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This article proposes a probability finite state automata-based algorithm (PFSAA) for detecting outliers of air

temperature series data caused by sensor errors. This algorithm first divides the training samples of air tem-

perature series data into subclusters that will be further used to build finite state automata by splitting and

combining techniques. Then, it creates a dynamic transition matrix of PFSA based on probability theories.

Finally, the outliers of the remaining test samples are detected by PFSAA. The proposed algorithm is quantita-

tively validated by the reference data and a traditional backpropagation neural net model. � 2012 Wiley

Periodicals, Inc. Complexity 17: 48�57, 2012
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1. INTRODUCTION

T
imely and accurate weather information, especially

that in bad weather conditions and irrigation periods,

is critical for human life and activities. Therefore, it is

of great importance to monitor and deal with meteorologi-

cal data (e.g., air temperature) to provide accurate weather

forecast. Although continuous air temperature information

can be obtained through wireless sensor net (WSN) with

increased automatic weather stations (AWSs) [1], the qual-

ity of AWS data is influenced by the abnormal disturban-

ces (i.e., outlier) resulting from sensor’s errors [2]. As a

result, false records or systematic abruptions might be

introduced, which have negative influence on the accuracy

of weather forecasts.

As AWS is a relatively recent application of WSN in me-

teorological observation, little attention has been paid to

the detection of the outlier caused by sensor’s errors from

the observed data. However, in the fields of navigation sys-

tem monitoring [3], signal segmentation [4], and mechani-

cal vibration monitoring [5], methods for outlier detection

have already been extensively proposed during the past
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decade. For example, Ray [6] presented a novel concept of

outlier detection in complex dynamical systems using

symbolic dynamics. Davy et al. [7] provided a support-vec-

tor-based model to optimize the anomaly detection. Raja-

gopalan and Ray [8] provided a new symbolic time series

analysis method to validate the wavelet efficiency based

on phase-space partitioning.

Unfortunately, almost all the methods mentioned above

assume that the processed signal is stationary, which is

not always valid in the reality. Thus, an effective method

for processing chaos series data (e.g., air temperature

series data) with highly time-varying characteristics is

needed. Probability finite state automata (PFSA), which is

based on statistical theories and state transformation tech-

niques, works in a similar way to the Markov process. The

merit of PFSA is that it can not only accurately trace the

hidden variation module of a series data by ignoring the

plot-added disturbances but also focus on the transforma-

tion between adjacent states. In this study, we propose a

PFSA-based algorithm (PFSAA) to differentiate abnormal

disturbances in chaos series data, which are caused by

sensor errors. This algorithm is based on the three

assumptions shown below.

a. The dynamic system is nearly stationary at a short time

scale (e.g., 20 minutes) rather than among short time

scales.

b. The state number of an observed series data can be

identified based on the similarity of the adjacent states,

and

c. Continuous anomaly [9] is a minor part in a time series

data, which means the air temperature series data can

be simulated using a specific model.

2. DATA
AWS is a network of automatic data collectors. It has been

developed rapidly in recent years to provide meteorolo-

gists and the public with basic weather information,

including precipitation, wind speed, wind direction, air

temperature, etc. The air temperature series data used in

this study was collected by six wireless sensors (i.e., sen-

sors A, B, C, D, E, and F) from an AWS in Yiyang City of

Hunan Province, China. Data from three of the six sensors

were used as the reference data because these sensors

have been sheltered against the influences of factors such

as precipitation and wind. Data from other sensors

observed at the same location were recognized as the air

temperature data with outliers. Table 1 shows the details

of the data used in this study.

Both the reference data and the experiment data were

collected by sensors with a 2000-X platinum resistor with

a readout resolution of 0.18C and an interval of 20

minutes. All the air temperature series data were then

rescaled to degree centigrade. The reason for choosing six

different time periods is that the stability of data in each

time span is different and this difference makes them suit-

able for the sensitivity evaluation of PFSAA. As shown in

Figure 1, both air temperature series data show periodical

variations and these variations are similar to each other in

adjacent periods. The illustrated outliers of the air temper-

ature series data (marked with black circles in Figure 1)

are identified by comparing with the reference data.

3. PROBABILITY FINITE STATE AUTOMATA-BASED
ALGORITHM
To overcome the drawbacks of conventional outlier detec-

tion methods summarized in Section 1, this study pro-

poses a PFSAA method for outlier detection of air temper-

ature series data. This new method is based on the combi-

nation of the time series theory [10] and the decision tree

algorithm [11]. Specifically, it uses splitting and combining

techniques and a learning-and-testing approach to realize

the outlier detection. This method is composed of three

steps. First, it splits the air temperature series data into

some subclusters using the K-mean method [12]. Second,

these subclusters are combined into relatively bigger clus-

ters according to their similarities in relative entropy and

variance. Finally, the PFSA are created based on the above

two steps. Details of the three steps are described as fol-

lows.

3.1. Segmentation of Air Temperature Series Data
Generally, the key to an effective building of the dynamic

module for time series data is to determine a reasonable

segment level, which is actually the best cluster level [13].

The cluster level is vital for the segmentation of time series

data due to its influence on the scale of finite state autom-

ata. Among traditional cluster methods, the K-mean algo-

rithm has been widely used because it is computationally

efficient in disclosing linear relationships [14]. This charac-

teristic makes it suitable for the experiment data of this

study. In this study, a slide window was used to classify the

TABLE 1

A General Description of the Air Temperature Series Data Used in
This Study

Sensors Data Type

Length

(20 minutes) Time Span

Sensor A Experiment data 2235 January 1�31 July 1�31
Sensor B Reference data 2235 January 1�31 July 1�31
Sensor C Experiment data 1440 February 1�20 August 1�20
Sensor D Reference data 1440 February 1�20 August 1�20
Sensor E Experiment data 2235 March 1�31 May 1�31
Sensor F Reference data 2235 March 1�31 May 1�31
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original air temperature series data into different clusters.

When implementing the window, a parameter a was used

to determine whether records should be classified within a

same cluster or not. We set the value of a to be the average

distance among all experiment data records.

3.2. Subclusters Combination
The approach of subcluster dividing described in Section

3.1 is limited in two ways. On one hand, the K-mean algo-

rithm might mistakenly break a valid cluster with great

disturbance into two subclusters. On the other hand, the

slope alone might not be a reasonable criterion for cluster

classification compared to the variation trend (e.g., slope)

and scatter characteristics. To solve these problems, a sim-

ilarity-driven cluster merging method was proposed to

merge subclusters into relatively bigger ones based on rel-

ative entropy and variance (Figure 2). The relative entropy

describes the density of a cluster which scatters along

both sides of a fitting straight line. The relative variance

represents the variations of variable values. The detailed

descriptions of relative entropy and variance are provided

below.

Definition 1

Let v 5 {v1, v2, v, . . ., vm} be a sequence of observation,

Lv be the least-square fitting line of these points, and d1,

d2, d3, . . ., dm represent the corresponding distances from

v1, v2, v3, . . ., vm to Lv, the relative entropy of v can be

defined as:

En ¼ �
Xm

k¼1

Pklog Pk (1)

Pk ¼ di

max d1;d2; :::;dmf g (2)

Definition 2

Let v 5 {v1, v, v3, . . ., vm} be a sequence of observation,

Lv be the least-square fitting line of these points, and d1,

d2, d3, . . ., dm represent the corresponding distances from

v1, v2, v3, . . ., vm to Lv, the relative variance of v can be

defined as:

Ve ¼ 1

m

Xm

k¼1

ðdk � dÞ2 (3)

d ¼ 1

m

Xm

k¼1

dk (4)

Definition 3

Let v 5 {v1, v2, v3, . . ., vm} and g 5 {g1, g2, . . ., gm} be

different sets of observations, the distance between any

pair of them can be defined as:

Dis ¼ Disinterv � Disinterg
�� ��þ Lkv � Lkg

�� ��2 (5)

FIGURE 1

Air temperature series data in January (a) and July (b) 2010 and
their outlier samples.

FIGURE 2

The basic principles of relative entropy and variance.
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where Disinterv and Disinterg represent the distances

between points within a same cluster. Disinterv and Disinterg

can be calculated by

Disinterv ¼ 1

m

Xm

k¼2

vk � vk�1j j (6)

Disinterg ¼ 1

m

Xm

k¼2

gk � gk�1j j (7)

where Lkv � Lkg
�� ��2 is the norm of the difference between

Lkv and Lkg, which represent the fitting lines of v and g,

respectively.

According to definitions 1, 2, and 3, as well as the illus-

tration in Figure 2, it is clear that subclusters v and g are

highly related to each other when their distance is small. In

this way, subclusters v and g should have similar relative

entropies and variances as shown in Figure 3. Figure 3 also

shows that, if v and g have similar fitting straight lines, rel-

ative entropies, and variances, they keep similar structures.

In addition, it is worth noting that the optimization thresh-

old distance mopt used for subcluster combination was

determined through an algorithm shown in Figure 4.

3.3. Generation of PFSA
Based on an adaptive multidimensional coded method [15],

the combined subclusters can be tagged with a specific

state number. The detailed training process of the probabil-

ity matrix is shown in Figure 5. The main idea of this algo-

rithm is to dynamically generate a probability matrix by

computing the class of clusters within the training dataset.

The training data were precleaned (i.e., removing the

noises) by a kernel function f 5 [1, 1, 1, 1, 1] (i.e., a source

data x can be turned into x0 5 conv(x, f)/5) and manually

examined before being used to produce the reference PFSA.

The threshold h in the algorithm was assigned as the value

of mopt obtained in Section 3.2. After that, a probabilistic

transfer matrix and a transfer diagram can be created using

the Lambda algorithm [16]. The transfer diagram denotes

the transformation between states of the time series data in

a probabilistic way. The elements of the probabilistic matrix

represent the probability of the state transfer relating to the

FIGURE 3

Different clusters under similar slopes and relative entropies and
variances.

FIGURE 4

An algorithm for determining the optimization threshold distance, mopt, between subclusters.
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FIGURE 5

An algorithm for training probability matrix by computing the class of clusters.
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row and the column. An example of transfer diagram and

its corresponding transfer matrix for time series data is

illustrated in Figure 6.

3.4. Anomaly Detection
After the building of PFSA, the state of the air temperature

series data and their transfer matrix could be created. A

MATLAB (MATLAB, Version 7.0) program was then devel-

oped to implement the outlier detection process described

in Sections 3.1, 3.2, and 3.3. The detailed process is clearly

demonstrated in Figure 7.

4. EXPERIMENT DESIGN
In this study, the performance of PFSAA was first validated

by comparing the detected outliers with the reference data.

Then, we further evaluated the performance of PFSAA by

comparing the detected outliers and those detected by the

autoregressive (AR)-based back propagation (BP) neural net

model [17], which has been proved robust in dealing with

chaos series data.

Wilcoxon test, a nonparametric test for the similarity of

two related samples, was used to compare the PFSAA-

derived outliers with other values. Specifically, the values

of outliers detected by PFSAA or the AR-based (BP) neural

net model were marked as 1, while the reference values at

relative locations were marked as 2. As the purpose of

outlier detection is to identify data which is significantly

deviated from the normal value, a significant difference

between the detected outliers and the reference data

(which represents the normal values) indicates a good per-

formance of the outlier detection model, and vice versa. In

this case, when the P value is equal to or less than 0.05,

the outliers detected by PFSAA or AR-based BP neural net

model are significantly different to the reference data,

which suggests a good performance of the specific model.

However, a P value greater than 0.05 indicates that there

are no significant differences between the detected outliers

and the reference data, therefore suggesting a poor per-

formance of the specific model.

Additionally, the sensitivity of PFSAA to different data

inputs was assessed based on the six air temperature series

data listed in Table 1. The detailed settings of PFSAA pa-

rameters are shown in Table 2. It has to be noted that, in

this study, the lengths of the training data listed in Table 2

were set up based on the stability of the experiment data

from sensors. The criterion for determining the training

data length is that the training data should cover at least

FIGURE 6

An illustration of a transfer diagram and its transfer matrix (note: pij
means the transformation probability from state Si to Sj).

FIGURE 7

An algorithm for anomaly detection implementation based on PFSA.

Q 2012 Wiley Periodicals, Inc. C O M P L E X I T Y 53
DOI 10.1002/cplx



90% of the hidden states of the entire experiment data. For

the AR-based BP neural net model, six orders were set to

build the regression model of the training samples. The net

is set with three layers and 10 hidden nodes.

5. RESULTS AND DISCUSSION

5.1. Performance of PFSAA as Validated by Reference
Data
Figure 8 shows the comparison results between the out-

liers detected from six air temperature series experiment

data and their corresponding reference data. The blue dot-

TABLE 2

Parameters Settings of PFSAA in Outlier Detection

Sensors
Time
Span

Training
Samples
(No.)

Test
Samples
(No.)

K-Means
Threshold
(a) mopt

Sensor A January 1�31 1100 1132 1.25 0.12
July 1�31 1100 1132 1.75 0.22

Sensor C February 1�20 500 940 0.75 0.1
August 1�20 500 940 1.25 0.15

Sensor E March 1�31 1100 1132 1.25 0.12
May 1�31 1100 1132 1.75 0.12

FIGURE 8

The comparison of outliers detected by PFSAA from the air temperature series experiment data with its relative reference data. (a), (b), (c), (d), (e), and
(f) represent the results for data inputs in January, July, February, August, March and May, respectively.
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ted line represents the reference data. The red solid line

denotes the outliers detected by PFSAA based on the

experiment data. A single blue line represents those recog-

nized as normal ones by PFSAA.

As shown in Figure 8, PFSAA successfully detected

most parts of outliers (i.e., giant abnormal disturbances)

caused by the error of sensor A. For example, outliers

marked as red solid line in Figure 8(a) around locations

between the 100th and the 140th interval, the 460th and

the 490th interval, the 680th and the 730th interval, as

well as the 1015th and the 1020th interval were correctly

detected by PFSAA. However, Figure 8(a) also shows that a

few outliers such as those around locations between the

530th and the 590th interval and those around locations

between the 910th and the 970th interval were omitted by

PFSAA although they represent a very small portion of the

entire experiment data (i.e., total 120 versus 2235 interval).

This omission may be attributed to the settings of the K-

mean threshold (a) and the threshold distance mopt men-

tioned in Sections 3.1 and 3.2. These settings could be fur-

ther optimized. Similar results that verify the feasibility of

PFSAA in outlier detection can also be found in Figure

8(b�f).

5.2. Performance of PFSAA Evaluated by AR-Based BP
Neural Net Model
Figure 9 shows the comparison results of outlier detection

between PFSAA and the AR-based BP neural net model.

The red solid line denotes the outliers detected by PFSAA,

and the green dotted line represents those detected by the

FIGURE 9

The comparison of outliers detected by PFSAA and the AR-based BP neural net model from the air temperature series experiment data. (a), (b), (c), (d),
(e), and (f) represent the results for data inputs in January, July, February, August, March and May, respectively.
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AR-based BP neural net model. A single blue line repre-

sents those recognized as normal ones by both methods.

Figure 9(a) reveals significant differences in the outliers

detected by PFSAA and the AR-based BP neural net model.

A comparison between the results presented in Figures

8(a) and 9(a) indicates that while the AR-based BP neural

net model detected significant outliers around locations

between the 680th and the 730th interval, a lot of faulty

outliers are also detected. A comparison among Figure

9(a�f) further demonstrates that AR-based BP neural net

model tagged much more fault outliers in January, Febru-

ary, March, May than in July and August. However, PFSAA

does not have such problem as its accuracy of outlier

detection remains relatively stable. This can be explained

by the fact that PFSAA can more effectively detect outliers

from the chaos data with relatively minor variations than

the AR-based BP neural net model.

The better performance of PFSAA in outlier detection

from air temperature series data is echoed by the results

of nonparametric Wilcoxon tests. The difference is well

reflected in the Z values and P values of the tests. For

instance, the Z value (i.e., 5.409) of sensor A in January

with a P value of 0.000 shows that there were significant

differences between the air temperature values at outlier

interval locations determined by PFSAA and the reference

data. Similar results are also found for sensors C and E.

However, we did not find any significant differences

between the air temperature values at outlier interval loca-

tions determined by the AR-based BP neural net model

from the experiment data and the reference data (P >

0.05) for all months except July and August. This founding

in fact confirms that PFSAA has better stability than the

AR-based BP neural net model in outlier detection.

5.3. Sensitivity of PFSAA in Outlier Detection of Air
Temperature Series Data
As shown in Figures 8 and 9 as well as in Table 3, it is

quite clear that the performance of PFSAA varied with the

stability of the input data although it has better stability

compared to the AR-based BP neural net model. To give a

further quantitative illustration of this, we listed in Table 4

the parameters generated in the process of outlier detec-

tion by PFSAA. The value of Lyapunov index denotes the

stability of the air temperature series data (i.e., lower value

corresponds to better stability), while the error rate meas-

ures the performance of PFSAA. Table 4 shows that the

state number, the initial stages, the combined clusters,

and the error tag varied with the stability of the input

data. As a result, the error rate varied correspondingly.

As shown in Table 4, Lyapunov indices are lower for

relatively stable data inputs in January [Lyapunov index:

0.267; illustrated in Figure 8(a)], February [Lyapunov

Index: 0.301; illustrated in Figure 8(c)], and March

[Lyapunov index: 0.272; illustrated in Figure 8(e)] than for

relatively unstable inputs in July [Lyapunov index: 0.353;

TABLE 3

Results of Nonparametric Wilcoxon Tests Comparing the Mean Air
Temperature Values Detected by PFSAA as Outliers and Its Relative
Reference Data

Sensors
Time
Span

Outlier
Detecting
Methods Z value P value

Sensor A vs. B January 1�31 PFSAA 5.409 0.000
BP 2.917 0.055

July 1�31 PFSAA 3.719 0.001
BP 6.586 0.000

Sensor C vs. D February 1�20 PFSAA 6.950 0.000
BP 2.819 0.051

August 1�20 PFSAA 1.689 0.001
BP 12.462 0.000

Sensor E vs. F March 1�31 PFSAA 6.699 0.000
BP 2.635 0.077

May 1�31 PFSAA 1.810 0.007
BP 1.569 0.082

TABLE 4

Parameters Generated in the Process of Outlier Detection by PFSAA

Sensors
Time
Span

Lyapunov
Index

State
Number

Initial
Stages

Combining
Clusters

Error
Tags

Error
Rate (%)

Sensor A January 1�31 0.267 15 375 165 12 7.27
Sensor A July 1�31 0.353 27 412 272 26 9.50
Sensor C February 1�20 0.301 19 278 121 9 7.43
Sensor C August 1�20 0.362 21 327 152 17 11.1
Sensor E March 1�31 0.272 16 361 159 11 6.91
Sensor E May 1�31 0.371 21 422 263 23 8.74
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illustrated in Figure 8(b)], August [Lyapunov index: 0.362;

illustrated in Figure 8(d)], and May [Lyapunov index:

0.371; illustrated in Figure 8(f)]. The error rates illustrated

from Figure 8(a), (b), (c), (d), (e), and (f) are 7.27%, 9.50%,

7.43%, 11.10%, 6.91%, and 8.74%, respectively. This finding

confirms the influence of chaos stability on the perform-

ance of PFSAA. However, it has to be noted that the pa-

rameters (e.g., the error rate) listed in Table 4 might also

vary with the change of the optimization threshold distan-

cemopt mentioned in Section 3.2. Therefore, the parameter

values generated in the process of outlier detection by

PFSAA could be influenced by the setting of mopt, which

deserves future investigation.

6. CONCLUSIONS
In this pilot study, we proposed a PFSAA method for out-

lier detection in air temperature series data. The case

experiment with air temperature series data from three

sensors shows that PFSAA can automatically detect out-

liers resulting from sensor errors at an acceptable level of

accuracy compared to great time-consuming manual ex-

amination work. The sensitivity test also shows that the

performance of PFSAA can vary with the stability of the

input data. The PFSAA method represents a promising

approach for tagging abruptly abnormal disturbances

occurred in chaos series data. However, the lack of experi-

ment samples prevented us from getting more reliable

results. In addition, a possible extension of this work is to

develop a probabilistic algorithm rather than a hard crite-

ria for anomaly detection which is used by PFSAA, to com-

pare the results of PFSAA with those of other robust mod-

els, and/or to quantitatively model the variation extent of

PFSAA’s performance in detecting outlier from chaos series

data with different levels of stability.
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