchen, and sleeping zone
(see Figs. 5 and 6). The flat is equipped with 21 binary sensors
positioned as shown in Fig. 6.

Each one is denoted by an explicit name and can generate
two events: one linked to the rising edge and one linked to the
falling edge (see Fig. 4). The list of the sensor events used in
this case study is given in Table I.

B. Activities to be Monitored

In the case study, we consider three activities, six actions,
and 42 observable moves (events). The activities analyzed for
the ADL analysis are A1 = “Cooking,” A2 = “Hot beverage
preparation,” and A3 = “Use bathroom” as Fig. 7 shows.
Moreover, each activity is described by two states (actions)
and each state is connected with a set of events (see Fig. 7).

Note that activities A1 and A2 share some sensors detect-
ing the actions “Make pasta” and “Make tea”: for instance,

TABLE I

LIST OF EVENTS LOGGED IN THE SMART FLAT

Fig. 8. Structure of the test sequence of observed events.

the events “boil water” and “using hotplates” are connected
with both actions. However, since activity A3 is carried out
in a different area of the flat (i.e., the bathroom), the events
linked to A3 are fully independent of other activities. The list
of events connected with moves and sensors is given in Table I.

In order to estimate the robustness of the approach, activities
Ak with k = 1, 2, 3 are observed a large number of times by
introducing the following variations.

1) The insertion of noisy events (i.e., events not included
in �Ak ) during their realization, for instance by wan-
dering in the flat,

2) Some actions are interrupted.
3) The execution order of elementary moves composing

actions is changed,
4) The action “make tea” is realized by two different ways:

using the kettle or boiling water with hotplates.
The test database is generated using recorded activity

instances placed in a random time order and separated by
a random number of random noisy events not belonging to
the performed activities. The resulting sequence is composed
of 2087 events corresponding to 20 realizations of each activity
(see Fig. 8).

C. Activity Discovery

In this section, the presented AD method is applied to the
case study and in particular to A1 = “Cooking.” The learning
database is composed of 20 occurrences of each activity.
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Fig. 9. Digraph D(A1): Cooking modeled by a PFA. In black: the structure resulting from AD: step 1, in red: probabilities computed in AD: step 3.

Step 1: Generation of PFA Structure
From the semantic decomposition of Fig. 7, the model

structure is generated and shown by the black digraph D(A1)
of Fig. 9.

Step 2: Analysis and Process of Streaming Data
In the considered case study, a length of five events is

considered for the sliding window.
Indicators presented in Section IV-B are computed for

each activity by considering the projected sequence of each
sliding window. For instance, in the considered database, some
indicators involving sensors e14 and e35 for activity A1 are the
following:

N1
e14

= 142, Ne35 = 90
N1

init e14
= 112, Ninit e35 = 29

Ne14→e13 = 96, Ne14→e26 =4, Ne14→e27 = 4, Ne14→e24 = 4
Ne32→e14 = 3, Ne34→e14 =10, Ne28→e14 = 5, Ne27→e14 = 4
Ne29→e14 = 4, Ne24→e14 = 4, Ne35→e34 = 66.

Step 3: Probabilities Computation
In this step, the PFA probabilities are computed according

to (4) to (8). At the end of this step, ADLs are fully modeled
and the PFA obtained for activity A1 = “Cooking” is depicted
in Fig. 9.

Finally, the described three steps are applied for each
activity A1, A2, and A3 but all the resulting models are not
presented for the sake of brevity.

D. Activity Recognition

In this section, the proposed AR approach is applied to the
case study. For the sake of brevity, only the results obtained
during one realization of the activity “Cooking” are shown.

The observed sequence is the following: . . . e22e21e31e23
e35e34e30e23 . . ..

The described steps of Section V-A are applied to the case
study.

1) If a window of length 5 is considered, then the sequences
can be the following:⎧⎨

⎩
w1 = e22e21e31e23e35
w2 = e21e31e23e35e34

. . .

2) For each PFA Ak with k = 1, 2, 3 modeling the
activities, a projection of sequences wi for i = 1, 2 is

Fig. 10. Inverse of the normalized perplexity during the realization of the
activity “Cooking” using no shared events.

obtained and the projected sequence is denoted by wpAk
.

For example, the obtained projected sequences of w2 are⎧⎪⎨
⎪⎩

wpA1
= e21e31e35e34

wpA2
= ∅

wpA3
= ∅.

(22)

3) A language L(wpAk
) is generated for each projected

sequence wpAk
with k = 1, 2, 3. Sequences (22) give⎧⎪⎪⎪⎨

⎪⎪⎪⎩
L(wpA1

) = {e21e31, e31e35, e35e34, e21e31e35

e31e35e34, e21e31e35e34}
L(wpA2

) = ∅
L(wpA3

) = ∅.

(23)

4) The inverse of the normalized perplexity for each model
Ak to generate the language L(wpAk

) is computed.
Fig. 10 shows the evolution of this value during the
realization of the “Cooking” activity. Here, in order
to validate the method, the log of actually performed
activities is compared with the computed estimations.
We enlighten that this log is for the validation procedure
only and it is not required by the proposed method. The
knowledge of performed activity is drawn with plain
lines. The probability is equal to 1 when the activity is
actually performed. The value of the presented estimator
is drawn by the crossed lines.

The example shows that for each new observed event,
the estimation of probability is actualized. The language is
empty if the projected sequence length is lower than 2 and
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Fig. 11. Activity A1 : Cooking reduced model for AR offline maximum likelihood computation.

Fig. 12. Inverse of the normalized perplexity during the realization of the
activity “Cooking” based on shared moves.

Fig. 13. Inverse of the normalized perplexity during the succession of three
activities: “Personal Hygiene”; “Cooking,” and “Preparing Hot Beverage.”

an offset is systematically observed when the activity starts.
Furthermore, another offset is present when an activity stops.

This second offset is due to the use of a sliding window
storing the last five observed events.

Finally, Fig. 11 shows the reduced PFA for activity A1.
By applying the two complexity reduction strategies of the
offline computation, by a window of length |w| = 5, we use
25×22 = 128 operations instead of 205×22×5 = 64.000.000.

E. Case Study Discussion

The presented methods to model and recognize ADLs are
efficient also to activities sharing events. In fact, Fig. 12 shows
a case of shared events between the two activities “Cooking”
and “Preparing Hot Beverage.” As expected, it is not possible
to distinguish which activity is performed if a move that
belongs to only one of the two activities does not occur. Hence,
if two activities have many events in common, it is impossible
to recognize the activity.

On the other hand, if a sensor is linked with too many
activities, it is observed a lot of times during the learning
period: it becomes predominant in all linked ADL models
making it nondiscriminant and noisy. Therefore, the events
detected by such sensors are not useful.

In order to evaluate the efficiency of the proposed method,
activity sequences are considered, and the results are shown
in Fig. 13. Once again, we can observe indecision during
the transition between two activities sharing the same events.
Since the presented estimator (projection and normalized per-
plexity) allows finding the performed activity, it is possible
to conclude that the presented method allows discovering and
recognizing activities performed by an inhabitant of a smart
home without declaring the performed activity during the
learning period.

VII. CONCLUSION

In this article, a global approach for ADL Discovery and
Recognition is proposed. To this aim, a procedure to auto-
matically obtain the activities model in a PFA framework is
developed on the basis of the knowledge of training event
logs database and a hierarchical decomposition of activities to
monitor actions and moves. Then, an AR method is presented
on the basis of a newly defined distance estimator called
normalized likelihood and the extension to perplexity. In order
to face the complexity of the AR algorithm, we propose a
complexity reduction method. Moreover, we prove that the
normalized likelihood can be efficiently computed without loss
of accuracy.

Finally, the proposed approach for AD and AR is applied
to a real living lab and the good quality of the obtained results
is discussed.

Future works will be dedicated to the quantization of how
valuable each sensor is in enabling the AR and on the detection
of the drifts in the activity realization. Indeed, such drifts are
often indicators of the evolution of numerous pathologies and
the related detection will notably increase the performance of
health at home technologies.

APPENDIX

In order to prove Propositions 1 and 2, the following
notation is defined.

1) ei ∈ �Ak .
2) eeq ∈ �Ak such as eeq ∈ ⋂

ql ,qm∈Q2
Ak

Equql ,qm
(ei ).

3) {eeq}ei = ⋂
ql ,qm∈Q2

Ak
Equql ,qm

(ei ).

4) esup ∈ �Ak such as esup ∈ ⋂
ql ,qm∈Q2

Ak
Geqql ,qm

(ei ) and

esup /∈ ⋂
ql ,qm∈Q2

Ak
Equql ,qm

(ei ).

5) {esup}ei is the set of all possible esup associated with ei .
Thus, by definition it holds

{eeq}ei + {esup}ei =
⋂

ql ,qm∈Q2
Ak

Geqql ,qm
(ei ).
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Proof of Proposition 1: In (16), only event ei with
{esup}ei = ∅ are kept in the reduced PFA Ar

k . We prove that
the rejection of events having {esup}ei �= ∅ does not change
the value of the maximum likelihood.

Let w = w′
1 . . . w′

k . . . ei . . . w′|w|−1w
′|w| be a sequence of

events and ei is one of the events in the sequence.
Let v = w′

1 . . . w′
k . . . esup . . . w′|w|−1w

′|w| be a sequence of
events that equals sequence w but for event ei , which is
changed by esup ∈ {esup}ei .

At this point, two cases exist ∀ql , qm ∈ Q2
Ak⎧⎪⎪⎪⎨

⎪⎪⎪⎩
PAk [(ql, esup, qm)] = PAk [(ql, ei , qm)]

if esup ∈ Equql ,qm
(ei )

PAk [(ql, esup, qm)] > PAk [(ql, ei , qm)]
if esup /∈ Equql ,qm

(ei ).

Thus, for each path θ = (s0, w
′
1, s1 . . . s j−1, ei , s j . . .

w′|w|, s|w|) generating w, it exists a path θ ′ = (s0, w
′
1, s1 . . .

s j−1, esup, s j . . . w′|w|, s|w|) such as if esup ∈ Equsj−1,s j
(ei ) then

I (s0) ×
⎛
⎝ |v |∏

h=1

P(sh−1, v
′
h , sh)

⎞
⎠

= I (s0) ×
⎛
⎝ |w|∏

h=1

P(sh−1, w
′
h , sh)

⎞
⎠

→ PAk (θ
′) = PAk (θ)

else if esup /∈ Equs j−1,s j
(ei ) then

I (s0) ×
⎛
⎝ |v |∏

h=1

P(sh−1, v
′
h , sh)

⎞
⎠

> I (s0) ×
⎛
⎝ |w|∏

h=1

P(sh−1, w
′
h, sh)

⎞
⎠

→ PAk (θ
′) > PAk (θ).

Since esup /∈ ⋂
ql ,qm∈Q2

Ak
Equql ,qm

(ei ), the case esup /∈
Equsj−1,s j

(ei ) occurs at least one time, thus:

PAk (v) =
∑

θ ′∈�Ak (v)

PAk (θ
′) > PAk (w) =

∑
θ∈�Ak (w)

PAk (θ).

(24)

Hence, (24) proves that, for all sequences w including an
event ei with {esup}ei �= ∅, it exists another sequence v having
the same length with a greater likelihood. Therefore, event ei

with {esup}ei �= ∅ can be excluded for the maximum likelihood
computation.

In the same way, we can prove that the likelihood does not
change by changing an event ei by another event eeq ∈ {eeq}ei ,
then only one of them can be kept in Ar

k . Consequently, it holds
maxu∈�Ar

k
[PAr

k
(u)] = maxu∈�Ar

k
[PAk (v)] and the thesis is

proven.
Proof of Proposition 2: In order to prove Proposition 2,

we recall that the following properties are direct conse-
quences of (16).

Property 1: If event ei is kept using (16), it exists a set
of n1 origin and destination states Cn1

Ak
= {(ql1, qm1) . . .

(qlp , qm p ) . . . (qln , qmn1
)} such that ∀e j ∈ �Ak ,∀p ∈ [1, n1]

it holds:
P[(qlp , ei , qm p )] ≥ P[(qlp , e j , qm p )].

Furthermore, according to (8), Ñ(ei |ql → qm) and
PAk [(ql, ei , qm)] do not depend on ql . Thus, Geqql ,qm

(ei ) and
Equql ,qm

(ei ) depend only on ei and qm . It is possible to rewrite
Property 1 as follows.

Property 2: If event ei is kept using (16), it exists a set of
n2 destination states Dn2

Ak
= {qm1 . . . qm p . . . qmn2

} such that
∀e j ∈ �Ak ,∀ql ∈ QAk ,∀p ∈ [1, n2] it holds

P[(ql , ei , qm p )] ≥ P[(ql , e j , qm p )].
Moreover, for each possible set Dn2

Ak
, of destination states,

only one event is kept by the equivalent events deletion
performed by step 2 of the reduction procedure. Thus, the
number of kept events NAk = Card(�r

Ak
) is bounded by the

number of possible sets Dn2
Ak

that it is necessary to evaluate.

For a PFA with m = card(QAk ) states, sets composed with
n2 ∈ [1, m − 1] destination states can be created. For each
n2, it exists (m − 1/n) different possible sets Dn2

Ak
. Thus, we

have

NAk ≤
m−1∑
i=1

(
m − 1

i

)
= 2m−1 − 1.

Thus, according to (17) the complexity of the normalized
likelihood is the following:

CM = O(2[card(QAk )−1]|w| × card(QAk )
2 × |w|). (25)

This proves Proposition 2. �
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