
Automated Detection of Production Cycles in
Production Plants using Machine Learning

Andreas Bunte∗, Henrik Ressler∗ and Natalia Moriz∗
∗inIT - Institute industrial IT, Ostwestfalen-Lippe University of Applied Sciences and Arts, Lemgo, Germany

Email: {andreas.bunte, henrik.ressler, natalia.moriz}@th-owl.de

Abstract—Data-driven algorithms can be used to derive new
information from data. In modern production plants, this can be
used to reduce manual effort, e.g. to create a behavior model. In
this work, one offline and one online algorithm are introduced
that can determine the production cycles automatically. The
algorithms use learned automaton to detect production cycles.
A first evaluation is presented, which points out differences of
the algorithms. However, overall the results are promising.

I. INTRODUCTION

Due to the evolution of production plants towards Indus-
trie 4.0, the plants will be more adaptable, predictable, and
efficient. Artificial Intelligence (AI) has a major role since
it supports these goals, e.g. through orchestration, predictive
maintenance, or optimization algorithms [1], [2], [3]. Up to
now, the algorithms are specialized for a production plant and
need some manual effort for adapting to a different plant. But
the goal of the AI usage is to generate information based on
the data-driven algorithms, which reduces the manual effort.

The work at hand introduces two algorithms for the de-
tection of production cycles (PCs), which is important infor-
mation for many different purposes. PCs indicate a periodic
cycling loop, where typically one product is produced in each
loop. If the PC is known, properties, such as the cycle time or
the throughput, can be determined. The automatic detection is
useful because this information is needed by other algorithms.
For example, if an optimization should be performed, its
objective function has to be calculated for every PC. So, the
PC is has to be detected automatically or set manually.

The contributions of this work are two novels automatic
cycle detection (ACD) algorithms that can detect PCs out
of discrete data. One ACD algorithm uses online data, the
other uses offline data, so they are feasible for different types
of applications. Both algorithms rely on the Online Timed
Automaton Learning Algorithm (OTALA) that learns automata
based on discrete signals [4]. Furthermore, an evaluation is
presented on a real-world production plant, where the results
of both algorithms are compared.

This paper is structured as follows. First, related works
are presented in section II. Second, the concept of the ACD
algorithms are described in section III. In section IV the results
of the evaluation are shown. Finally, we conclude the work.

II. RELATED WORKS

The detection of cycles in a directed graph, as learned by
OTALA, can be performed by the well-known Tortoise and

Hare algorithm. It allows the detection of cycles with a great
performance and it terminates using an extension [5]. Another
approach is the Depth-First-Search (DFS), as stated in [6].
However, the challenge in the detection of PCs is not to find
cycles of the graph. It is to find the cycle that represents the
PC and therefore such algorithms are not appropriate.

The detection of frequent unknown patterns in time series
gathered from sensors is the main task of the motif discovery
methods and can also indicate the PC. [7] gives a review of
existing methods in time series motif discovery and summa-
rized their advantages and disadvantages. Challenging tasks
are amongst others: definition of the length of motifs, handling
data streaming, and maintaining time complexity. For the PC
detection, the definition of the length of motifs and handling
data streaming are the crucial criteria. According to [7], only
the method from Li et al. [8] can handle both. This method can
be applied to one-dimensional data. Thus, multi-dimensional
data has to be pre-possessed to convert it to one-dimensional
data or detect motifs in each dimension separately.

The learning of parallel automata from historical data is
presented in [9]. Instead of a single automaton, the approach in
[9] provides a new method (ComPACT) for creation of several
automata. But this method has two critical points relating to
our purpose: first, the ComPACT needs a similarity measure
to determine independent subsets of the set of signals. The
authors employ the correlation coefficients and thus are limited
to linear dependencies between the signals. The second point
is the connection and time synchronization between single
automata. Nevertheless, this approach could be useful for
investigating complex production systems with several parallel
processes within one PC. These systems are not in the focus
of our work.

III. CONCEPT OF THE ACD ALGORITHM

In this section, two ACD algorithms are introduced. They
use different procedures to detect PCs, but both rely on
OTALA. The online ACD algorithm can be fed with a data
stream, whereas the offline ACD algorithm needs recorded
data. In the following subsection, we introduce the foundation.

A. Foundation

OTALA is an online algorithm that is able to efficiently learn
automata based on discrete signals and is constructed for the
usage in production systems. The learned automata consist of
states and transitions, see Fig. 1. Typically OTALA provides

978-1-7281-8956-7/20/$31.00 ©2020 IEEE 1423

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on October 06,2020 at 18:09:09 UTC from IEEE Xplore. Restrictions apply.

the time between two states and the probability of the usage of
a transition. We do not use this information, but we introduce n
which is the number of passes of transitions. An automaton can
be represented by a directed graph G = (S, T) with the states
s1, s2, ..., sK ∈ S,K ∈ N and a set of transitions T ⊆ S×S.
A state s ∈ S is defined as a tuple consisting of a unique
identifier and a vector that contains the values of all discrete
signals of the system. Transitions between states are triggered
by a change of values of discrete signals. So, OTALA provides
a directed graph that indicates the process of the production
plant and thus somehow includes the PCs. Such a graph can
be represented by an adjacency matrix A, which represents
whether two states are connected.

1

2
A = 1; n = 1

4
C = 1; n = 2 3

B = 1; n = 1

A = 0, B = 0; n = 1

C = 0; n = 2

Fig. 1. Automaton of a PC learned by OTALA and its CAM.

Definition 1 (Adjacency matrix): Given a directed graph
G = (S, T) with a set of states S, |S| = K,K ∈ N and a set of
transitions T ⊆ S × S. An adjacency matrix A ∈ {0, 1}K×K

is defined by its elements aij as follows:

aij =

{
1, if (si, sj) ∈ T
0, else.

During a PC, some states can be visited multiple times.
Thus, the adjacency matrix as defined above cannot represent
a PC. Therefore, the adjacency matrix can be adapted to a new
matrix which elements indicate how often a transition has been
passed during a PC. We define the counted adjacency matrix
(CAM) as follows:

Definition 2 (CAM): Given a directed graph G as in Defi-
nition 1. A counted adjacency matrix M ∈ NK×K is defined
by its elements mij as follows:

mij =

{
nij , if (si, sj) ∈ T
0, else.

where nij is the number of times the transition (si, sj) fires
during the one PC.

The CAM for the automaton from Fig. 1 is on its right-
hand side. In this example the cycle (s1, s2, s3, s1) is passed
once, whereas the cycle (s1, s4, s1) is passed twice and the
combination of them (s1, s2, s3, s1, s4, s1, s4, s1) is the PC.

For the creation of CAM, we introduce a currently counted
adjacency matrix (CCAM) which is applied in our approach.
This matrix is built during the learning process of the automa-
ton and its elements change over time.

Definition 3 (CCAM): At current point in time, a learning
algorithm has identified a set of states S, |S| = K,K ∈ N.
A currently counted adjacency matrix MMain ∈ NK×K is
defined by its elements uij as follows:

uij =

{
nij , if (si, sj) ∈ T
0, else.

where nij is the number of times the transition (si, sj) has
fired from the beginning of the learning process until current
time point.
In this work, we introduce two algorithms that make use of
learning algorithm OTALA and put out the CAM. The first
algorithm extends OTALA during learning (online) and the
second builds on the result of OTALA (offline).

B. Online-Approach

The online ACD algorithm is integrated into OTALA,
whereby OTALA uses a data stream as input to identify
transitions. To detect the cycles, a CCAM is generated out of
the transitions. With every next event, it is checked whether
a transition is passed for the first time. If the transition is
passed more than once, it indicates a potential new PC, i.e.
the CCAM contains a cycle candidate. Each cycle candidate
is stored in the list MC . Once a new candidate has been
added to the list MC , a zero matrix with the same size as
this candidate matrix is created and added to the list MR.
The reference matrices are used for the evaluation process and
store transitions that have fired after the corresponding cycle
candidate has been identified. When a pair of reference and
candidate matrix are equal, a potential PC has been detected
and the candidate matrix is stored in a list of potential PCs.
If there are insuperable differences between reference and
candidate matrix, e.g. a transition in the reference matrix that
does not occur in the candidate, the candidate and its pendant
are deleted. Independently of the number of candidates, the
CCAM will be feed with data, until OTALA converged. The
matrix from the list of potential PCs that contains the cycle
with the maximum length is the CAM and represents the
identified PC. Fig. 2 shows the procedure at the point in time
where a new candidate has been identified.

0 2 0 2
0 0 1 0
1 0 0 0
2 0 0 0

Currently
Counted
Adjacency
Matrix

Cycle
Candidate
Matrices

Identify Equal Matrixes

0 1 0 2
0 0 1 0
1 0 0 0
0 2 0 0

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

OTALA

1

2

3

Transistions

Transistions
4

1

1
2

2
2

Reference
Matrices

Data
Stream

D

MMain

MC

MR

Fig. 2. Illustration of the online production cycle detection.

The pseudo-code is presented in Algorithm 1. From line 1 to
line 4 the lists and matrices are initialized. OTALA is started
in line 5. The loop from line 6 to line 21 is executed until
OTALA converges. In line 7, a next transition is detected by
OTALA. In line 8, it is checked whether the matrix MMain is
a new cycle candidate. This is the case, if the current transition
is already available in MMain, so the transition is passed at
least for the second time, and if the CCAM is not a multiple
of an element in the lists MC or MCycle. A multiple means
that the matrix can be generated by a scalar multiplication out
of an existing candidate. This method is necessary because

1424

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on October 06,2020 at 18:09:09 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Algorithm for Online Cycle Detection
Input: Discrete data stream d ∈ D
Output: Counted Adjacency Matrix M

1 Currently Counted Adjacency Matrix MMain ← ∅
2 List of Production Cycle Matrices MCycle ← ∅
3 List of Cycle Candidate Matrices MC ← ∅
4 List of Reference Matrices MR ← ∅
5 start(OTALA)
6 repeat
7 if (t← getNextTransistion()) then
8 if (MatrixContainsTransition(MMain, t) and

(notAMultiple(MMain,MC) or
notAMultiple(MMain,MCycle)) then

9 addToList(MMain,MC)
10 addToList((0),MR) //Add zero matrix

11 MMain ← addTransitionToMatrix(t,MMain)
12 forall (MRi in MR) do
13 MRi ← addTransitionToMatrix(t,MRi)
14 if (Equals(MRi

,MCi
)) then

15 MCycle ← addToList(MCi
,MCycle)

16 delete(MCi
)

17 delete(MRi)

18 else if (CannotGetEqual(MRi ,MCi)) then
19 delete(MCi

)
20 delete(MRi

)

21 until (OTALA converged);
22 M ← largestCyle(MCycle)
23 return M

otherwise every multiple of a PC (two cycles, three cycles,...)
would be detected as a potential PC. If a new candidate has
been determined, it is added to the candidate list MC and a
zero matrix is added to the reference matrix list MR. Line 11
adds the current transition to the CCAM. An iteration over
all elements in the list of reference matrices MR adds the
current transition to each matrix MRi

, at first (line 12+13).
Then, it is checked if the coupled elements MRi

and MCi
in

the reference list MR and the candidate list MC are equal, see
line 14. If they are equal, it is a PC candidate that is added
to the list MCycle and deleted from the list of candidates and
references. Furthermore, it is checked if the matrices can get
equal in line 18. That is the case if for all elements of the
reference matrix MRi

each element is lower or equal than its
pendant at the MCi matrix. If they cannot get equal, they are
deleted from the lists (line 19+20). In line 22, the cycle is
chosen, which has the longest length of the detected cycles in
the list MCycle. This is the detected PC. The CAM of this PC
is returned and this algorithm is completed.

C. Offline Approach

The offline approach uses the learned automaton and ex-
tracts relevant information out of it. Therefore, a histogram
over the number of passed transitions during the learning

process is calculated, e.g. the bin 10 contains the number of
transitions that have been passed 10 times, called frequency.
Generally, it is expected that the lowest bin indicates the
number of PC during the learning process and that only
multiples of this number occur as bins in the histogram. In
practice, it might be different, because of data quality issues.
To deal with it, we take each bin hi and sum up the frequencies
of hi and all multiples of it. The bin hi with the highest sum is
expected as the number of PCs. Knowing the number of PCs
enables us to calculate the CAM based on the automata, by
taking the CCAM after the learning process is over and divide
each element of CCAM by the number of PCs. Fig. 3 shows
the three steps of the offline detection. The numbers near the
transition indicate the number of passes nij of a transition
(si, sj) during the learning process as defined in Definition 3.

10 20 30

10 Cycles

0 1 0 0 0 2
0 0 1 0 0 0
0 0 0 3 1 0
0 0 3 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0

Matrix =
Step 1

Step 2

Step 3

Step 3

10
10

1010

20

20
30

30

1

2

3

5

6 4

Automata:

Histogram:

Fig. 3. Illustration of the offline cycle detection.

Since some states are reached only once due to data quality
issues, we delete transitions that occur on a very low level.
This is necessary because in practical applications there are
regularly single state detections. Since every number is a
multiple of 1, it is sure that 1 would be detected as the number
of cycles. To avoid that, we can use the convergence criteria
from OTALA, which suggests a convergence factor fconv ≈ 10
[4]. The convergence factor is multiplied with the number of
states, to achieve the number of events in which the automaton
should not change to reach the convergence. The convergence
factor can be a guideline to set a minimum threshold τ that has
to be reached to be respected in the PC detection. Based on our
experiences a half of the convergence factor is an appropriate
value. Nevertheless, τ should always be larger than 4.

The pseudo-code for the offline approach is presented in
Algorithm 2. It requires a finite automaton and the threshold τ
as input and provides the CAM for a single PC as output. The
variable SMax is used as score and the corresponding number
of cycles n are initialized in line 1. The CCAM MMain is
created in line 2 and contains the number of passes of each
transition. In the next step, the histogram is created based
on MMain that represents the occurrences of the transitions,
see line 3. Transitions that occur less than the threshold τ
are deleted from the histogram in line 4. From line 5 to line
7 there is an iteration through all histogram bins since it is
checked if a bin hj is a multiple of the bin hi, see line 8.
If that is true, the frequency of hj is added to a temporary
sum. In line 10-12, it is checked whether the sum of hi and

1425

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on October 06,2020 at 18:09:09 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Algorithm for Offline Cycle Detection
Input: Finite automaton E, Threshold τ
Output: Counted Adjacency Matrix M

1 Score SMax ← 0, cycles n← 1
2 CCAM MMain ← getListOfTransitions(E)
3 Histogram H ← createHistogram(MMain)
4 H ← DeleteLowOccuringTransitions(H, τ)
5 forall Histogram bin hi ∈ H do
6 Score sum ← transitionCount(hi)
7 forall Histogram bin hj ∈ H do
8 if (Multiples(hi, hj)) then
9 sum← sum+ transitionCount(hj)

10 if sum > sMax then
11 sMax ← sum
12 n← transitionCount(hi)

13 M ← 1
n ×MMain

14 return M

its multiples is larger than the maximum score. If so, the max
score is updated and the number of cycles is set to the bin hi.
As the last step, the CCAM MMain is multiplied with 1

n to
reach the CAM of a single PC, see line 13.

IV. EVALUATION

We evaluated both algorithms on good quality data and real-
world data, where fast changing signals might not acquired
properly. At first, we present the results of the online algo-
rithm, which is working fine on good quality data. Fig. 4 shows
the CAM of the introduced example. Since the identified CAM
is equal to the CAM in Fig. 1, the correct cycles have been
detected and works also for larger examples fine. Nevertheless,
this approach has the disadvantage that bad quality data have
a strong influence on the identified cycles. So, if there is one
incorrect data point in the first cycle or its evaluation, the cycle
cannot be detected correctly.

Fig. 4. Result of the online approach using the automaton in Fig. 1

The offline approach also identified the cycles of the above-
mentioned example correctly. But it is also suitable for the
usage in applications where the data quality is not perfect.
The histogram of a real-world application from the SmartFac-
toryOWL is presented in Fig. 5. Since the application contains
some fast processes, the data acquisition was to slow, which
led to bad data quality. Eight cycles have been passed for
the histogram. As can be seen, many transitions are only
passed once or twice and no transition is passed 16 times,
which underlines the low sampling rate. Nevertheless, the

occurrences lower than four are deleted and the multiples are
calculated by the algorithm. Then, we got the correct result of
eight cycles, which enables us to calculate to correct CAM.
Due to the larger number of cycles, the influence of bad data
quality cycles is significantly reduced.

F
re

qu
en

cy

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

2

4

6

8

10

12

14
Filter

Transition passes (bins hi)

Fig. 5. Histogram of the offline approach using real world data, the number
of cycles and thus the CAM can be identified correctly.

V. DISCUSSION AND FUTURE WORK

In this paper, we introduced two different approaches of
how PCs can be detected automatically in production systems.
Both rely on the representation of the plants’ behavior due to
automata, which can be learned by OTALA. We implemented
both approaches and evaluated them. Both approaches work
fine with good quality data. But if the data quality is not
optimal, the offline approach performs better and it is more
robust.

For future work, additional methods can be implemented
to deal with bad data quality and thus improve the results in
these cases. Furthermore, the approach should be tested on
more plants to rate the reliability.

ACKNOWLEDGMENT
The work was partly supported by the German Federal

Ministry of Education and Research (BMBF) under the project
”KOARCH” (funding code: 13FH007IA6).

REFERENCES

[1] World Economic Forum, “Technology and innovation for the future
of production: Accelerating value creation,” World Economic Forum,
Genevy, Switzerland, Whitepaper, Mar 2017.

[2] J. Bughin, E. Hazan, S. Ramaswamy, M. Chui, T. Allas, P. Dahlström,
N. Henke, and M. Trench, “Artificial intelligence the next digital fron-
tier?” McKinsey Global Institute, Brussels, Discussion Paper, Jun 2017.

[3] McKinsey & Company, “Smartening up with AI - What’s in it for
Germany and its Industrial Sector?” Germany, Tech. Rep., Apr 2017.

[4] A. Maier, “Identification of timed behavior models for diagnosis in
production systems,” Ph.D. dissertation, University Paderborn, Feb 2015.

[5] D. Larchey-Wendling, “Proof pearl: Constructive extraction of cycle
finding algorithms,” in Interactive Theorem Proving, J. Avigad and
A. Mahboubi, Eds. Cham: Springer International Publishing, 2018.

[6] R. Sedgewick, Algorithmen, 2nd ed. Pearson Studium, 2002.
[7] S. Torkamani and V. Lohweg, “Survey on time series motif discovery,”

WIREs Data Mining and Knowledge Discovery, vol. 7, no. 2, 2017.
[8] Y. Li, J. Lin, and T. Oates, Visualizing Variable-Length Time Series Motifs.

Wiley, 2012, pp. 895–906.
[9] S. Windmann, D. Lang, and O. Niggemann, “Learning parallel automata

of plcs,” in 22nd IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA), 2017, pp. 1–7.

1426

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on October 06,2020 at 18:09:09 UTC from IEEE Xplore. Restrictions apply.

