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Major applications for statistical modeling of network traffic flows can be found in network testing
and imitating of unavailable devices. Since packet-level modeling is considered, packet size (PS) and
inter-arrival time (IAT) features are sufficient for accurate statistics. Two models are compared based
on the hidden Markov model (HMM) framework and a recurrent neural network (RNN). In the RNN
model, the feature space is encoded with latent components of a Gaussian mixture model (GMM).
The comparison is carried out with a voice Skype call and traffic of an IoT device, and evaluated
with the rolling entropy and Kulback-Leibler divergence (KLD) metrics that are derived from the
generated PS and IAT parameters. The results show that the RNN is applicable for the packet-level
modeling task, but it underperforms the HMM.
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1 INTRODUCTION

The evolution of computing power, new network devices, such as Internet of Things (IoT), and consequently unseen
traffic patterns stimulate research on traffic modeling approaches that were inaccessible or inapplicable before. Network
models can be broadly classified as:
1. Packet-level models. In this case, the objective is to provide the best possible statistical description, while the computa-

tional complexity is not so important. The approach finds its use-cases in modeling of expensive/inaccessible devices
or when testing networks nodes that are sensitive to traffic properties, for example, load balancing gateways, firewalls,
Deep Packet Inspection (DPI) systems.1

2. Aggregate traffic models. This approach aims at describing traffic patterns at macro level, for example, gateway devices,
backbone links. Differently from the former models, a fine-granular description of end-devices can be replaced with
aggregate statistics due to the law of large numbers and central limit theorem, thus simplifying models and making
them scalable.2 The models are often used within traffic generators in network stress-testing applications.
This paper considers modeling of distinct devices and flows at the packet level. Basically, one of the simplest

approaches to handle the task is sampling from two independent, arbitrary distributions (including multi-modal) describ-
ing packet size (PS) and inter-arrival time (IAT) between packets.3 Currently, this approach is one of the most popular
solutions due to the simplicity, and finds its applications in existing traffic generators, for instance, D-ITG,4 Ostinato,5
T-Rex.6 Basically, the approach can also serve as a basis for aggregate models. An example of IAT modeling with a Gaussian
Mixture Model (GMM) is provided in.7 However, relations between PS and IAT parameters are not considered, as well as
temporal properties of the packet sequence.

The further development of the idea could be assessing the joint parameter density function, as8 suggested. Given
the complexity of the real traffic, single component models provide too coarse estimation, thus, an intuitive solution is
approximating the distribution with multi-component models, that is, mixture distributions.9 Even though such models
can capture interrelationship between the parameters, sampled packets will have random properties in the time domain.
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To generate and predict time sequences, several families of algorithms can be applied, among which the most common
used are Markov models, auto-regressive moving-average (ARMA) and neural networks (NN).

The authors of10 summarized experience of using ARMA models in traffic modeling and introduced a modeling
framework that considers joint distributions of PS and IAT, auto- and cross-correlation properties, demonstrating a good
approximation to real traffic. However, as the authors noted, the model cannot properly handle parameters of Gaussian
or of a mixture nature.

Markov models appear to be used more extensively for traffic modeling than the regressive models. For example,11

presented a framework for IoT traffic modeling that is based on Markov chains, where the chain represents different
states of IoT devices. The authors of12 used a first-order hidden Markov model (HMM) for flow-modeling task, where
the latent components are described via Beta distributions. According to the results, the model showed its applicability
for the task, and the performance could be further adjusted by tuning the number of latent components. Moreover, the
HMM framework has practical difficulties to utilize more than one previous latent state13 that limits its potential for the
modeling task.

Taking into account the above-mentioned issues, this paper aims at studying the impact of the replacement of the
HMM transition mechanism with a RNN14 on the traffic model performance. This study is motivated by the analysis of
the current literature on this topic, where hybrid approaches combining HMM and NN show improved performance,
especially in speech recognition applications.15 Moreover, despite the presence of numerous papers with applications of
NN to network traffic forecasting,16,17 as far as the authors are aware, there exists no publication applying a NN to model
network flows or device generated traffic. The forecasting task aims at predicting future network load by the observed
data flows, as opposed to modeling that recreates or mimics the load itself. The two problems are completely different
and the tools used for forecasting and modeling are hardly comparable, although based on the same technique (NN).

Thus, the goals of this work are (a) to research applicability of the offered approach for network traffic modeling at
the level of a single flow and device and (b) to compare the resulting model with the conventional HMM-based approach.

2 BACKGROUND

2.1 HMM

As it was mentioned before, transitions between latent components, encoding the PS/IAT parameter space, can be char-
acterized by a Markov process. Usually, the information regarding observable traffic states is unavailable, and inferences
can be made from parameter observations. Thus, it is necessary to estimate the model in a probabilistic manner resorting
to the HMM framework.

The formal description of a HMM in the traffic modeling context can be presented as follows.18 The set of hidden
states (latent components) is s = {S1, S2,… , SN }, where N is the number of possible states and parameter observations
can be seen as X = {x1, x2,… , xM}, where xm is a vector of features with M = 2, since only PS and IAT are considered.

The joint distribution of states is:

p(s1,… , sT) =
T∏

t=1
p(st|s1,… , st−1) ≈ p(s1)

T∏
t=2

p(st|st−1), (1)

where T is the total number of observations (eg, packets) and actual state at time t is denoted as st. Equation (1) can
be expressed via the second order transition array A (shown below), which for a HMM of the Tth order will have T + 1
dimensions.13 The main difficulty when dealing with a high order A is its sparsity, even when the training dataset is large.
Therefore, similarly to,12 the current state is assumed to depend only on the previous one. Thus, the transition array can
be viewed as a N ×N matrix:

A = {p(st = Sj|st−1 = Si), i, j = 1,N}. (2)

Symbol emission probability depends on the state as follows: p(x1,… , xT) =
∏T

t=1 p(xt|st). Thus, the complete descrip-
tion of emission probabilities via matrix B∈N ×M (for Multinoulli distributions) is:

B = {p(xj|Si), i = 1,N, j = 1,M}. (3)

In this paper, the states are represented as multivariate Gaussian distributions due to the two features.
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In addition, the distribution of initial states can be configured via vector 𝝅 = {p(s1 = Si), i = 1,N}.
Thus, a HMM can be fully described via the parameter set 𝜆 = (A, B, 𝝅). In general, there are three main tasks the

HMM framework solves: (a) estimation of probability for the observed sequence given 𝜆, (b) estimation of the optimal
state sequence given the observations and 𝜆, (c) estimation of 𝜆 via the Baum-Welch algorithm18 given the observations.
Herein, the focus is on the third task.

In fact, a HMM differs from a mixture model in one aspect: the former contains the state transition matrix A. Therefore,
by knowing B and 𝝅, matrix A can be retrieved either by the normalized count of state transitions similarly to Eqn. (2),
or by execution of the Baum-Welch algorithm with pre-trained B, 𝝅 parameters.

2.2 Recurrent neural network (RNN) model

As it was mentioned before, RNNs are used in various data-modeling tasks, such as generating discrete sequences (eg,
text), and forecasting continuous variables.

A RNN can be viewed as an extension to a feedforward NN, where the output of a hidden state depends on the previous
time, thus allowing to take into account the sequential nature of data. A usual approach to generate sequences with a
recurrent NN is to treat continuous value prediction (generation) as a classification task, where the predicted “class”
belongs to the discrete set of values.19 The update for a hidden state of a plain RNN unit at time t is represented as follows:

ht = g(Wet + Uht−1), (4)

where W, U are the layer's weight matrices (inferred during the training stage), et ∈N is one-hot encoded state st, g is an
activation function.

The joint state distribution compares to HMM's Eqn. (1) as: p(s1,… , sT) =
∏T

t=1 g(ht).
The number of inputs and outputs in the network is N to support the classification approach mentioned above. For

this work, Gated Recurrent Units (GRU) are selected as the main building blocks, since this cell type was shown to be the
most efficient for modeling of long-range dependencies in sequences.20

The output layer is usually a dense feed-forward layer with the softmax activation function that produces probabilis-
tic predictions for each latent state, that is, probability mass function (PMF). The output p(epred

t ) allows to apply various
strategies for sequence generating, for example, by increasing or decreasing the entropy of the PMF via the softmax
temperature parameter Q,19 the prediction can be made more or less random, correspondingly:

p𝑚𝑜𝑑(epred
t ) =

exp(ln(p(epred
t ))∕Q)

‖exp(ln(p(epred
t ))∕Q)‖1

. (5)

3 PROPOSED MODELING PROCEDURE

Since PS and IAT are continuous features, a quantization technique is required, however, a plain mapping to a discrete
feature space will lead either to significant size of the NN or information loss. To cope with the problem, the feature space
can be quantized with a generative GMM. The approach allows to map a continuous two-dimensional feature space to N
(≤20 in this work) discrete numbers, that is, latent components. Moreover, the number can be selected in an automated
fashion by the minimum of Bayesian information criteria (BIC).21 In this way, the required number of latent components
is kept low, but sufficient enough to minimize the difference between the original and modeled feature spaces. The trained
mixture model parameters (B, 𝝅) allow to map a sequence of arbitrary packet features to a sequence of latent component
numbers.

Essentially, the first-order state-transition mechanism from a HMM is replaced with an RNN. So the next step is to
prepare training data for a NN, where the latter sequence has to be transformed to a tensor 𝒮 ∈ K × W × N, where K
is the number of sequence batches, W is the window size for a sequence, N is the number of latent components, which
are one-hot encoded to form the vector et. Thus, the encoding transforms the source vector to a matrix, which is further
rolled through the window and chunked to the tensor.

As for the network architecture, the recurrent layers consist of GRU blocks, where hidden layers have the same size
as the outer ones, and their number ranges from 1 to 2.

The categorical cross-entropy training loss function is a common choice for classification problems, thus, it is selected
for this work. The stop threshold for the training procedure is defined empirically, based on the performance on the
validation dataset.
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A sequence is required to instantiate the prediction process of the trained model, which can be an arbitrary kth batch
𝒮k,∶,∶ from the training tensor. The predicted state becomes the first element of the sequence, while the last one is removed,
thus, eventually replacing the old states with the new ones in initialization sequences. The process is repeated until a
sufficient number of latent states is generated, from which the packet parameters will be further restored.

It was observed that the model's performance heavily depends on the training configuration. The RNN model has
many degrees of freedom, some of which include: window size for the state tensor, stop threshold for training, entropy of
the output PMF. To simplify the model synthesis procedure, a heuristic was developed in this work to adjust the softmax
temperature, which is the inverse of the initialization sequence's entropy:

Q = − 1∑N
i=1 p(𝒮k,∶,i = 1) log p(𝒮k,∶,i = 1)

, (6)

where p(𝒮k,∶,i = 1) is the probability of the ith latent state within the sequence.
Overall, the modeling procedure is split into the following steps:

1. Feature extraction from the source traffic recording.
2. Feature quantization by the latent components of a GMM.
3. Model training with the state sequences. In case of the HMM, it corresponds to inferring A, while B, 𝝅 are taken from

the GMM. As for RNN, the model is trained given tensor 𝒮 on the input and its shifted by one time-step version on
the output.

4. Sequence generation by the trained models.
5. Parameter sampling from B to restore the packet feature space.

It is important to make sure the HMM and RNN models have the same B, 𝝅 parameters, in order to provide a common
ground for their comparison, since Baum-Welch/Expectation-Maximization (EM) algorithms do not guarantee converg-
ing to the global minimum, often producing various local optima on the same data, that is, different descriptions of the
components.

The implementation of the model is available in.22

4 MODEL EVALUATION

To evaluate the models, two kinds of traffic are considered in this work:
1. a User Datagram Protocol (UDP) flow containing a Skype voice call between two mobile terminals with 1 minute

duration.
2. a bi-directional traffic recording (20 hours) from an Amazon Echo device, as an example of more complex modeling

patterns with long-term dependencies.

Traffic is processed and modeled in each direction independently: (a) the PS (payload size) and IAT features of the
target device/flow are extracted, where packets without payload are dropped (eg, TCP-ACK messages); (b) packets with
at least one feature below the first and above the 99th percentiles are considered the outliers and filtered as well.

To assess the models' effectiveness quantitatively the generated traffic is evaluated and compared with the source via
the following performance measures:
1. Kulback-Leibler divergence (KLD), which allows to measure the distance between the source and generated distribu-

tions for one feature at a time. The result is a-dimensional with values within the (0, 1) range.
2. Rolling entropy, which evaluates how “random” a feature is within the time-window. For instance, the entropy of a

generated feature is high when it changes rapidly over the time, and vice versa, for constant values the entropy is zero.
The metric allows monitoring the model's fidelity and accuracy during traffic generating, not only at the final point as
the KLD does. In this work, the entropy is calculated every 50 packets.

The models were trained and evaluated for the two scenarios independently.

4.1 Skype voice call

To select the W parameter for an RNN, it is important to estimate temporal properties of state sequences. Hence, setting
the parameter lower than the auto-correlation lag of a state vector may not allow the model catch its linear dependency.
According to the auto-correlation function of the state vector (not shown here), the sequence does not have significant
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T A B L E 1 The Kulback-Leibler divergence (KLD)
metric

Skype voice call Amazon Echo

Model Feature From To From To

HMM IAT 0.0056 0.0115 0.022 0.013

PS 0.0147 0.0153 0.0024 0.001

RNN IAT 0.0248 0.013 0.0374 0.02

PS 0.0329 0.0096 0.0905 0.0288
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F I G U R E 1 The rolling entropy for a) Skype voice call and b) Amazon Echo recording

temporal linear dependencies. Also, some experiments with W = (20… 300) did not reveal the influence on the results
(not shown here), thus W = 200 was arbitrarily selected.

According to the KLD metric, the models closely approached the source distributions of PS/IAT, yielding to the
distance on average <0.02, however, the RNN handled traffic from the source slightly worse (see Table 1).

As for the rolling entropy, the HMM and RNN models showed similar averaged values (see Figure 1), with the
randomness for the PS parameter up to 15% above the expected, contrasting to the RNN's IAT case.

4.2 Amazon Echo

On contrary to the voice traffic case, the state sequences of Amazon Echo have an emphasized temporal pattern that
corresponds to periodic receiving sessions by the device (not shown for the sake of brevity). Due to the pattern, W = 50
was selected for the RNN, with the window covering the first two auto-correlation spikes.

The KLD metric shows that the RNN had worse performance in comparison with the HMM (see Table 1), especially
the traffic from the device that diverged by ∼0.06 from the original, as compared with ∼0.025 for the HMM. One of the
reasons is the difficult training procedure leading to a model that generates state sequences with distributions quite distant
from the expected.

The rolling entropy metric suggests the same results as above (see Figure 1). As for the source traffic, the metric
resembles a stationary process due to the traffic nature, where the HMM-derived traffic had overall similar values to the
source, except for the PS destined to the device. Finally, the RNNs produced features with a weaker pattern, especially
when modeling traffic to the device.
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5 CONCLUSIONS

The paper offered to model network traffic with a modified version of the HMM framework, such that the state transition
mechanism was substituted by a RNN. The comparison with the reference HMM was provided by modeling a Skype voice
call session and the traffic of an IoT device - Amazon Echo. The two approaches demonstrated their suitability for flow
and device modeling tasks according to objective metrics, namely, the KLD and the rolling entropy.

Thus, the PS and IAT distributions produced by the HMM models diverged from the source not more than 0.02,
whereas the RNNs demonstrated the 0.04 difference on average. Moreover, the rolling entropy had a better stability for
the first model as well.

Nevertheless, the RNNs are capable of reproducing statistically similar traffic, given a proper training and model
selection procedures, since the performance heavily depends on patterns of the traffic being modeled. However, a HMM
may be a preferred choice due to fewer degrees of freedom and more robust performance.
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