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A B S T R A C T

Predicting disease candidate genes from human genome is a crucial part of nowadays biomedical research.
According to observations, diseases with the same phenotype have the similar biological characteristics and
genes associated with these same diseases tend to share common functional properties. Therefore, by applying
machine learning methods, new disease genes are predicted based on previous ones. In recent studies, some
semi-supervised learning methods, called Positive-Unlabeled Learning (PU-Learning) are used for predicting
disease candidate genes. In this study, a novel method is introduced to predict disease candidate genes through
gene expression profiles by learning hidden Markov models. In order to evaluate the proposed method, it is
applied on a mixed part of 398 disease genes from three disease types and 12001 unlabeled genes. Compared to
the other methods in literature, the experimental results indicate a significant improvement in favor of the
proposed method.

1. Introduction

DNA microarray is a collection of microscopic spots attached to a
solid surface to measure the expression levels of genes. This technology
enables researchers to study genes in the human genome, at the same
time [1]. Analyzing gene expression levels in disease genes represents a
consistent pattern of different expression levels in each disease [2].
Many complex diseases, namely, cancer, diabetes and cardiovascular
have a severe impact on human health. Since these diseases are con-
sequences of complicated interactions of multiple genes, predicting
disease candidate genes are very important for understanding the me-
chanism of diseases and discovering the therapeutic targets. So far,
several methods have been proposed to predict disease candidate genes
based on different type of biological data such as sequence-based fea-
tures [3,4], function [5–9] and network [10–14].

Commonly, learning techniques are applied on a set of binary la-
beled instances (i.e., positive and negative) to learn a model that dis-
criminates positive instances from negative ones. But in the case of
disease candidate genes prediction problem we have only a small set of
positive instances (P) (i.e., disease genes) and a large set of unlabeled
genes (U) (i.e., those genes that we are going to predict some of them
positive) [15]. These type of problems are solved by applying positive-

unlabeled learning (PU-learning) approach.
The existing methods are classified into two families. The first fa-

mily of methods [16–20] proceeds in two steps. First, extracting some
reliable negative (RN) instances, then applying a supervised or semi-
supervised binary learning method. Mordelet et al. [16] proposed a
bagging method (ProDiGe) that iteratively selects random subsets of
genes (RS) from U and then learns several classifiers using bias support
vector machine (SVM) to discriminate disease genes set from each
subset RS. These classifiers were subsequently aggregated to generate
the final classifier. Given that RS’s are likely to contain less noise than
the original set U, ProDiGe is able to perform better than classical
binary classifiers that inconveniently take U as negative training data.
Yang et al. [17] devised a multi-level PU learning algorithm (PUDI) to
build a classifier with better performance for predicting disease can-
didate genes. They partitioned the unlabeled genes set into multiple
positive and negative sets with confidence scores for building the
classifier. Yang et al. [18] proposed an effective PU learning framework
that integrates three biological data sources: gene expression data, gene
ontology and human protein interaction data. Then they forged an
ensemble of machine learning classifiers for disease candidate genes
prediction. Yousef et al. [19] proposed a method which consists of four
layers. In the first layer, feature vectors are created by taking the amino
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acid sequences of proteins into four different feature sets such as NA,1

GA,2 AC3 and MA.4 The second layer, selects negative genes, using
cosine distance from unlabeled genes per feature vectors. It creates a set
of reliable negative genes by extracting the intersection of reliable ne-
gative genes within four feature vectors. In the third layer, a SVM
model per feature vector set is learned. In the last layer, a decision tree
(C4.5) is applied as a fusion method to combine the results of four in-
dependent SVM predictors and to make the final decision. Jowkar et al.
[20] proposed a Perceptron ensemble of graph-based pu-learning
(PEGPUL) method. First, they extract a reliable set of positive and ne-
gative genes, and then build a similarity graph of genes using metric
learning by multi-rank-walk method to perform inference from un-
labeled genes. Finally, a Perceptron ensemble is learned from three
classifiers: SVM, K-nearest neighbor (KNN) and decision tree.

The second clan of methods [21,22] reduces the problem into a
learning problem with high one-sided noise by treating the unlabeled
set as noisy negative set. Smalter et al. [21] applied SVM classifier using
protein-protein interactions topological features in addition to se-
quence-derived and evolutionary features. Whilst Radivojac et al. [22]
made three individual SVM classifiers using three types of features,
namely protein-protein interactions network, protein sequence and
protein functional information. Next, in order to predict disease can-
didate genes, a final classifier combines the predictions of individual
classifiers.

In this research, we propose a method that first for each disease
type, it clusters disease genes by using semantic similarity as the dis-
tance measure between genes, then for each cluster, a HMM model is
learned and its threshold is calculated. The proposed method is com-
pared with several previous practices such as Xu’s [23], Smalter’s [21],
ProDiGe [16], PUDI [17], EPU [18], SFM [19] and PEGPUL [20]. Ex-
perimental results acknowledge improvements in both precision and
recall metrics made over these past methods.

The rest of the paper is organized as follows: In Section 2, basic
concepts such as semantic similarity calculation, hidden Markov model
are introduced. The proposed method is explained in Section 3. In
Section 4, the datasets, evaluation metrics and results are presented.
Analysis and discussion is presented in Section 5. Section 6 concludes
the paper.

2. Basic concepts

2.1. Semantic similarity calculation

A Gene Ontology (GO) defines concepts/classes that are used to
describe gene functionality and relationships between these concepts.
GO discriminates these functions along three aspects: biological pro-
cesses (BP), cellular components (CC) and molecular functions (MF).
Semantic similarity based on ontology is defined as the closeness in
meaning between two ontology terms or two sets of terms annotating
two genes. Semantic similarity measures have become important in
bioinformatics as they provide a way of quantifying the functional
correspondence and relevancy between genes that is complementary to
both experimental evidence and sequence-based approaches. This is
accomplished by augmenting genes with annotating terms of a chosen
ontology and then quantifying the similarities between those terms.
Gene Ontology semantic similarity Tool (GOssTo) is a tool to calculate
semantic similarity between gene products according to the gene on-
tology [24]. Several semantic similarity measures have been proposed
[25,26], which typically rely on: corpus-based or structure-based. We
have utilized the second approach in the proposed method. In structure-

based approach, information content (IC) of a term is computed from
the number of its descendants in the GO structure [27]. The IC of term ti
is presented in relation (1), where desc t( )i means the number of des-
cendants of term ti, and totalterms is the number of terms in GO.

=
+

IC t
desc t totalterms

totalterms
( )

log(( ( ) 1)/ )
log(1/ )i
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Suppose genes GA and GB are annotated with term sets …T t t t t{ , , , , }A m1 2 3
and ′ ′ ′ … ′T t t t t{ , , , , }B n1 2 3 , respectively, FSsim [25] defines the functional si-
milarity between GA and GB by relation (2).
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2.2. Hidden Markov model

An HMM which was first developed by [28], is a probabilistic model
in which the system is assumed to be a Markov process with hidden
states. HMM is used for representing probability distribution over se-
quences of observations.

In order to fully determine a discrete HMM, the following elements
should be defined [29]:

• N: the number of distinct hidden states.

• M: the number of observation symbols.

• = πΠ { }i : the initial state vector where = = ⩽ ⩽π P q S i N( ),1i i1 is
the probability of Si being the first state of a state sequence.

• A= a{ }ij : the transition probability matrix in which an element aij
represents the probability to go from state i to sate

= = = ⩽ ⩽+j a P q S q S i j N: ( | ),1 ,ij t j t i1 . Transition probabilities must
satisfy the normal stochastic constraints: ∀ ⩾ ⩽ ⩽a i j N0,1 ,ij ,
∑ == a 1j

N
ij1 .

• B= b k{ ( )}j : the emission probability matrix where b k( )j specifies the
likelihood of the kth observation symbol, vk, in the alphabet when
the model is in state Sj: bj

= = = ⩽ ⩽ ⩽ ⩽k P O v q S j N k M( ) ( | ),1 ,1t k t j .

3. The proposed method

Fig. 1 demonstrates the architecture of the proposed method that
consists of two phases, namely, learning phase and prediction phase.
The learning phase is composed of four steps. The first and second steps
are done in parallel. In the first step, the genes of each disease type
(DTk) are clustered (CLkj) by calculating semantic similarity between
disease type based on a gene ontology. In the second step, for each
disease (Di), the expression levels of its genes in of all their time slots or
conditions are quantized. It should be noticed that since each disease
type includes some diseases, so, after clustering the genes of each dis-
ease are scattered between different clusters. Therefore in the third
step, the quantized expression profiles of each disease (TSCi) are
mapped to their corresponding disease type clusters. In the last step, a
HMM model ( =λ A B t(Π , , , )ij ij ij ij ij ) per cluster (TSCij) in each disease (Di)
is learned. Moreover, in order to tune the prediction of disease candi-
date genes in the future, the corresponding threshold (tij) of each
learned HMM (λij) is calculated from the training set of each cluster
(TSCij).

In the predication phase, first, each time slot or condition expression
level of each unlabeled genes are mapped to the closest value that are
determined in the second step of learning phase, then, based on the
learned HMM models and their corresponding thresholds (λ t,ij ij), the
labels of unlabeled genes are predicted.

1 Normalized Moreau-Broto autocorrelation.
2 Geary auto correlation.
3 Auto covariance.
4 Moran auto-correlation.
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3.1. Disease type genes clustering

Prior to applying a clustering method, a similarity/distance measure
must be determined reflecting the degree of closeness between samples.
We compute the semantic similarities between all disease type genes
based on a gene ontology and relations (1) and (2) and store them in a
matrix (MDTk). Then, we apply a combination of K-means++ and K-
means algorithms on each disease type (DTk) using MDTk to make a
specific number of clusters (CLkj). Algorithm 1 shows the proposed
disease genes clustering method.

In the first part of Algorithm 1 (Lines 1:4), K-means++ is applied
to make initial set of cluster centers (CDTk) per disease type (DTk). To

accomplish this, it chooses one center uniformly at random among the
disease type genes, then for each disease type gene (x), it computes the
minimum distance between x and centers (CDTk) that has already been
chosen by using MDTk according to relation (3).

= ∀ ∈distance x CDT Min MDT x c c CDT( , ) ( ( , )) , (3)

Next, it chooses one new disease type gene ( ′x ) as a new center with
probability calculated using relation (4). These steps are repeated until
the L centers are chosen.

Disease type genes 
(DT k)

 1-Clustering

Disease gene expression 
profiles (GEPi[m ][q])

2- Vector 
Quantization

  4-Learning HMM 
models 

ij = ( ij, Aij,Bij)

HMM models ( ij,tij)

Disease genes quantized 
expression profiles 

(QGEPi[m ][q])
3-Map

Gene Ontology

Clusters of disease 
genes (CL kj)

Quantized expression 
profile values

Time sequences of each 
cluster (TSCij)

Unlabeled genes 
expression profile

Quantized expression 
profile values

1- Map Time sequence of 
unlabeled genes (TSC ul)

2-Prediction

Candidate disease genes

Learning 
Phase

Prediction 
Phase

Fig. 1. The architecture of the proposed disease candidate genes prediction method.
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In the second part of Algorithm 1 (Lines 5:12), K-means method is
applied on disease type genes to make the final set of clusters (CL).

Algorithm 1. Disease type genes clustering

Input: P: Set of genes of a disease type,
= …P x x x{ , , , }m1 2 , L: Number of clusters

Output: CL: Set of clusters,
= …CL cl cl cl{ , , , }L1 2

K-menas++ part
1: Choose first center c1 uniformly at random from P,and let

CDT= {c1}
2: loop (L-1) times:
3: Choose next center = ′ ∈c x Pi with probability according to
relation (4)

← ∪CDT CDT ci
4: end loop

K-means part
5: ←CL CDT
6: loop Until CL converge:
7: loop For all ∈x Pt :

8: ←
⎧

⎨
⎩

=
b

ifFS x cl
min FS x cl
otherwise

1 ( , )
( ( , ))

0
i
t

sim
t

i

j sim
t

j

9: end loop
10: loop For all = …cl i L, 1, ,i

11: ← ∑ ∑CL b x b/i t i
t t

t i
t

12: end loop
13: end loop

In order to determine the number of clusters in each disease type
(k), a density metric is proposed which is calculated according to re-
lation (5). The Densitykj is the total closeness each pair of disease type
genes in jth cluster of disease type k.

∑ ∑=
= =

Density FS a b( , )kj
a

n

b

n

sim
1 1

kj kj

(5)

where nkj denotes the number of disease type genes in jth cluster of
disease type k and FS a b( , )sim is defined by relation (2).

If there are Lk clusters in disease type k, their density values are
summed up using relation (6).

∑=
=

TotalDensity Density l( )k
l

L

kl
1

k

(6)

For different values of Lk, the one, ′Lk with minimum TotalDensityk is
the final number of clusters according to relation (7).

′ =L argmin TotalDensity( )k k (7)

3.2. Gene expression profile quantization

Gene expression profiling (GEP) is an iterative process of measuring
the expression level of all genes at once in different conditions or at
different time slots. Fig. 2 shows a gene expression profile matrix. Each
xab represents the expression level of ath gene in bth time slot or con-
dition. Since there are many scattered expression levels of genes in a
specific time slot or condition, so we map each expression level xab to
fewer numbers. To achieve this goal, we use a sophisticated vector
quantization (VQ) technique, K-means which is demonstrated in

Algorithm 2. In Algorithm 2 (Lines 1:3), K-means is applied on input
gene expression profile (GEP m q[ ][ ]) to identify NC discrete values in
each time slot or condition. In the second part of Algorithm 2 (Lines
4:8), we enumerate on columns of GEP m q[ ][ ] matrix and map each
expression level xab to the closest centroid of column b, (QGEP m q[ ][ ]).

Algorithm 2. Time-slot value quantization

Input: GEP[m][q]: Matrix of gene expression profile, m: Number of
disease type genes, q:Length of sequence, NC=Number of
clusters

Output: QGEP[m][q]: Matrix of quantized gene expression profile,
Centers[NC][q]: Centroid of clusters per time slot

1: for h=1 to q do
2: Centers[∗][h]=K-means(GEP[∗][h], NC)
3: Endfor
4: for b= 1 to q
5: for a= 1 to m
6: QGEP[a][b] = Map to closest
7: centroid(Centers[∗][b])
8: Endfor
9: Endfor

3.3. Mapping quantized gene expression profiles

Since each disease type consists of several diseases, each disease
appears all clusters of its corresponding disease type. So gene expres-
sion profiles which are quantized for each disease genes are mapped to
their corresponding disease type clusters. Finally, in each disease, we
have multiple clusters (TSCij) of quantized gene expression profiles.

3.4. Learning HMM models

In learning step, we consider each gene expression profile as an
effective sequence that could be interpreted as an observations se-
quence in HMM. So we learn a series of HMM models, (λij), one model
for each cluster j of each disease Di which are included in the corre-
sponding disease type (DTk). An important parameter in learning HMM
models is the number of states (N). In order to determine the right
number of states, several HMM models with various number of states
ranging from two to the length of gene expression sequence are learned.
After learning models for different number of states, we cross-validate
each HMM model (λij) and choose the one that has the best recall,
precision and F1 values.

We fit an ergodic HMM over the training data of each cluster (TSCij),
using Baum-Welch learning algorithm [29]. The algorithm is an itera-
tion procedure composed of two steps: E-step and M-step. Until the
HMM learning parameters, ( A BΠ , ,k k k) converge, i.e., P O λ( | )k never
decreased. At each iteration k, first in the E-step, all ξ i j( , )t are com-
puted. ξ i j( , )t is the probability of being in state Si at time t and transit to

… …… …… … … … … …… …
Time slots / Conditions

Genes

Fig. 2. Gene expression profile matrix.
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state Sj at time +t 1 (Fig. 3), given the whole observation sequence Ot

and λ. ξ i j( , )t are computed by relation (8).

≡ = =+ξ i j P q S q S O λ( , ) ( , | , )t t i t j1 (8)

γ i( )t are computed for all states i, given current λ = ( A BΠ , ,k k k) ac-
cording to relation (9).

∑=
=

γ i ξ i j( ) ( , )t
j

N

t
1 (9)

Next, in the M-step, λ A B(Π , , )k k k is recalculated by considering all
observation = …O O O O{ , , , }m1 2 using ξ i j( , )t and γ i( )t for all i j, from the
last E-step by relations 10, 11, 12.
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1 1

1 1
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After learning HMM models, λij, for clusters j of disease i their
corresponding threshold (tij) are calculated by relation (13).

=
∑

= ∗=Threshold
prob l
n

n S
[ ]

, 0.25ij
l
n

ij
ij ij

1
ij

(13)

where prob l[ ]ij is a vector with length Sij that contains probability of
every gene expression sequence in the training set which are sorted out
in the ascending order and Sij is the size of training set of cluster (TSCij).

3.5. Negative gene extraction

Since we want to compare the proposed method with other
methods, in terms of recall, precision and F1 metrics, we need some
negative samples in the prediction phase. In order to extract a set of
reliable negative genes (RN) from unlabeled genes (U), we follow a
simple approach in which some unlabeled samples with the most dis-
similarity to all positive samples are labeled as reliable negative. In
other words, extracted RN samples are outliers with respect to positive
samples.

Suppose …G x x x x( , , , , )P m1 2 3 and …G y y y y( , , , , )U m1 2 3 are gene expression
profiles before quantization of a disease gene and an unlabeled gene,
respectively. We consider the dissimilarity between GP and GU as the
Euclidean distance between their corresponding gene expression pro-
files which is calculated by relation (14):

∑= −
=

dis G G x y( , ) ( )P U i

m
i i1

2
(14)

By using relation (15), we calculate the average Euclidean distance

of an unlabeled gene, GU from all disease genes ( G( )P j).

=
∑ =Avgdis G

dis G G

n
[ ]

(( ) , )
U

j
n

P j U1

(15)

where n is the number of disease genes (i.e., positive genes). Finally,
farthest unlabeled genes from all disease genes are selected according to
relation (16).

= >RN G Avgdis G θ{ | [ ] }U U (16)

3.6. Disease candidate genes prediction

In this phase, the extracted reliable negative genes are removed
from unlabeled genes ( = −UL U RN ). Then, the remaining unlabeled
genes expression profiles are quantized according to the values of
quantization (Centers) which are identified in the second step of
learning phase. After that, the label of each unlabeled gene (TSCul) is
predicted by using all HMMij models which are learned for all clusters
(TSCij) based on the best number of states and its corresponding
threshold in each cluster λ t( , )ij ij . If at least one of the HMM models
predict a unlabeled gene as positive, we consider that gene as a can-
didate disease gene. Otherwise it is considered as negative (non dis-
ease).

4. Experimental results

In this Section, first the experimental results of the proposed method
per disease (Di) are discussed. Furthermore, the influence of disease
type genes clustering and number of clusters in gene expression profile
quantization in predicting disease candidate genes are explored.
Moreover, the results of the proposed method per disease type (DTk) are
compared with other methods. All computations are conducted on one
Xeon CPU with 16 cores and 16 GB of RAM.

4.1. Datasets

The dataset provided by Yang et al. [18] is used in this study. All
genes are extracted by combining GENECARD [30] and OMIM [31]
disease genes data. We use 398 known disease type genes and 12001
unlabeled genes in three disease types: cancer, endocrine and cardio-
vascular (see Table 1).

GO data (release of November 2015) and a human gene annotation
dataset (release of November 2015) were downloaded from the GO
database [32].

Another dataset that is used in this paper is the microarray gene
expression profiles (GEP). GEP specifications for each disease are shown
in Table 2. All datasets which are mentioned in Table 2 are downloaded
from National Center for Biotechnology Information (NBCI) [33].

Recall that the previous research use the datasets containing the
genes of disease types until the year 2010 [30] to learn and examine
their performance. But, unlike the previous methods, the proposed
method is learned and evaluated on the datasets by year 2010 [30], and
further evaluated by a set of new disease genes identified between years
2010 till 2016. The new confirmed disease genes are obtained from
GENECARDS [34].

Fig. 3. Computation of arc probabilities, ξ i j( , )t [29].

Table 1
Number of disease genes per disease type and unlabeled genes.

Label of genes Disease type No. of genes

Positive Cancer 210
Endocrine 81

Cardiovascular 107

Unlabeled – 12,001
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4.2. Evaluation metrics

There are several metrics to measure the performance of disease
candidate genes prediction methods such as precision, recall and F1
metrics. These metrics are defined in relations 17, 18, 19, respectively.

=
+

Precision P TP
TP FP

( )
(17)

=
+

Recall R TP
TP FN

( )
(18)

= ∗ ∗
+

F Precision Recall
Precision Recall
2

1 (19)

where TP5 is the number of disease genes which are properly identified,
FP6 is the number of reliable negative genes which are identified as
disease genes and FN7 is the number of disease genes which are iden-
tified as reliable negative genes. Since in prediction the disease candi-
date genes problem, we are given just disease genes, the recall metric is
the most important one. In other words, it represents the percentage of
correctly identified disease genes.

4.3. Results

In this Section, the results of applying the proposed method on the
dataset described in Section 4.1 are represented.

4.3.1. Disease type genes clustering results
In order to determine an appropriate number of clusters (L) in each

disease type, the TotalDensity metric (relation (6)) is calculated for
various numbers of clusters per disease type. The results are re-
presented in Table 3. For instance, in cancer disease type, when the
number of clusters is equal to two, we have a lowest value in terms of
TotalDensity.

The reason behind the genes of each disease type clustering is that
these genes could have various patterns. To explore the effectiveness of
disease type clustering in predicting disease candidate genes, we
learned another series of HMM models, one for each disease type
(without clustering). Finally, we compared the results of predicting
disease genes based on HMMs learned on with and without clustering.
As can be seen in Figs. 4 and 5, disease type clustering significantly
improves the values of precision, recall and F1 metrics.

4.3.2. Gene expression profile quantization results
Before starting learning HMM models an other important parameter

that should be determined is the number of discrete points in gene
expression quantization (i.e., NC in Algorithm 2). So we quantize the
gene expression profiles by applying Algorithm 2 considering various
numbers of discrete points. Fig. 6 shows that by increasing the number
of discrete points, the recall metric, which is the most important metric
in this context, is improved. As can be seen, the recall values of HMM

Table 2
Microarray gene expression profiles of datasets specification.

Disease type Disease GEP dataset No. of expressions per gene

Cancer Prostate GDS5805 6
Lung GDS1204 18

Colorectal GDS5029 18

Cardiovascular Heart Failure GDS651 37

Endocrine Adrenal GDS3556 9

Table 3
Identifying the number of clusters with minimum TotalDensity per disease type.

Disease type No. of
disease
genes

number of
clusters

TotalDensity The number of
clusters with
minimum

TotalDensity

Cancer 210 2 1054.12 2
3 1523.24
4 1793.56

Cardiovascular 107 2 419.67 3
3 300.7
4 350.67

Endocrine 81 2 297.28 2
3 307.08
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Fig. 4. The effect of disease type clustering on predicting the colorectal cancer
disease.
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Fig. 5. The effect of disease type clustering on predicting the adrenal disease.
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Fig. 6. Comparison of disease candidate genes prediction results for different
number of discreate points (NC) in gene expression quantization.
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models with 8 discrete points in quantizing gene expression profiles are
lower than the recall values of HMM models with 16 and 24 clusters. It
is also clear that the recall values of HMM models with 16 and 24
discrete points are almost the same, therefore, for sake of simplicity

=NC 16 is chosen.

4.3.3. Learning and predicting results per disease
We employ 10-fold cross validation technique to evaluate the per-

formance of the proposed method. Using this technique, the dataset is
divided into 10 subsets, and the proposed method is repeated 10 times.
Each time, one of the 10 subsets is used as the test set and the other
subsets are considered as a training set. Then the average of precision,
recall and F1 metrics across all 10 trials are computed.

We learn a HMM model (λij) for each cluster j of disease i. The
parameters of all =λ A B(Π, , ) models are initialized as follows:

• State transition probabilities (A)
A = a[ ]ij where =aij N

1

• Observation probabilities (B)
B = b m[ ( )]j where =b m( )j M

1

• Initial state probabilities (Π)
Π = π[ ]i where ∑ == π 1i

n
i1 , πi are randomly selected.

In order to determine the number of states per disease, we learn
some HMM models with different number of states on each disease.
Then, the number of states corresponding to the learned HMM models
with maximum recall, precision and F1 values is chosen. The best state
numbers for all diseases are presented in Table 4.

After λij initialization, we apply the proposed method on all clusters
in each disease (TSCij) and learn their corresponding λij using 10-fold
cross validation technique. After that, the threshold (tij) for each cluster
by using corresponding HMM model (λij) is determined according to
relation (13).

The proposed method is evaluated with different number of reliable
negative genes. At first, we set the number of reliable negative genes
per disease equal to the number of corresponding disease type genes.
For instance, in prostate cancer, the number of reliable negative genes
is set to 210 genes. So the values of precision, recall and F1 are 41.3%,
95.7% and 57.69%. The results of all diseases are represented in
Table 5.

After that, the number of reliable negative genes is set lower than
the number of disease genes. Table 6 presents the results and compar-
ison to Table 5, Table 6 shows a high rise of precision, recall and F1
values. So it confirms our hypothesis about the number of reliable ne-
gative genes, unlabeled genes having more distance from disease genes
are more reliable to be considered as negative genes.

Another parameter that affect learning HMM models is the number
of iterations in applying the Baum–Weltch algorithm. So the impact of
various iteration numbers on learning HMM models is explored. For
instance, in colorectal cancer, with the iteration number equal to 150,
recall value is higher than other iteration numbers. In heart failure, the
iteration numbers equal to 80, 100 and 150 have the best recall, so the
iteration number 80 is enough. Figs. 7 and 8 show that by increasing
the iteration number, the values of recall, precision and F1 are in-
creased, in other words they are converged.

4.4. Evaluation of the proposed method with new disease genes

Although many methods are proposed to predict disease genes, all
of them have never been evaluated on new disease genes (disease genes
identified and announced by biomedical researchers between 2010 and
2016 years). Thus, three diseases are selected, namely, prostate cancer,
colorectal cancer and adrenal, as detailed case studies. The HMM
models (λij) are learned by using disease genes of year 2010. Also the
thresholds (tij) are calculated by using training set. In this evaluation,
new disease genes are treated as unlabeled genes in prediction phase.
For instance, in prostate cancer, there are 191 disease genes are

Table 4
Best number of states in learned HMM with maximum F1

value.

Disease name Best No. of States

Prostate Cancer 5
Lung Cancer 9
Colorectal Cancer 13
Heart Failure 25
Adrenal 4

Table 5
Evaluation results when the number of reliable negative genes are equal to the
number of disease genes.

Disease No. of disease
genes

No. of negative
genes

P R F1

Prostate Cancer 210 210 41.3 95.7 57.69
Colorectal Cancer 210 210 69.2 99.0 81.46

Lung Cancer 210 210 65.1 97.9 78.19
Heart Failure 107 107 17.0 100 29.0

Adrenal 81 81 95.0 96.0 95.0

Table 6
Evaluation results when the number of reliable negative genes are less than the
disease genes.

Disease No. of disease
genes

No. of negative
genes

P R F1

Prostate Cancer 210 95 92 95 93
Colorectal

Cancer
210 191 93 94 93

Lung Cancer 210 150 91.1 95 93.3
Heart Failure 107 89 91.87 94.23 93.03

Adrenal 81 81 94.79 99.47 97.07
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Fig. 7. Comparison of the evaluation metrics for different iteration numbers
when learning HMM models in colorectal cancer.
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Fig. 8. Comparison of the evaluation metrics for different iteration numbers
when learning HMM models in heart failure.
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identified after the year 2010 which do not exist in other studies. By
applying the proposed method on new disease genes, in prostate cancer
the learned HMM models predict 178 of 191 genes as disease candidate
genes and only 13 genes are labeled as negative genes, so the recall
value is 93.19%. In colorectal cancer, 229 of 240 genes are labeled as
disease candidate genes and lastly, in adrenal disease, the proposed
method is predicted all new disease genes as disease candidate genes.
All detailed results are presented in Table 7.

Another experiment is conducted to calculate the overlap between
identified reliable negative genes based on disease genes dataset of
2010 and new disease genes dataset identified during the period from
2010 and 2016 years. Table 8 represents the results. The absence of
reliable negative genes in the new disease genes dataset shows that the
reliable negative genes are chosen correctly from unlabeled genes of
2010 dataset by the proposed method. So the proposed method, has
done its job prefect. For instance, in prostate cancer, only 3 of 95 re-
liable negative genes (3.15%) exist in new disease genes set and the
other 92 genes are still non disease genes.

4.5. Comparison with other works per disease type

The proposed method is compared with seven other methods,
namely, Xu’s [23], Smalter’s [21], ProDiGe [16], PUDI [17], EPU [18],
SFM [19] and PEGPUL [20]. The results of Xu’s [23], Smalter’s [21],

ProDiGe [16], PUDI [17] methods are extracted from EPU [18] re-
search. The results of aforementioned methods except PEGPUL method
[20] are reported based on disease types. In the proposed method, the
results of each disease type are calculated as the average of precision,
recall and F1 values of its corresponding gene diseases.

Among six mentioned methods, the proposed method appears to be
the most robust method, since it yields greater recall, precision and F1
values compared to the other methods for all disease types.

In cancer disease type, Fig. 9 shows that the proposed method
outperforms the other methods and has done 12.7%, 11.7% and 12.4%
better than EPU method in (the best method of previous methods) terms
of precision, recall and F1 metrics, respectively.

In cardiovascular disease type according to Fig. 10, the proposed
method in terms of precision and F1 metrics is better than EPU [18]. But
in recall metric, ProDiGe method is 2.07% higher than the proposed
method.

In endocrine disease type, according to Fig. 11 the proposed method
increased the values of precision (6.8%), recall (8.0%) and F1 (7.4%) in
comparison to EPU [18].

The results of the PEGPUL method [20] are reported without con-
sidering disease types (i.e., disease/non-disease). Therefore, the
average of the proposed method in three disease types are compared
with PEGPUL results that are shown in Table 9. As can be seen, the
proposed method in terms of precision, recall and F1 metrics is 17.79%,
7.05% and 13.87% better than PEGPUL method [20].

5. Analysis and discussion

The absence of negative set (non disease genes) is a challenging
issue in predicting disease candidate genes by binary machine learning
techniques. However, there exist many methods to predict disease
candidate genes which most of them use a binary classification tech-
nique. These methods depend on the set of reliable negative genes ex-
tracted from unlabeled genes. If the set of reliable negative genes
contains unknown disease genes, the learned model based on binary
classification will not perform correctly. The most important features of
the proposed method are:

1. Utilizing HMM models which are one-class classifiers.
2. Considering gene expression sequence instead of a single gene ex-

pression value.

The HMM models are learned based on only disease genes (i.e.,
positive samples), therefore the set of reliable negative genes will not

Table 7
The quantitative evaluation of predicted disease candidate genes identified by
the proposed method across years 2010 and 2016 datasets.

Disease No. of new disease genes TP FN R

Prostate Cancer 191 178 13 93.19
Colorectal Cancer 240 229 11 95.41

Adrenal 9 9 0 100

Table 8
The overlap between identified reliable negative genes based on disease genes
(version 2010) and new disease genes set (version 2016) by the proposed
method.

Disease No. of RN genes
(2010)

No. of overlap with new
disease genes (2016)

Percent (%)

Adrenal 81 0 0
Colorectal Cancer 191 6 3.14
Prostate Cancer 95 3 3.15
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Fig. 9. Comparison of cancer disease candidate genes prediction methods.
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participate in the learning HMM models.
By considering the gene expression profiles as observation se-

quences, HMM models are the best choice for modeling them.
Moreover, by clustering disease genes and learning a HMM model for
each cluster, the prediction accuracy increases drastically. In order to
discriminate disease candidate genes from non disease genes and
minimizing the FN, thresholds are calculated based on training set of
clusters in each disease.

Finally, the effectiveness of the proposed method is evaluated using
new disease genes identified between 2010 and 2016 years. The results
are shown in Table 7. As can be seen, the accuracy of the proposed
method is high which we can trust.

6. Conclusion

In this paper, we proposed a new disease candidate genes prediction
method based on hidden Markov model and gene expression sequences.
The experimental results indicated the effectiveness of designing a
model for disease candidate genes prediction problem using a one class
classification method, HMM. Since the proposed method did not use
any reliable negative sample set in the learning phase, the effectiveness
of disease candidate genes prediction is improved. In order to compare
the proposed method with other methods, a set of reliable genes which
is extracted based on Euclidean distance from unlabeled genes is used
only in the prediction phase. For improving the accuracy of predicting
disease candidate genes and considering different patterns of disease
type genes, we partitioned disease type genes. Then for each cluster, a
HMM is learned.

Knowledge of which genes cause which disorders will simplify di-
agnosis of patients and using this knowledge leads to discover new
drugs to tackle disease genes associated with a specific disease [35].
Also, the proposed method play a significant role in gene selection
methods in various biomedical problems [36–38]. In the future, we
apply the proposed method on other diseases. Although we can employ
some other genomic information to further improve the proposed
method, such as PPI network.
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Fig. 10. Comparison of cardiovascular disease candidate genes prediction methods.
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Table 9
Comparison between the proposed method and PEGPUL method [20] in terms
of disease candidate genes prediction.

Method P R F1

The proposed method 94.46 96.36 94.79
PEGPUL 76.67 89.31 82.49
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