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A B S T R A C T   

Background: DNA-binding proteins perform important roles in cellular processes and are involved in many 
biological activities. These proteins include crucial protein-DNA binding domains and can interact with single- 
stranded or double-stranded DNA, and accordingly classified as single-stranded DNA-binding proteins (SSBs) 
or double-stranded DNA-binding proteins (DSBs). Computational prediction of SSBs and DSBs helps in anno-
tating protein functions and understanding of protein-binding domains. 
Results: Performance is reported using the DNA-binding protein dataset that was recently introduced by Wang 
et al., [1]. The proposed method achieved a sensitivity of 0.600, specificity of 0.792, AUC of 0.758, MCC of 
0.369, accuracy of 0.744, and F-measure of 0.536, on the independent test set. 
Conclusion: The proposed method with the hidden Markov model (HMM) profiles for feature extraction, out-
performed the benchmark method in the literature and achieved an overall improvement of approximately 3%. 
The source code and supplementary information of the proposed method is available at https://github. 
com/roneshsharma/Predict-DNA-binding-proteins/wiki.   

1. Background 

DNA-binding proteins are involved in a variety of biological pro-
cesses, such as DNA repair, DNA packing, viral infection and DNA 
replication [1–5]. Identification of these proteins is a step towards 
annotating the protein functions and understanding the binding speci-
ficity [6]. Although many experimentally determined protein-DNA 
structures are deposited into the protein databank (PDB), only a small 
portion is listed in comparison with the protein-DNA complexes present 
in nature [6,7]. A large number of DNAs and protein sequences has been 
generated, of which many are DNA-binding proteins. DNA-binding 
proteins can be identified using various biological experiments, but it 

is expensive and time-consuming. In this respect, it is highly desirable to 
design computational methods to determine the DNA-binding proteins. 
Computational methods are applied in two categories; first is the use of 
protein structure information and second, is the use of sequence infor-
mation only. Incorporating protein structures to predict the 
DNA-binding proteins exhibits improved performance. However, these 
structures are not always available [1]. Thus, the sequence information 
is only used for prediction. 

Compared with the biological experiments; computational methods 
are gaining momentum as it is inexpensive and reliable to identify 
protein functions. In recent years, many efforts have been made whereby 
machine learning approaches are used for DNA-binding protein 
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prediction [8–11]. These approaches involve feature extraction and 
classifier development. Features from the DNA-binding proteins can be 
extracted in a number of ways, such as, by protein sequence information, 
employing physicochemical properties of the amino acids (AA) and by 
using evolutionary information of the protein sequences. Sequence in-
formation and physicochemical properties are rapidly applied for pro-
tein function prediction [9,12–15]. However, recent studies have 
focused more on the use of evolutionary information and have obtained 
promising results [16–21]. 

To extract evolutionary information, profiles are computed from the 
local sequence alignment of the protein sequences. Some of the popular 
tools used for local sequence alignment are PSI-Blast and HHblits [22, 
23]. These tools search a large database and build multiple sequence 
alignments (MSAs). From the MSAs, either the position-specific scoring 
matrix (PSSM) or the HMM profiles are generated, and the features are 
extracted. PSSM and HMM profiles are widely used in bioinformatics for 
the prediction of protein function [13,19,20,24–31]. Many studies have 
been reported to predict DNA-binding proteins [8,32–37] and 
DNA-binding protein sites [10,11,38–45]. However, only a few studies 
are reported to predict SSBs and DSBs [9,46,47]. Wang et al. [9], utilized 
the physicochemical properties and the PSSM profiles of the 
DNA-binding proteins to analyses the SSBs and DSBs. They extracted 
features including split amino acid transformation and dipeptide 
composition features from the protein sequences and applied support 
vector machine (SVM) and random forest (RF) classifiers to predict the 
SSBs and DSBs, respectively. In the recent study, Ali et al. [47], proposed 
SDBP-Pred predictor to predict the SSB and DSB proteins. They obtained 
the features from PSSM by applying the notion of consensus sequences 
and strategies of K-segmentation approach. The SDBP-Pred predictor 
achieved minor performance improvement on the benchmark data sets. 
Despite many efforts made to predict SSBs and DSBs accurately, the 
prediction performance reported is low. To enhance the performance of 
predicting DNA-binding proteins, machine learning methods such as the 
application of DeepInsight [48] method and the evaluation of evolu-
tionary features of the DNA-binding protein sequences is required. 

In this study, we utilize the HMM profiles generated using HHblits to 
compute the features of DNA-binding proteins. We utilized the 
normalized profile-monogram and normalized profile-bigram based 
feature extraction techniques [18] to compute the features. The 
profile-monogram and profile-bigram are well-known feature extraction 
techniques and has been extensively applied for protein fold 

recognition, subcellular localization, MoRF detection and protein drug 
target prediction [12–14,16–18,49]. For classification, SVM, k-nearest 
neighbors (KNN) and RF classifiers are used. These classifiers are widely 
used in bioinformatics and machine learning applications [50–53]. Two 
novel schemes are involved in the study, which makes a good predictive 
scheme for DNA-binding protein identification. First is the use of HMM 
profiles, which has not been explored for this study, and second is the 
use of normalized profile-monogram and normalized profile-bigram 
feature extraction methods which extracts the useful features encoded 
in the DNA-binding proteins. The proposed approach achieved prom-
ising results compared to the benchmarked method in the literature. 

2. Method 

2.1. Benchmark dataset 

We used the training and independent sets that were previously 
introduced by Wang et al., [9]. The training set contains 1055 protein 
sequences, of which 183 are SSBs, and 873 are DSBs. To assemble this 
set, Wang et al. [9], collected a large number of DNA-binding proteins 
from UniProtKB, and Swiss-Prot databases, by manually reviewing the 
entries from the literature. Then, they used the CD-HIT tool [54] to 
extract the non-redundant proteins with sequence identity cut-off value 
of 0.7. The independent set contains 166 proteins, of which 41 are SSBs, 
and 125 are DSBs. They obtained this set from the protein data bank 
(PDB) and used the PISCES [55] tool to obtain non-redundant proteins 
with sequence similarity lower than 30%. The structure of the protein 
sequences in the independent set is determined experimentally by X-ray 
and NMR methods [9]. To obtain the protein sequences of the training 
and independent sets, we used the protein IDs from Wang et al. [9], to 
run the query search against the UniProt (www.uniprot.org) and PDB 
(www.rcsb.org) databases. The distribution of the SSBs and DSBs in the 
two datasets are shown in Fig. 1. To incorporate new SSB and DSB 
protein sequences, we collected 6988 SSBs and 6404 DSBs from UniProt 
database retrieved on July 20, 2020. The sequences are filtered by the 
search of the protein name as single-stranded binding and 
double-stranded binding, respectively. The search resulted with 249 
SSBs and 58 DSBs, respectively. We, then used the CD-HIT tool [54] to 
compare the similarity of the sequences with the train and independent 
sets, the sequence identity cut-off value of 0.7 is used. To obtain the 
non-redundant proteins, the sequence similarity within the set is 

Fig. 1. Length distribution of the SSBs and DSBs in train and independent sets.  
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checked with the sequence identity cut-off value of 0.9, 0.7 and 0.3, 
respectively, and for each the performance is reported. 

2.2. Overview of the proposed method 

Computational prediction of SSBs and DSBs requires the develop-
ment of machine learning methods, which heavily depends on the 
feature extraction and classification algorithms. Features are extracted 
to represent the DNA-binding proteins. In classification, these features 
are used to predict the SSBs and DSBs. Features representing the DNA- 
binding protein sequence can be obtained in many ways, i.e., using 
sequence information, employing physicochemical properties of the 
amino acids, using structural information or evolutionary information of 
the protein sequence. For physicochemical properties of the amino 
acids, usually, the 544 physicochemical indexes are utilized to compute 
the physicochemical features [56]. On the other hand, for structural 
information, the attributes such as the output of Spider 2 (structural 
predictor) has been recently used [57]. The use of evolutionary infor-
mation is gaining moment and has provided improved prediction ac-
curacies [13,16,18,19]. The evolutionary information includes the 
PSSM profiles extracted by PSI-Blast tool [22] or the HMM profiles 
derived by HHblits tool [23]. 

In this study, we have utilized the HMM profiles to predict SSBs and 
DSBs. These profiles have not been explored for the employed dataset 
and have notably achieved good performance in related studies [13,19, 
58]. The HMM profiles of the protein sequences are used to derive 
normalized profile-monogram and normalized profile-bigram features. 
Classifiers, including SVM, KNN and RF, have been used for prediction. 
The overview of the proposed method is shown in Fig. 2. In the following 
sections, we describe the HMM profiles, the feature extraction methods, 
and the experimentation procedures. 

2.2.1. HMM profiles 
To generate the HMM profiles, HHblits [23] has been used. HHblits 

produces HMM profiles H of size L by 30, where L is the length of the 
protein sequence. HHblits is developed by Remmert et al. [23], and it 
iteratively searches through the databases and builds MSAs. From the 
MSAs, the HMM profiles are computed to represent the 20 standard 
amino acids in the homologous protein. Compared to the PSSM profiles, 
the HMM profiles contain additional information describing the inser-
tion, deletion and match during MSAs. However, for this study, we only 
use the first 20 columns of the HMM profiles that represent the 20 
common amino acids. To obtain the HMM profiles, we use the nr20 and 

uniprot20 databases, respectively, with HHblits cut-off value set to 
0.001. 

2.2.2. Feature extraction method 
To compute features from the HMM profiles, we use the normalized 

profile-monogram and normalized profile-bigram [18] feature extrac-
tion methods. These methods are illustrated as follows:  

• Normalized profile-monogram: using this method, the feature is 
computed from the HMM profiles of the protein sequences. Let ma-
trix H of size L × 30 be the HMM profile of a protein sequence. The 
computation of the feature vector from the matrix H is as follows: 

NM(k)=
1
L

∑L

i=1
Hi,k(1≤ k≤ 20 ) (1)  

where Hi,k is the element of the HMM profile matrix. Computing NM(k)
for k ranging from 1 to 20 would give a feature vector of dimension 20.  

• Normalized profile-bigram [18]: using this method, the feature is 
computed from the HMM profiles of the protein sequences. The 
computation of the feature vector from the matrix H is as follows: 

NBk,l =
1
L
∑L− 1

i=1
Hi,k Hi+1,l(l≤ k≤ 20 and 1≤ l≤ 20) (2) 

Computing NBk,l for k = 1, 2,….,20 and l = 1, 2,….,20 would give 
a matrix of size 20 × 20. This matrix can be represented in a vector form 
by reshaping the 20 × 20 matrix into a vector of length 400. 

The use of normalized profile-monogram and normalized profile- 
bigram feature extraction methods have shown promising results for 
protein fold recognition, MoRF prediction, subcellular localization, 
drug-interaction and other related problems [12,16,18,49]. 

2.2.3. Experimentation 
To show the effectiveness of the proposed method, we employ SVM, 

KNN and RF classifiers, respectively. These classifiers are widely used 
and have obtained good results in many related problems [14,16]. For 
experimentation, the LibSVM [59] package is adopted with radial basis 
function (RBF) kernel, and a grid search is performed to select the kernel 
parameters. For RF, the number of trees is set to 3000. For the prediction 
of the SSBs and DSBs, features from the DNA-binding proteins are 
extracted, and the classification models are trained. 

To evaluate and measure the statistical significance of the proposed 
method, we adopted the 10-fold cross-validation method and performed 
experiments on the employed dataset. The training set is not balanced; 
thus, we use the random down-sampling technique to select an equal 
number of SSB and DSB samples. To report the performance, we 
repeated the 10-fold cross-validation method 50 times, each time 
randomly applying the down-sampling technique. The performance 
measures reported in this study include sensitivity (Sen), specificity 
(Spe), area under the ROC curve (AUC), Matthews correlation co-
efficients (MCC), accuracy (ACC) and F-measure (F1). The training set is 
used to evaluate the proposed method, while, the independent and test 
sets are used to provide an unbiased evaluation of the model. 

To select the kernel parameters of the SVM classifier, we computed 
the amino acid composition (AAC) feature vector from the amino acids 
of the protein sequence. We used this feature vector to run a grid search 
using the LibSVM package [59], and the resulting C and gamma pa-
rameters of the kernel were found to be 4096 and 0.0029, respectively. 
To compare the performance of the proposed method with that of the 
recent method on the employed data sets, we implemented the algo-
rithms of Wang et al. [9], and reported the performances. However, for 
the SDBP-pred predictor, the source code was not available, therefore, 
the performance is reported from Ali et al. [47], for the training and 
independent sets, respectively. To enhance the prediction of SSBs and 

Fig. 2. Overview of the proposed method.  
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DSBs, the ensemble of the classifier is developed. The first ensemble is 
developed by using the concept of majority voting. SVM, RF and KNN 
classifiers have been used in this work. Therefore, the majority of these 
three classifiers classes is used to determine the final class for a test 
sample. The second ensemble is developed by looking at the class 
probabilities of the three classifiers. Out of the three classifiers class 
probabilities, the classifier giving the highest class probability of a test 
sample is used to determine the final class of the test sample. 

3. Results and discussion 

To predict the SSB and DSB proteins, recent studies utilized the 
physicochemical properties and the PSSM profiles of the DNA-binding 
proteins. Wang et al. [9], extracted features including split amino acid 
transformation and dipeptide composition features from the protein 
sequences and applied SVM and RF classifiers for prediction. Ali et al. 
[47], proposed SDBP-Pred predictor to predict the SSB and DSB proteins. 

They obtained features from PSSM by applying the notion of consensus 
sequences and strategies of K-segmentation approach. The SDBP-Pred 
predictor presented small improvement on the performance compared 
with the Wang et al. [9], method. To further enhance the performance, 
in this study, HMM profiles of the protein sequence is used for feature 
extraction. Normalized profile-monogram and normalized 
profile-bigram based features are extracted and the classifiers including 
SVM, KNN and RF are used for prediction. Tables 1 and 2 show the 
performance measures for the various methods adopted in this study. In 
Table 1, the result is reported for performing 10-fold cross-validation 
method on the training set and in Table 2, the result is shown for the 
independent test. The results are reported for normalized 
profile-monogram and normalized profile-bigram features computed 
from the HMM profiles of the protein sequences. Comparing the results 
with the recent benchmark method [9], a consistent increase in the 
performance is observed for the proposed method. 

Evaluating the proposed method on the training set, the normalized 

Table 1 
The 10-fold cross-validation performance measures for different features on training dataset.  

Method Classifier Sen Spec AUC MCC ACC F1 

Wang et al. (BMC 2017) SVM 0.6832 0.9409 0.9069 0.6464 0.8120 0.7838 
RF 0.8206 0.9148 0.9239 0.7389 0.8677 0.8611 

Normalized profile-monogram nr20 SVM 0.8245 0.8732 0.8968 0.6988 0.8489 0.8452 
RF 0.8637 0.9033 0.959 0.7678 0.8835 0.8811 
KNN 0.8815 0.8752 0.9494 0.7573 0.8784 0.8787 
Ensemble method 1 0.7772 0.9650 0.9059 0.7558 0.8711 0.8577 
Ensemble method 2 0.8449 0.8975 0.9410 0.7437 0.8712 0.8678 

Normalized profile-monogram uniprot20 SVM 0.8289 0.8596 0.8983 0.6889 0.8442 0.8418 
RF 0.8727 0.9071 0.9628 0.7804 0.8899 0.8880 
KNN 0.8833 0.8644 0.9516 0.7481 0.8738 0.8750 
Ensemble method 1 0.7812 0.9584 0.9084 0.7516 0.8698 0.8571 
Ensemble method 2 0.8622 0.8900 0.9446 0.7526 0.8761 0.8743 

Normalized profile-bigram nr20 SVM 0.8141 0.8986 0.9052 0.7157 0.8563 0.8500 
RF 0.8546 0.9214 0.9685 0.7779 0.8880 0.8841 
KNN 0.8890 0.8467 0.9403 0.7372 0.8678 0.8706 
Ensemble method 1 0.7463 0.9712 0.8770 0.7365 0.8587 0.8407 
Ensemble method 2 0.8425 0.8984 0.9371 0.7424 0.8704 0.8667 

Normalized profile-bigram uniprot20 SVM 0.8235 0.8960 0.9107 0.7219 0.8597 0.8544 
RF 0.8539 0.9280 0.9701 0.7842 0.8909 0.8867 
KNN 0.8978 0.8409 0.9429 0.7406 0.8693 0.8730 
Ensemble method 1 0.7588 0.9718 0.8892 0.7480 0.8653 0.8491 
Ensemble method 2 0.8689 0.8984 0.9429 0.7680 0.8836 0.8819 

Bold numbers indicate the best performance for each classifier for different methods. 

Table 2 
Results for independent test.  

Method Classifier Sen Spec AUC MCC ACC F1 

Wang et al. (BMC 2017) SVM 0.5020 0.7846 0.6874 0.2752 0.7148 0.4655 
RF 0.5200 0.7757 0.7120 0.2809 0.7125 0.4717 

Normalized profile-monogram nr20 SVM 0.6678 0.744 0.7492 0.3723 0.7252 0.5461 
RF 0.5629 0.7602 0.7518 0.3003 0.7115 0.4916 
KNN 0.6795 0.6706 0.7444 0.3080 0.6728 0.5066 
Ensemble method 1 0.4463 0.8928 0.6887 0.3752 0.7825 0.504 
Ensemble method 2 0.6405 0.737 0.7588 0.3408 0.7131 0.5245 

Normalized profile-monogram uniprot20 SVM 0.6981 0.7008 0.7438 0.3529 0.7001 0.5358 
RF 0.5395 0.7602 0.7410 0.2803 0.7057 0.4754 
KNN 0.6127 0.6768 0.7106 0.2582 0.6610 0.473 
Ensemble method 1 0.4576 0.8891 0.7058 0.3795 0.7825 0.5099 
Ensemble method 2 0.6107 0.7149 0.7254 0.2926 0.6892 0.4928 

Normalized profile-bigram nr20 SVM 0.5976 0.7925 0.7577 0.3689 0.7443 0.5356 
RF 0.5971 0.7720 0.7694 0.3424 0.7288 0.5205 
KNN 0.6639 0.5933 0.7056 0.2246 0.6107 0.4591 
Ensemble method 1 0.4093 0.8933 0.6377 0.3415 0.7737 0.4715 
Ensemble method 2 0.6146 0.7211 0.7285 0.3031 0.6948 0.4986 

Normalized profile-bigram uniprot20 SVM 0.6010 0.7805 0.7594 0.3577 0.7361 0.5298 
RF 0.6054 0.7709 0.7697 0.3484 0.7300 0.5254 
KNN 0.6985 0.5678 0.7209 0.2316 0.6001 0.4652 
Ensemble method 1 0.4327 0.8805 0.6526 0.3429 0.7699 0.4814 
Ensemble method 2 0.6624 0.7016 0.7528 0.3244 0.6919 0.5158 

Bold numbers indicate the best performance for each classifier for different methods. 
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profile-bigram features computed from the HMM profiles (extracted 
from uniprot database) performed well with the SVM and RF classifiers, 
respectively, achieving a sensitivity of 0.824 and 0.854, specificity of 
0.896 and 0.928, AUC of 0.911 and 0.970, MCC of 0.722 and 0.784, 
accuracy of 0.860 and 0.891, and F-measure of 0.854 and 0.887. On the 
other hand, normalized profile-monogram features computed from the 
HMM profiles of the nr20 database performed well with the KNN clas-
sifier achieving a sensitivity of 0.882, specificity of 0.875, AUC of 0.949, 
MCC of 0.757, accuracy of 0.878, and F-measure of 0.879. Overall, a 
performance improvement of 5–10% is observed compared with the 
method reported by Wang et al., [9]. In the independent test, the 
normalized profile-bigram features computed from the HMM profiles of 
the nr20 and uniprot databases provided good results with the SVM and 
RF classifiers, respectively, achieving a sensitivity of 0.600 and 0.605, 
specificity of 0.793 and 0.771, AUC of 0.758 and 0.769, MCC of 0.369 

and 0.348, accuracy of 0.744 and 0.730, and F-measure of 0.56 and 
0.525. Similarly, the normalized profile-monogram features computed 
from the HMM profiles of the nr20 database performed well with the 
KNN classifier achieving a sensitivity of 0.680, specificity of 0.671, AUC 
of 0.744, MCC of 0.308, accuracy of 0.673, and F-measure of 0.507. 
Compared to the benchmark method proposed by Wang et al. [9], our 
proposed method demonstrated a performance improvement of 
approximately more than 3%. 

To enhance the overall performance, the ensemble of the classifiers is 
developed, and a minor increase in performance is reported. Evaluating 
the train set, the ensemble method 1 performed well with normalized 
profile-monogram feature achieving sensitivity of 0.781, specificity of 
0.958, AUC of 0.908, MCC of 0.752, accuracy of 0.870, and F-measure of 
0.857. On the other hand, the ensemble method 2 provided good results 
with the normalized profile-bigram feature achieving a sensitivity of 

Table 3 
Comparison with existing methods on train set.  

Method Classifier Sen Spec AUC MCC ACC F1 

Wang et al. (BMC 2017) SVM 0.6832 0.9409 0.9069 0.6464 0.812 0.7838 
RF 0.8206 0.9148 0.9239 0.7389 0.8677 0.8611 

SDBP-Pred (2020) SVM 0.9427 0.8033 – 0.7220 0.9186 – 
Proposed SVM 0.8235 0.8960 0.9107 0.7219 0.8597 0.8544 

RF 0.8539 0.9280 0.9701 0.7842 0.8909 0.8867 
KNN 0.8815 0.8752 0.9494 0.7573 0.8784 0.8787 
Ensemble method 1 0.7812 0.9584 0.9084 0.7516 0.8698 0.8571 
Ensemble method 2 0.8689 0.8984 0.9429 0.7680 0.8836 0.8819 

The underlined scores are obtained from the Ali et al. [47], since the source code for SDBP-Pred predictor is not available. 

Table 4 
Comparison with existing methods on independent test set.  

Method Classifier Sen Spec AUC MCC ACC F1 

Wang et al. (BMC 2017) SVM 0.502 0.7846 0.6874 0.2752 0.7148 0.4655 
RF 0.5200 0.7757 0.7120 0.2809 0.7125 0.4717 

SDBP-Pred (2020) SVM 0.8160 0.4870 – 0.2990 0.7340 – 
Proposed SVM 0.5976 0.7925 0.7577 0.3689 0.7443 0.5356 

RF 0.6054 0.7709 0.7697 0.3484 0.7300 0.5254 
KNN 0.6795 0.6706 0.7444 0.3080 0.6728 0.5066 
Ensemble method 1 0.4463 0.8928 0.6887 0.3752 0.7825 0.5040 
Ensemble method 2 0.6405 0.7370 0.7588 0.3408 0.7131 0.5245 

The underlined scores are obtained from the Ali et al. [47], since the source code for SDBP-Pred predictor is not available. 

Table 5 
Results for new test set for sequences identity cut off at 90%.  

Method Classifier Sen Spec AUC MCC ACC F1 

Wang et al. (BMC 2017) SVM 0.7653 0.9306 0.856 0.6970 0.8402 0.8399 
RF 0.7641 0.9491 0.9127 0.7155 0.8479 0.8462 

Normalized profile-monogram nr20 SVM 0.7522 0.8068 0.8371 0.5579 0.7769 0.7871 
RF 0.8456 0.9257 0.8912 0.7684 0.8819 0.8867 
KNN 0.8241 0.7589 0.8853 0.5861 0.7945 0.8149 
Ensemble method 1 0.7341 0.9947 0.8228 0.7396 0.8521 0.8445 
Ensemble method 2 0.8109 0.8740 0.8677 0.6833 0.8395 0.8472 

Normalized profile-monogram uniprot20 SVM 0.7500 0.7921 0.8366 0.5407 0.7691 0.7810 
RF 0.8409 0.8615 0.8803 0.7010 0.8503 0.8598 
KNN 0.8272 0.6109 0.8788 0.4521 0.7292 0.7699 
Ensemble method 1 0.7294 0.9785 0.8391 0.7171 0.8422 0.8350 
Ensemble method 2 0.8088 0.7717 0.8681 0.5817 0.7920 0.8098 

Normalized profile-bigram nr20 SVM 0.7409 0.8909 0.8305 0.6326 0.8089 0.8096 
RF 0.7697 0.8034 0.8422 0.5718 0.7850 0.7971 
KNN 0.8038 0.5132 0.8365 0.3346 0.6721 0.7286 
Ensemble method 1 0.7288 0.9377 0.8531 0.6715 0.8234 0.8189 
Ensemble method 2 0.7556 0.7306 0.8296 0.4863 0.7443 0.7644 

Normalized profile-bigram uniprot20 SVM 0.7338 0.8853 0.8254 0.620 0.8024 0.8028 
RF 0.7713 0.7868 0.8329 0.5570 0.7783 0.7926 
KNN 0.8125 0.4800 0.8314 0.3124 0.6619 0.7247 
Ensemble method 1 0.7281 0.9340 0.8425 0.6668 0.8214 0.8170 
Ensemble method 2 0.7775 0.6925 0.8288 0.4726 0.7390 0.7658 

Bold numbers indicate the best performance for each classifier for different methods. 
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0.869, specificity of 0.898, AUC of 0.943, MCC of 0.768, accuracy of 
0.884, and F-measure of 0.882. In the independent set, both the 
ensemble methods performed well with the normalized profile- 
monogram features. To measure the statistical significance of the pro-
posed method, we performed paired t-test with 5% significance level. 
For the 10-fold cross-validation and independent test experiments, 
respectively, the statistical significance of the proposed method 
compared with Wang et al. [9] method, is computed as 0.028 and 0.008 
for SVM classification, and 0.005 and 0.010 for RF classification. The 
performance measures including AUC, MCC, ACC and F-measure have 
been utilized to compute the statistical significance. The overall com-
parison of the result is shown in Table 3 and Table 4. The proposed 
method is compared with Wang et al. [9], method and the recent pre-
dictor SDBP-Pred [47]. Overall, it is noticed that the proposed method 
outperforms the benchmark method and achieves promising results. To 
assess the performance of the proposed method, a new test set is 
assembled to include the recent DNA-binding proteins. For the new 

assembled test set, the performance is reported in Tables 5–7, respec-
tively. The sequence similarity cut-off value of 0.9, 0.7 and 0.3 is utilized 
to report the performance. It is observed that the proposed method 
outperforms the Wang et al. [9], method with a good prediction per-
formance. The sources code for SDBP-pred predictor is not available 
publicly, therefore, its performance is not compared for the new test set. 

The results suggest that the essential properties of SSBs and DSBs can 
be revealed by the profile monogram and profile bigram features 
extracted from the HMM profiles of the protein sequences. This helped 
in achieving improved performance for the prediction of the SSBs and 
DSBs. These properties are successfully encoded in the predicting 
scheme using the feature extraction techniques adopted in this study. To 
visualize these properties, we analyze the normalized profile-monogram 
and normalized profile-bigram scores computed from the HMM profiles 
of the protein sequences (Fig. 3 and Fig. 4). These scores are computed 
for the SSBs and DSBs in the independent set. The normalized profile- 
monogram features clearly demonstrate the difference in SSBs and 

Table 6 
Results for new test set for sequences identity cut off at 70%.  

Method Classifier Sen Spec AUC MCC ACC F1 

Wang et al. (BMC 2017) SVM 0.2967 0.9119 0.4969 0.2718 0.7612 0.3810 
RF 0.2400 0.9454 0.6114 0.2794 0.7727 0.3417 

Normalized profile-monogram nr20 SVM 0.2433 0.7897 0.5239 0.0427 0.6559 0.2573 
RF 0.4933 0.9238 0.6839 0.4679 0.8184 0.5672 
KNN 0.5150 0.7432 0.6946 0.2451 0.6874 0.4474 
Ensemble method 1 0.1800 0.9968 0.4801 0.3611 0.7967 0.2967 
Ensemble method 2 0.4750 0.8876 0.6373 0.4014 0.7865 0.5249 

Normalized profile-monogram uniprot20 SVM 0.3133 0.7714 0.5394 0.0942 0.6592 0.3156 
RF 0.5333 0.8935 0.6565 0.4501 0.8053 0.5692 
KNN 0.5250 0.5741 0.6385 0.0864 0.5620 0.3691 
Ensemble method 1 0.2117 0.9897 0.5336 0.3711 0.7992 0.3381 
Ensemble method 2 0.420 0.7773 0.6164 0.1973 0.6898 0.3991 

Normalized profile-bigram nr20 SVM 0.2083 0.9022 0.4646 0.1548 0.7322 0.2783 
RF 0.1767 0.7935 0.4511 – 0.6425 0.1953 
KNN 0.3450 0.4881 0.4462 – 0.4531 0.2253 
Ensemble method 1 0.1433 0.9600 0.6101 0.1923 0.760 0.2249 
Ensemble method 2 0.1950 0.7108 0.4432 – 0.5845 0.1874 

Normalized profile-bigram uniprot20 SVM 0.200 0.9097 0.4606 0.1566 0.7359 0.2706 
RF 0.1933 0.7719 0.4137 – 0.6302 0.2091 
KNN 0.4067 0.4254 0.4312 – 0.4208 0.2511 
Ensemble method 1 0.1700 0.9687 0.6046 0.2589 0.7731 0.2684 
Ensemble method 2 0.2417 0.6654 0.4176 – 0.5616 0.2115 

Bold numbers indicate the best performance for each classifier for different methods. 

Table 7 
Results for new test set for sequences identity cut off at 30%.  

Method Classifier Sen Spec AUC MCC ACC F1 

Wang et al. (BMC 2017) SVM 0.3933 0.9400 0.6102 0.4303 0.776 0.5143 
RF 0.3200 0.9629 0.6801 0.4067 0.7700 0.4548 

Normalized profile-monogram nr20 SVM 0.3044 0.8743 0.6265 0.2205 0.7033 0.3807 
RF 0.5267 0.8733 0.6965 0.4252 0.7693 0.5748 
KNN 0.5289 0.7781 0.7396 0.3077 0.7033 0.5141 
Ensemble method 1 0.2267 0.9952 0.5297 0.3949 0.7647 0.3592 
Ensemble method 2 0.5089 0.8752 0.6907 0.4183 0.7653 0.5660 

Normalized profile-monogram uniprot20 SVM 0.4178 0.8591 0.6526 0.3123 0.7267 0.4805 
RF 0.6044 0.8667 0.694 0.4862 0.7880 0.6295 
KNN 0.5956 0.6857 0.7353 0.2652 0.6587 0.5110 
Ensemble method 1 0.2822 0.9857 0.5328 0.4229 0.7747 0.4253 
Ensemble method 2 0.5000 0.7771 0.6986 0.2785 0.6940 0.4944 

Normalized profile-bigram nr20 SVM 0.2778 0.9219 0.5510 0.2771 0.7287 0.3821 
RF 0.2356 0.7457 0.4933 – 0.5927 0.2556 
KNN 0.4044 0.5191 0.5104 – 0.4847 0.309 
Ensemble method 1 0.1911 0.9400 0.6360 0.2084 0.7153 0.2842 
Ensemble method 2 0.2578 0.6981 0.5127 – 0.5660 0.2616 

Normalized profile-bigram uniprot20 SVM 0.2667 0.9152 0.5597 0.2455 0.7207 0.3622 
RF 0.2556 0.7476 0.4618 0.006 0.60 0.2774 
KNN 0.4422 0.5114 0.5199 – 0.4907 0.3363 
Ensemble method 1 0.2267 0.9591 0.6617 0.2957 0.7393 0.3406 
Ensemble method 2 0.3222 0.6933 0.5114 0.0147 0.5820 0.3124 

Bold numbers indicate the best performance for each classifier for different methods. 
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DSBs for the amino acids E, I, L, K and R, while the amino acids A, G, M, 
N and S show a close relationship. Furthermore, we observe that amino 
acids D, F, H, P, Q, T, V and Y have similar properties in SSBs and DSBs. 
Besides, the normalized profile-bigram features (Fig. 4) demonstrate the 
difference in the properties of SSBs and DSBs, which helped the pro-
posed method to predict the SSBs and DSBs correctly. 

HMM profiles generated with HHblits contain relevant information 
used to predict the SSBs and DSBs. This is shown computationally by 
observing the HMM profile features compared with the features of the 

primary protein sequences (Fig. 5). In Fig. 5, it is observed that the SSBs 
and DSBs are easily recognized with the HMM profile features, whereas, 
it is difficult to identify the SSBs and DSBs using the features of the 
primary protein sequences. HMM profiles contain the evolutionary in-
formation of protein sequences in the external databases and its signif-
icance lies in the construction of high-quality multiple sequences 
alignments. Comparing the prediction performance, the normalized 
profile-bigram based features dominated the accuracy with different 
classifiers and parameters, therefore, the normalized profile-bigram 

Fig. 3. Normalized profile-monogram scores of the SSBs and DSBs in the independent dataset. The average value of the scores are shown.  

Fig. 4. Normalized profile-bigram scores of the SSBs and DSBs in the independent dataset. The average value of the scores are shown.  
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based feature extraction method is recommended for the proposed 
method to predict SSBs and DSBs. 

We are currently investigating the AI techniques, such as DeepInsight 
[48], to predict the DNA-binding proteins. Similar to our previous 
studies [13,16,17,19], in future, we will be identifying and analyzing the 
amino acid residues involved in DNA-binding sites. We are aiming to 
develop a computational predictor to predict the DNA-binding sites. 

4. Conclusion 

In this study, the HMM profiles are used for the prediction of SSBs 
and DSBs. The comparison of the results demonstrates the significance of 
the proposed method. The results revealed the distinguishing abilities of 
the profile-monogram and profile-bigram features computed from the 
HMM profiles. The features showed a remarkable difference between 
SSBs and DSBs. Using these features and conducting an independent test, 
confirmed the effectiveness of the proposed method. Compared with the 
RF and KNN classifier employed in this study, SVM classifier performed 
better in the independent test. The proposed method achieved a per-
formance improvement of approximately 3% in the independent test 
compared with the existing method [9], thus, indicating the effective 
prediction of SSBs and DSBs to investigate the DNA-binding proteins. 
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