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A B S T R A C T   

A new approach is presented to predict breast cancer recurrence through gene expression profiles using hidden 
Markov models (HMM). In this regard, 322 genes were selected from 44 published gene lists related to breast 
cancer prognosis. Afterwards, using gene set enrichment analysis, 922 gene sets were found from subsets of genes 
with the same biological meaning. In order to extract the sequential patterns from gene expression data, we 
ranked the gene sets using appropriate criteria and used HMM in which the ranked gene sets considered as 
observation sequences and hidden states represented priority of gene sets for discriminating between expression 
profiles. In this experiment, seven publicly available microarray datasets, including 1271 breast tumor samples, 
were used to classify cancer patients into two groups according to risk of recurrence. Our experiments indicated 
the greater performance and more robustness of the proposed model compared with other widely used classi-
fication methods.   

1. Introduction 

Breast cancer recurrence is a complex biological process regulated by 
several important genes. In order to discover this regulation process, 
DNA microarray technology has been introduced and widely used for 
simultaneous analysis of expression levels in thousands of genes. Given 
the fact that differentially expressed genes in different tumor cells from 
patients determine the recurrence potential among patients, there has 
been a tendency for breast cancer recurrence study based on the analysis 
of high dimensional gene expression data. Due to important information 
that can be provided for treatment of breast cancer patients, there is a 
strong motivation to propose new approaches to efficiently identify a 
small group of genes for predicting late recurrence after 5 years of follow 
up. In summary, all related studies in the field are trying to answer 
several main questions including: (1) Which genes are responsible for 
breast cancer recurrence? (2) How the structure and training procedure 
of classification models should be modified to improve their predictive 
power for breast cancer recurrence prediction? (3) How the interaction 
between genes can be used to improve the classification performance? 
(4) Does integrating the gene expression data with other resources such 
as GO and pathways can be helpful? (5) Can we improve the stability 

and generality of the predictive models for confidently applying them on 
different independent datasets? Meanwhile, another new question that 
promoted us to perform this research is that how sequential patterns in 
the gene expression profiles can be found and used for breast cancer 
recurrence prediction? 

In the first major study van’t Veer et al. [1,2] effectively predicted 
the 5-year recurrence status in a group of breast cancer patients. They 
found a list of 70 genes (NKI70), which is available as a breast cancer 
prognostic test and were 60%–70% accurate in predicting recurrence of 
breast cancer in a limited group of patients. Later Wang et al. [3] 
identified a list of 76 genes which exhibited 93% sensitivity and 48% 
specificity in a testing set of 171 samples. 

In 2017, Choi et al. [4] improved prediction of breast cancer by 
identifying heterogeneous prognostic genes. They clustered data sam-
ples of several microarray datasets by K-means algorithm and applied 
modified PageRank algorithm to functional interaction (FI) networks 
using levels of gene expression samples in each cluster and receive better 
outcome prediction. 

In some other studies, network based classification methods used for 
improving the prediction power of breast cancer metastasis models 
[5–8]. Tian et al. [9] had integrated protein–protein interaction (PPI) 
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information with expression data to identify the genes involved in breast 
cancer metastasis using random forest for classification. Recently Zhibo 
Wang et al. [10] proposed a deep neural network based method which 
called Network-based multi-task learning models for biomarker selec-
tion and cancer prediction. They tested two breast cancer microarray 
gene expression datasets by running network-based algorithm on several 
gene graphs. However, different types of gene chip and test environment 
lead to different performances and as a result making it difficult to have 
a general method based on the co-expression networks. 

Generally, curse of high dimensions, small number of samples and 
different technological platforms [11–13] are the most important limi-
tations of microarray data that lead to various analytical methods such 
as: dimensionality reduction techniques [14], gene selection methods 
[1,15,16], applying PPI [5], analyses of expression data based on gene 
sets obtained from the Gene Ontology (GO) [17] and considering the 
interactions between genes [18]. Haibe-Kains et al. [19] reported that 
classification models applying a single gene or multiple selected genes 
obtained as accurate or even better efficiency than classifiers using 
expression of the whole genome for breast cancer prediction. Vliet et al. 
[20] utilized several module-based classifiers as breast cancer predictors 
and compared with gene based classifiers. They found that classifiers 
rely on gene sets achieve better performance and significantly lower 
variance on the validation data compared to individual gene-based 
classifiers. Abraham G et al. [21] applied centroid classifier on five 
well-known microarray datasets to classify the risk of recurrence and 
observed that prognostic gene signatures obtained from gene sets are 
more stable than individual genes. They demonstrated that using gene 
set can reduce the noise of dataset and increase performance of classi-
fication. Gene set enrichment analysis (GSEA) is an analytical method 
for interpreting and evaluating gene expression microarray data at the 
level of gene sets. Recently successful researches have been done on the 
prognosis of breast cancer recurrence using GSEA [22–24]. 

Most recently, Rueda et al. [25] proposed a multistate Markov model 
for breast cancer recurrence that recognized different recurrence pat-
terns across different molecular subgroups. This model approximates the 
risk of breast cancer recurrence by evaluating the transition rates via 
four visible states. However, the worth of this model is in doubt, as most 
patients do not have a distinct transition through all of the model states 
and, in particular, specific recurrence states are not preceded by a 
detectable preface state [26]. 

In bioinformatics, the HMM is well-known for its application in 
modeling the relation between biological sequences specially in 
sequence alignment [27], gene prediction [28] and so on. In sequence 
alignment, HMM-based methods are used to find relationships and 
similarity between sequences of DNA, RNA, or Amino-acids. In this 
application the conserved positions in the aligned sequences will 
construct the main states in the HMM topology. Moreover, in gene 
prediction, HMM is used for finding the location of protein coding re-
gions or prediction of functional elements of genomes such as regulatory 
regions. Our knowledge about the gene sequence characteristics are 
crucial in order to design a suitable topology for HMM in this applica-
tion. In general, HMM is a probabilistic model for describing data with 
sequential process in adjacent samples like the time series data [29]. 
Similarly, cancer metastasis is a sequential process [30] that starts with 
the spread of primary tumor cells and take place through different 
sequential pathways. As a pioneer, Nguyen et al. [31] applied HMM on 
gene expression profiles for cancer classification and compared the re-
sults with a range of prevalent classifiers such as k-nearest neighbors 
(KNN) and support vector machine (SVM) in a way that HMM yielded 
the best performance. However, they used a simple HMM with two 
states for classifying samples into normal and tumor for different cancer 
types. 

In our study, we aim to redefine the states and observations in a 
hidden Markov model (HMM) structure for predicting the risk of late 
recurrence based on sequential patterns in gene expression profiles. In 
our HMM-based approach, we also used GSEA to obtain appropriate 

gene sets that ranked to represent the observation sequences in our 
recurrence predictor. Our methodology is similar to the well-known text 
classification applications of HMM, with this difference that words are 
replaced by gene sets [32–34]. We organized this paper as follow: In 
Section 2 the design of the proposed method is introduced. Experimental 
results are expressed and discussed in Section 3 and finally, Section 4 
concludes the paper. 

2. Methods 

2.1. Datasets 

Seven breast cancer microarray datasets were used in our experi-
ments include: GSE2034 [3], GSE7390 [35], GSE6532 [36], GSE4922 
[36], GSE3494 [37], GSE2990 [38] and GSE11121 [39] which are freely 
available from NCBI GEO. All seven datasets are Affymetrix HG-U133A 
microarray platforms. Quality control probes and probes with variance 
values close to zero were removed. Moreover, probes which have more 
than 15% missing expression levels were eliminated. These datasets 
include samples with both lymph-node-negative and nod-positive breast 
cancer. Moreover, the datasets include samples with both estrogen re-
ceptor positive and negative breast cancer. According to the time of 
distant metastasis and 5 years cut of point, samples were classified into 
two categories: low and high risk. We combined all datasets together to 
make a larger population and removed samples that were treated with 
hormone therapy drugs after surgery. Because hormone therapy will 
bias the expression data and change the outcome. Therefore, we should 
remove the corresponding samples, which affected by this confounding 
variable, to predict the outcome based on the primary expression data. 
In this regard our experimental dataset consists of 1271 samples (892 
low risk and 379 high risk samples) in a way that all the remaining 
probes mapped to 12,172 gene expression levels [40]. Subsequently, 
log2 function was applied on the all gene expression of each dataset 
independently and then normalized through sample vectors and module 
vectors simultaneously. In normalization process, the mean value was 
subtracted from all expression levels and the corresponding results 
divided by its standard deviation. Afterwards arctan function was used 
to limit the range of all expression levels uniformly through the 
following: 

arctan
(

X − μ
σ

)

(1)  

where X, μ, and σ, are the value, mean and standard deviation of 
expression levels after applying log2 function, respectively. 

2.2. Basics of hidden Markov models 

HMM firstly introduced by Baum et al. in a series of paper in the late 
1960s and early 1970s [41–44]. In probability theory the (first-order) 
Markov property refers to stochastic process in which the future state of 
system relates only to the current state [45]. HMM is a statistical tool 
that can be used for modeling generative sequences described by a set of 
observable events (say symbols) that depend on invisible sequence of 
factors (say states). An HMM contains two stochastic processes, and thus 
it is also named a doubly-embedded Markov process. The first process 
describes invisible route of hidden states and the second process 
represent visible process of visible symbols. The hidden states being 
modeled as Markov chain [41,43], and the occurrence of the observation 
symbol depends on the underlying state. Accordingly, each HMM is 
described by five elements as follow: 

λ = {N,V,A,E, π} (2) 

1. The N states of the model is denoted by s as: 

S = {S1,⋯, SN} (3) 
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2. The M observation symbols of each state are denoted by V as: 

V = {ν1,⋯, νM} (4) 

3. A = {aij}c is a N × N matrix, which called the transition matrix and 
represents state transition probability distribution where aij cell is the 
probability of moving from state Si to state Sj: 

aij = P
{

qt+1 = Sj|qt = Si
}
, 1 ≤ i, j ≤ N (5)  

and qt indicates the current state. 
The transition probability distribution must fulfil the normal sto-

chastic constraints: 

aij ≥ 0, 1 ≤ i, j ≤ N,
∑N

j=1
aij = 1, 1 ≤ i ≤ N (6) 

4. E = {ej (k)} is the emission matrix of dimension N × M, that in-
dicates probability distribution of observation symbol in each state and 
the ej (k) cell is the probability that symbol vk is produced in state Sj. 

ej(k) = P{ot = νk|qt = j}, 1 ≤ j ≤ N, 1 ≤ k ≤ M (7)  

where vk represents the kth observation symbol, and Ot characterizes the 
current parameter vector. In emission matrix construction the following 
constraints should be satisfied: 

ej(k) ≥ 0, 1 ≤ j ≤ N, 1 ≤ k ≤ M and
∑N

j=1
ej(k) = 1, 1 ≤ j ≤ N

(8) 

5. π = {πi} is the initial state probability vector that determines the 
probabilities of states in time = 0. 

πi = p{q1 = i}, 1 ≤ i ≤ N (9) 

Accordingly, we describe an HMM with parameter set λ = (A; E; π). 

2.3. Three basic problems in HMM 

There are three well known basic problems which are solved by 
HMM for real world applications [46,47]. 

Evaluation: In the evaluation problem we compute P{O|λ}, i.e. the 
probability that the given observation sequence O={o1 ,o2 ,…,oT} is 
produced by the model λ. This problem can be solved using forward 
or backward algorithm. 
Decoding: In the decoding problem we discover most possible hidden 
state sequence related to the given observation sequence O and the 
model λ. The Viterbi algorithm is used to solve this problem. 
Learning: In the learning problem, the parameters of the model will 
be adjusted to maximize P{O|λ} whereat the model λ and an obser-
vation sequence O are given. The learning problem can be solved by 
Baum-Welch algorithm. 

In the proposed method the evaluation problem is used as our so-
lution to microarray data classification problem. 

2.4. Microarray data classification using HMM 

In our experiment, the problem of microarray data classification was 
resolved by automatically assigning a binary recurrence risk label (low/ 
high) to new instances (unobserved tumor samples). 

In the proposed approach we built two HMM classifiers, which 
trained on sequential patterns in gene expression profiles of two patient 
groups. This task is similar to the approach proposed by Kwan Yi et al. 
[34] for content classification in medical documents. Fig. 1 illustrates 
the framework of the proposed method. Accordingly, in order to classify 
a new sample, the probability of generating this sample by each of the 
two trained HMMs will be evaluated. Consequently, the model that 

showed the maximum probability value determines appropriate class 
label for the input sample. 

2.5. Gene set modules construction 

The proposed approach aims to find sequential patterns in gene 
expression profiles to classify samples. For this purpose, microarray gene 
expression data needs to be converted into symbols that HMM can 
handle. As previously mentioned our HMM classifier is inspired from 
document classification task using bag-of-words method [48]. This 
method characterizes each document by a vector in a way that vector 
elements represent the number of occurrences of keywords in each 
document. Words with more appearance are more relevant, because 
they are represented the best symbol for the document content. In our 
proposed method the words were replaced by gene set modules. As al-
phabets come together to form the words with different semantics, genes 
come together to make the gene modules with similar biological 
meaning which named gene sets. GSEA considers microarray data as 
gene sets based on previous biological information about biochemical 
pathways or gene co-expression network (GCN) [49,50]. 

From a statistical perspective, the analysis of group of genes instead 
of individual genes has some advantages include: increasing processing 
power, reducing noise and decreasing dimensionality problem such as 
model complexity, computational cost and processing time of individual 
genes analysis. From the biological point of view, gene set enrichment 
analysis provides some biological information about underlying path-
ways. For example, consideration of biological mechanism that related 
to breast cancer prognosis or finding functional mechanism in a cell such 
as activated certain pathway in a special tissue that underlying some 
treatments can be mentioned as provided biological information form 
gene sets [51,52]. 

For constructing desired gene sets, we need genes relevant to breast 
cancer as the seed points. For this purpose, we extracted 322 genes from 
44 published gene lists in previous experiments which related to breast 
cancer prognosis [53]. The significance of this gene list relies on that 
these genes are confirmed at least two times in other publications be-
sides several quality criteria. In the second step, in order to make gene 
sets, we used GeneCodis software tool [54]. GeneCodis incorporates 
information of different nature for singular and modular GSEA (e.g. 
functional, regulatory or structural) by search for finding frequent pat-
terns in the annotation space and calculating their statistical 

Fig. 1. Classification process with HMM.  
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relationship. Different annotations containing the three GO categories 
(biological process, molecular function and cellular component), KEGG 
pathways, InterPro Motifs, and Swiss-Prot keywords can be analyzed 
using GeneCodis [55,56]. Therefore, it utilizes the integrative capacity 
to clarify different aspects of a data. We entered 322 gene IDs to Gen-
eCodis while GO biological process was selected. After GeneCodis pro-
cess finished we obtained 922 gene modules. 

2.6. Gene set selection 

922 gene sets obtained from the GeneCodis tool should be filtered to 
select the best modules. In other words, there was a need for a gene 
selection method to select the best gene modules. Applying the appro-
priate ranking criterion in GSEA has serious effect on the final results of 
pathway enrichment analysis. In 2017, Zyla J et al. [57] used 28 
benchmark datasets to estimate the false positive rate and sensitivity of 
GSEA for 16 different ranking criteria which contain some new ap-
proaches. In their study, the Moderated Welch Test (MWT) showed the 
best overall sensitivity. We ranked gene sets by MWT statistic which in 
our experiments has the best results too. After ranking gene set by MWT, 
top-ranked gene sets were selected as the observations. 

2.7. Gene set representative 

In order to use gene sets as observation sequences in the proposed 
HMM classifier, we need to choose a representative for each module. In 
this step, we searched a suitable statistic criterion as the representative 
of expression levels of all genes in a module. In a comprehensive study, 
Abraham G et al. [21] compared statistical mean, median, t-statistic and 
raw data as representative of genes. All of utilized statistics are unsu-
pervised, in the other words they do not take into account recurrence 
class. The one-sample t-statistic which denoted by following relation 
compares the mean of a sample to a determined value and tests for a 
deviation from that value [52,58]. 

tij =

̅̅̅̅ni
√

× meanij

stdij
(10)  

where meanij is the statistical mean and stdij is the standard deviation of 
the genes in set i in the jth sample. In the proposed method one-sample t- 
statistic is used as representative of gene module which has the best 
efficiency in Abraham G et al. experiment and also in our experiment. 

2.8. Proposed HMM classifier structure 

After demonstrating the modules by statistical representative, sort 
representatives of each sample in descending order. In the proposed 
model, hidden states represent the difference in relevance levels or 
ranking of modules in a microarray sample. Each state indicates a 
relevance level for gene module occurring in the samples. According to 
this, the first state represents the most relevant modules for discrimi-
nating a group of patients in the microarray dataset. The most relevant 
observations for the second state are the modules getting the second 
level of relevance in the samples, and so on. The N states of the model is 
an adjustable parameter that depends on the training dataset and the 
amount of flexibility that we need in our model. According to these 
explanations, each sample is finally represented by a vector or a module 
list ordered decreasingly by their ranking. The proposed HMM archi-
tecture that used to indicate a predefined category is structured by 
implementing the following instructions: 

1. The total of samples is taken as descending sorted module repre-
sentatives from the training dataset and create set of observation sym-
bols V. Therefore, there is a symbol for each module in a way that for 
each HMM, observation symbols are similar. 

2. As previously mentioned, states represent ranking of modules. In 
this regard, states are arranged from the first rank to the last rank. Thus, 

the state transitions creating a left-right HMM [59] without self-state 
loops, where only transition from state i to state i + 1 is allowed. The 
transition matrix of this topology is defined as: 

aij =

{
1 if j = i + 1
0 otherwise (11) 

3. The probability distribution of output observations (modules) 
depends on the training dataset and the related category c. A module 
symbol vj will have a higher probability of observation than module 
symbol vk at a given state si if the number of occurrences of the symbol vj 
is greater than vk. Considering a category c and a dataset Dc for samples 
who are at the risk of breast cancer recurrence, the emission matrix for 
an HMM that represents the category c (high risk or low risk) is defined 
as follows: 

ei(vk) =

∑
d∊Dc

Fd(vk, i)
NumberofallModules

(12)  

where 

Fd(vk, i) =
{

1 if module vk appears at ith rank in sample d
0 otherwise (13) 

ei(vk) denotes the probability of the module/symbol vk emitted at the 
state si. 

4. The initial state probability distribution π in the proposed HMM 
method is 1 for the first state. 

Fig. 2 illustrates the training process and topology of the proposed 
HMM method with two categories: high risk and low risk. Fig. 2a shows 
how the modules are sorted in descending order based on their repre-
sentative value for each sample. Therefore, each sample is represented 
by a vector whose elements represent ordered modules. 

Fig. 2b shows HMM topology of the proposed method which includes 
state transition structure and emission probabilities for high risk sam-
ples. It can be observed that states represent relevance level of gene 
modules occurring in the samples in a way that state transitions topology 
is a left–right HMM without self-state loops. It is important to note that 
only three states and six ordered modules are considered in this 
example. However, we considered the equal number of modules and 
states in the proposed model. 

2.9. Classification of new sample 

In order to classify a new sample, when two HMMs are separately 
trained for high risk and low risk categories, we should arrange the new 
sample similar to the ordered module list in the training process. Then, 
evaluate the probability of that module sequence generated by the two 
HMMs as illustrated in Fig. 1. Afterward, compare the probability value 
of the module sequence generated by each HMM and the category that 
represents the highest probability value is chosen and considered as the 
class label of input sample. As previously mentioned this is the evalua-
tion problem of HMM and calculation of these probabilities is performed 
by using the forward algorithm. 

2.10. Experimental settings 

Since in gene expression microarray datasets there are often a small 
number of samples, the k-fold cross validation with k = 10 or higher is 
used generally [60,61]. In k-fold cross-validation, first the samples are 
randomly divided into k equal subsamples. Then every time one of the k 
subsamples and k-1 subsamples are used as validation and training data, 
respectively. There are several metrics to measure the effectiveness of a 
classification task. The AUC which defined as the area under the receiver 
operating characteristic curve is generally used to measure the perfor-
mance of classification methods [62]. The AUC is an important evalu-
ation criterion in medical applications that used to estimate 
effectiveness of diagnosis system with binary classification. The 
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Matthews correlation coefficient (MCC) [63] is another useful perfor-
mance criterion that used to measure efficiency of binary classification 
specially for imbalanced datasets. The MCC has a range of − 1 to +1 
where a coefficient of − 1 indicates an absolutely wrong label is assigned 
to all samples, 0 indicates random prediction among different samples 
and +1 demonstrates a truly correct classification in the whole dataset. 
The MCC can be calculated form the confusion matrix by the following: 

MCC =
(TP × TN) − (FP × FN)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (14)  

where TP is the number of true positives, TN is the number of true 
negatives, FP is the number of false positives, and FN is the number of 
false negatives. 

In order to make reliable evaluation and create robust comparison 
between classification methods we increased the number of estimation 
and repeated 10-fold cross-validation procedure 20 times. 

3. Experimental results 

In this section, we have demonstrated the results obtained from the 
whole procedure for parametrization of the proposed model, validation 
of model against randomization, evaluation of classification results and 
computational cost of the proposed model in comparison with other 
approaches. The experiments implemented on seven well-known breast 
cancer datasets according to risk of breast cancer recurrence. In order to 
make a larger population we combined all datasets together and for 
better evaluation used 10-fold cross-validation which repeated 20 times. 
To perform a better comparison, we compared our proposed HMM with 
maximum likelihood and Baum-Welch as two routine training algo-
rithms of HMM, and KNN and SVM as two prevalent classifiers. 

3.1. Module representative 

In the first experiment, we compared statistical mean, median, one 
sample t-statistic and individual genes as potential candidates for rep-
resenting the selected gene set modules. Fig. 3 illustrates the classifi-
cation results of the proposed HMM method on the training dataset 

Fig. 2. Example of HMM training process for high risk samples. (a) Sample vectors with their module ordered for high risk and low risk categories. (b) Transition 
matrix structure and emission probabilities for high risk samples. 
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using the mentioned representatives. According to Fig. 3a and b, which 
respectively show boxplots comparisons of different representatives 
based on AUC and MCC, t-statistic indicated a higher performance in 
comparison to other representatives. Therefore, we chose one-sample t- 
statistic as the best representative for extracting gene set modules. 
Furthermore, smaller standard deviation of t-statistic box plots against 
individual genes indicates that using gene set module instead of level of 
expression in individual genes reduces noise and decreases dimension-
ality problem. Therefore, we used one sample t-statistic as representa-
tive of each gene module in our experiments. 

3.2. Randomization trial 

In the second experiment, we examined the validity and reliability of 
the proposed model by performing a randomization trial. In this regard, 
we performed the tests by four different procedures and compared the 
results based on AUC and MCC metric. In the first test, relative gene 
modules in test samples were arranged similar to the ordered module list 
prepared in the training stage. In the second test, which called random 
train, high risk and low risk classes are created in random order of 
modules for the training stage and similarly, they are arranged randomly 
in the testing stage. In the third test, which called random test1, training 
stage was performed based on proposed HMM and module symbols are 
randomly arranged for test. Finally, in the random test2, training was 
performed based on proposed method but for test one sample arranged 
similar to training module list and others are randomly arranged. Fig. 4a 
and b shows comparison of these four validation tests in terms of AUC 

and MCC, respectively. According to the obtained results, random train 
and random test1 indicates random classification (MCC around 0). 
Moreover, by comparing random test2 with random test1 boxplots, it 
can be observed that using proposed procedure have positive effect in 
classification. We conclude from Fig. 4 that our model is sensitive to the 
sequential patterns in data which depending on Markov property and 
that leads to improved predictive power of the proposed model. 

3.3. Classification experiment 

In the third experiment, we trained our HMM classification model in 
a specific way, which illustrated in Fig. 2, for prediction of breast cancer 
recurrence. In this regard, we compared our method with other preva-
lent training method of HMM such as maximum likelihood estimation 
and Baum-Welch algorithm [64]. Moreover, we compared our results 
with KNN, SVM and decision tree (DT) classifiers because KNN and SVM 
are prevalent in studies on gene expression data classification [47] while 
DT is a rule-based classification method. To adjust classifiers parame-
ters, we used k = 5 for KNN, Gaussian kernel for the SVM and binary tree 
structure for DT. which lead to best results in our datasets. 

In the first step, to determine the best representative of selected gene 
modules we used different representatives including t-statistic, statisti-
cal mean, median and individual genes for evaluation and comparison of 
the proposed method, KNN, SVM and DT. Table 1 illustrates comparison 
results of the mentioned classification methods across different module 
representatives based on AUC (percentage). The numerical results of 
Table 1 show that t-statistic is the best representative of gene modules 

Fig. 3. Module representative comparison: (a) using t-statistic, mean, median and individual genes as module representative for proposed HMM classification in 
terms of AUC, (b) in terms of MCC. 

Fig. 4. Proposed model validation test: (a) proposed HMM classification comparison with random tests and fix modules in terms of AUC, (b) in terms of MCC.  
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over all of classification method and therefore we used t-statistic in 
downstream analysis in our experiments. 

In order to compare the performance of each classification method 
across different number of features, we selected different number of 
modules (15, 20, 25 and 30) for applying to each classifier. Fig. 5 shows 
comparison results of different classification methods over different 
number of selected modules. Fig. 5a demonstrates that proposed model, 
represents better AUC for various number of selected modules. Also 
according to Fig. 5b, our method indicates better results in terms of 
MCC. Baum-Welch method has close results to our method and in the 
second place among all methods. Maximum likelihood is another 
training method of HMM is in the third place. Therefore, HMM, 
regardless of utilized training method, showed better results than KNN, 
SVM and DT. In Fig. 5 it can be observed that maximum classification 
results obtained by supplying 20 modules in the proposed method. 
Classification results of breast cancer recurrence for 20 modules (fea-
tures) are illustrated in Fig. 6 and proposed method shows best perfor-
mance. Fig. 6a illustrates AUC boxplot of comparison between proposed 
HMM method, maximum likelihood, Baum-Welch, KNN, SVM and DT. 
Therefore, proposed HMM not only lead to greater efficiency than other 
HMM training but also lead to better performance than KNN, SVM and 
DT. 

Fig. 6b also confirms the greater median values of the proposed 
method in terms of MCC. Moreover, the relatively smaller interquartile 
changes of the proposed method box plots against other methods 
demonstrate the stability and robustness of the proposed method. 

Furthermore, to make a fair comparison between related works, 
classification performance was evaluated over each independent data-
set. Because most of the related works using k-fold cross-validation and 
evaluating results based on AUC, we repeated 10-fold cross-validation 
20 times and reported the results based on the mean of the AUC. 
Table 2 illustrates comparisons of predicting recurrence between the 
proposed method and related works across independent breast cancer 
datasets. The numerical results demonstrate that our method reached 
the maximum AUC which shows the best performance of our model 
among related works of predicting recurrence of breast cancer. 

In the final classification test we have used van’t Veer et al.’s dataset 

[1] for independent validation. In this regard, we have trained the 
proposed model by the seven datasets and tested van’t Veer et al. dataset 
as independent dataset to evaluate the performance of our model. Ac-
cording to the results of this external validation test the proposed 
method reached the AUC of 73 ± 4.56 which is maximum value among 
different utilized methods. The measured AUC values for maximum 
likelihood, Baum-Welch, KNN, SVM and DT are 67 ± 5.86, 70 ± 5.43, 
68 ± 5.31, 62 ± 6.17 and 65 ± 4.72 respectively. 

3.4. Computational cost 

In the fourth experiment, we evaluated the computational cost of our 
proposed HMM method against maximum likelihood estimation and 
Baum-Welch algorithm. The experiments are implemented by MATLAB 
installed on a PC that has the Intel(R) Core(TM) i5-2300 CPU @ 2.80 
GHz with 16 GB RAM running on the 64-bit Windows7 Operating Sys-
tem. In order to report results of computational cost, we computed 
average processing time of 10-fold cross-validation for each HMM 
classification method. Results of computational cost are calculated in 
second and reported in Table 3 for different number of states (15, 20, 25 
and 30). The numerical results of Table 3 demonstrate a significantly 
lesser processing time of proposed HMM classification compared to 
other HMM classifiers. Moreover, Baum-Welch exhibits very large pro-
cessing time for different number of states so it is the most computa-
tionally expensive method. Thus, the proposed HMM topology for 
prediction of breast cancer recurrence has significantly lower compu-
tational cost, besides the higher classification results, in contrast with 
maximum likelihood and Baum-Welch which are prevalent training al-
gorithms for HMM. 

4. Conclusions 

This study presented a novel HMM classification topology for pre-
diction of breast cancer recurrence using microarray gene expression 
data. In this topology gene set modules represented observation se-
quences. Modules obtained from pathway analysis on important genes 
associated with breast cancer prognosis. The MWT statistic was applied 
for selection of best gene modules and one-sample t-statistic was used as 
module representatives. The proposed model considered sequential 
patterns in gene expression data in which gene module orders reflected 
Markov property and hidden states indicated the priority in the rele-
vance levels between modules. The greater performance of proposed 
HMM demonstrated in terms of AUC and MCC over different number of 
selected modules. Also, smaller standard deviation results of the pro-
posed method confirmed that our model was the most robust method 
against other classification methods. Moreover, proposed method 

Table 1 
Comparison results of classification methods using different representatives.   

T-statistic Mean Median Individual genes 

Proposed Method 71 ± 4.48 67 ± 4.97 65 ± 6.32 65 ± 5.71 
SVM 66 ± 5.17 64 ± 5.31 62 ± 4.37 64 ± 5.93 
KNN 63 ± 4.94 62 ± 4.74 61 ± 4.33 62 ± 5.06 
DT 64 ± 4.85 63 ± 4.41 61 ± 5.48 63 ± 5.34  

Fig. 5. Results of breast cancer recurrence prediction over different number of selected modules: (a) in terms of AUC, (b) in terms of MCC.  
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represented significantly less processing time than other HMM classi-
fiers. Furthermore, most studies on microarray gene expression data 
have devoted to analysis of individual gene levels. We demonstrated that 
using gene set modules as observation symbols of HMM have better 
performance than individual gene levels, and can reduce noise, decrease 
dimensionality problem and improve understanding about underlying 
biological pathways. In the future work, we will improve our gene set 
modules by considering other information sources such as protein 
interaction networks and pathway databases. 
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