
6.3 Digital implementation of analog controller design
This section introduces an indirect approach to digital controller design. The

approach is based on designing an analog controller for the analog subsystem and

then obtaining an equivalent digital controller and using it to digitally implement

the desired control. The digital controller can be obtained using a number of

recipes that are well known in the field of signal processing, where they are used

in the design of digital filters. In fact, a controller can be viewed as a filter that

attenuates some dynamics and accentuates others so as to obtain the desired time

response. We limit our discussion of digital filters and the comparison of various

recipes for obtaining them from analog filters to differencing methods, pole-zero

matching, and bilinear transformation. The system configuration we consider is

shown in Figure 6.12. The system includes (1) a z-transfer function model of a

DAC, analog subsystem, and ADC and (2) a cascade controller. We begin with a

general procedure to obtain a digital controller using analog design.

PROCEDURE 6.1

1. Design a controller Ca(s) for the analog subsystem to meet the desired design
specifications.

2. Map the analog controller to a digital controller C(z) using a suitable transformation.
3. Tune the gain of the transfer function C(z)GZAS(z) using proportional z-domain design
to meet the design specifications.

4. Check the sampled time response of the digital control system and repeat steps 1 to
3, if necessary, until the design specifications are met.

Step 2 of Procedure 6.1—that is, the transformation from an analog to a digital

filter—must satisfy the following requirements:

1. A stable analog filter (poles in the left half plane (LHP)) must transform to a
stable digital filter.

2. The frequency response of the digital filter must closely resemble the
frequency response of the analog filter in the frequency range 0-ωs/2 where
ωs is the sampling frequency.

Most filter transformations satisfy these two requirements to varying degrees.

However, this is not true of all analog-to-digital transformations, as illustrated by

the following section.

Y(z)E(z)R(z) + 

−

U(z)
C(z) GZAS(z) 

FIGURE 6.12

Block diagram of a single-loop digital control system.
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6.3.1 Differencing methods
An analog filter can be represented by a transfer function or differential equation.

Numerical analysis provides standard approximations of the derivative so as to

obtain the solution to a differential equation. The approximations reduce a differ-

ential equation to a difference equation and could thus be used to obtain the dif-

ference equation of a digital filter from the differential equation of an analog

filter. We examine two approximations of the derivative: forward differencing

and backward differencing.

Forward differencing
The forward differencing approximation of the derivative is

_yðkÞD 1
T
yðk1 1Þ2 yðkÞ½ � (6.13)

The approximation of the second derivative can be obtained by applying

(6.13) twice—that is,

ÿðkÞD 1
T
_yðk1 1Þ2 _yðkÞ½ �

D
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1
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yðk1 2Þ2 yðk1 1Þ½ �2 1
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yðk1 1Þ2 yðkÞ½ �

� �
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T2
yðk1 2Þ2 2yðk1 1Þ1 yðkÞ� �

(6.14)

Approximations of higher-order derivatives can be similarly obtained.

Alternatively, one may consider the Laplace transform of the derivative and the

z-transform of the difference in (6.13). This yields the mapping

sYðsÞ- 1
T
z2 1½ �YðzÞ (6.15)

Therefore, the direct transformation of an s-transfer function to a z-transfer func-

tion is possible using the substitution

s-
z2 1

T
(6.16)

EXAMPLE 6.5: FORWARD DIFFERENCE
Apply the forward difference approximation of the derivative to the second-order analog
filter

CaðsÞ5
ω2n

s21 2ζωns1ω2n

and examine the stability of the resulting digital filter for a stable analog filter.
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Solution
The given filter is equivalent to the differential equation

ÿðtÞ1 2ζωn _yðtÞ1ω2nyðtÞ5ω2nuðtÞ

where y(t) is the filter output and u(t) is the filter input. The approximation of the first
derivative by (6.13) and the second derivative by (6.14) gives the difference equation

1

T2
yðk1 2Þ2 2yðk1 1Þ1 yðkÞg1 2ζωn

1

T
yðk1 1Þ2 yðkÞ½ �1ω2nyðkÞ5ω2nuðkÞ

�
Multiplying by T2 and rearranging terms, we obtain the digital filter

yðk1 2Þ1 2½ζωnT 2 1�yðk1 1Þ1 ½ðωnTÞ22 2ζωnT1 1�yðkÞ5 ðωnTÞ2uðkÞ
Equivalently, we obtain the transfer function of the filter using the simpler transformation
(6.16)

CðzÞ5 ω2n
s212ζωns1ω2n

�����
s5
z21
T

5
ðωnTÞ2

z21 2½ζωnT 2 1�z1 ½ðωnTÞ22 2ζωnT 1 1�
For a stable analog filter, we have ζ. 0 and ωn. 0 (positive denominator coefficients

are sufficient for a second-order polynomial). However, the digital filter is unstable if the
magnitude of the constant term in its denominator polynomial is greater than unity. This
gives the instability condition

ðωnTÞ22 2ζωnT 1 1. 1
i:e:; ζ,ωnT=2

For example, a sampling period of 0.2 s and an undamped natural frequency of
10 rad/s yield unstable filters for any underdamped analog filter.

Backward differencing
The backward differencing approximation of the derivative is

_yðkÞD 1
T
yðkÞ2 yðk2 1Þ½ � (6.17)

The approximation of the second derivative can be obtained by applying

(6.17) twice—that is,

ÿðkÞD 1
T
_yðkÞ2 _yðk2 1Þ½ �

D
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T

1

T
yðkÞ2 yðk2 1Þ½ �2 1

T
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yðkÞ2 2yðk2 1Þ1 yðk2 2Þ� �

(6.18)
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Approximations of higher-order derivatives can be similarly obtained. One

may also consider the Laplace transform of the derivative and the z-transform of

the difference in (6.17). This yields the substitution

s-
z2 1

zT
(6.19)

EXAMPLE 6.6: BACKWARD DIFFERENCE
Apply the backward difference approximation of the derivative to the second-order analog
filter

CaðsÞ5
ω2n

s21 2ζωns1ω2n

and examine the stability of the resulting digital filter for a stable analog filter.

Solution
We obtain the transfer function of the filter using (6.19)

CðzÞ5 ω2n
s212ζωns1ω2n

�����
s5z21zT

5
ðωnTzÞ2

½ðωnTÞ21 2ζωnT 1 1�z22 2½ζωnT 1 1�z1 1
The stability conditions for the digital filter are (see Chapter 4)

½ðωnTÞ21 2ζωnT 1 1�1 2½ζωnT 1 1�1 1. 0
½ðωnTÞ21 2ζωnT 1 1�2 1. 0
½ðωnTÞ21 2ζωnT 1 1�2 2½ζωnT 1 1�1 1. 0

The conditions are all satisfied for ζ. 0 and ωn. 0—that is, for all stable analog filters.

6.3.2 Pole-zero matching
We know from equation (6.3) that discretization maps an s-plane pole at ps to a

z-plane pole at epsT but that no rule exists for mapping zeros. In pole-zero match-

ing, a discrete approximation is obtained from an analog filter by mapping both

poles and zeros using (6.3). If the analog filter has n poles and m zeros, then we

say that the filter has n2m zeros at infinity. For n2m zeros at infinity, we add
n2m or n2m2 1 digital filter zeros at unity. If the zeros are not added, it can
be shown that the resulting system will include a time delay (see Problem 6.5).

The second choice gives a strictly proper filter where the computation of the out-

put is easier, since it only requires values of the input at past sampling points.

Finally, we adjust the gain of the digital filter so that it is equal to that of the ana-

log filter at a critical frequency dependent on the filter. For a low-pass filter, α is
selected so that the gains are equal at DC; for a bandpass filter, they are set equal

at the center of the pass band.
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For an analog filter with transfer function

GaðsÞ5K
Lm
i51
ðs2 aiÞ

Lm
j51ðs2 bjÞ

(6.20)

we have the digital filter

GðzÞ5αK ðz11Þ
n2m21Lm

i51
ðz2 eaiT Þ

Lm
j51ðz2 ebjT Þ

(6.21)

where α is a constant selected for equal filter gains at a critical frequency. For
example, for a low-pass filter, α is selected to match the DC gains using Ga(1)5
Ga(0), while for a high-pass filter, it is selected to match the high-frequency

gains using G(21)5Ga(N). Setting z5 e
( jωT)521 (i.e., ωT = π) is equivalent

to selecting the folding frequency ωs/2, which is the highest frequency allowable
without aliasing. Pole-zero matched digital filters can be obtained using the

MATLAB command

.. g5 c2d ðga;T ; 'matched'Þ

EXAMPLE 6.7
Find a pole-zero matched digital filter approximation for the analog filter

GaðsÞ5
ω2n

s21 2ζωns1ω2n

If the damping ratio is equal to 0.5 and the undamped natural frequency is 5 rad/s, deter-
mine the transfer function of the digital filter for a sampling period of 0.1 s. Check your
answer using MATLAB and obtain the frequency response of the digital filter.

Solution
The filter has a zero at the origin and complex conjugate poles at s1,252ζωn6 jωd. We
apply the pole-zero matching transformation to obtain

GðzÞ5 αðz1 1Þ
z22 2e2ζωnTcosðωdTÞz1 e22ζωnT

The analog filter has two zeros at infinity, and we choose to add one digital filter zeros
at 21 for a strictly proper filter. The difference equation for the filter is

yðk1 2Þ5 2e2ζωnT cosðωdTÞyðk1 1Þ2 e22ζωnT yðkÞ
1αðuðk1 1Þ2 uðkÞÞ

Thus, the computation of the output only requires values of the input at earlier sampling
points, and the filter is easily implementable. The gain α is selected in order for the digital
filter to have the same DC gain of the analog filter, which is equal to unity.
For the given numerical values, we have the damping ratio ωd 5 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 0:52
p

5

4:33 rad=s and the filter transfer function

GðzÞ5 0:09634ðz1 1Þ
z2 2 1:414z1 0:6065
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The following MATLAB commands give the transfer function:

..wn55;zeta50.5; % Undamped natural frequency, damping ratio

..ga5tf([wn^2],[1,2�zeta�wn,wn^2]) % Analog transfer function
Transfer function:
25
– – – – – – – – –

s^21 5 s1 25
.. g5c2d(ga,.1,'matched') % Transformation with a sampling period 0.1
Transfer function:
0.09634 z1 0.09634
– – – – – – – – – – –

z^22 1.414 z1 0.6065
Sampling time: 0.1

The frequency responses of the analog and digital filters obtained using

MATLAB are shown in Figure 6.13. Note that the frequency responses are

almost identical in the low frequency range but become different at high

frequencies.
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Frequency response of digital filter for Example 6.7.
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6.3.3 Bilinear transformation
The relationship

s5 c
z2 1

z1 1
(6.22)

with a linear numerator and a linear denominator and a constant scale factor c is

known as a bilinear transformation. The relationship can be obtained from the

equality z5 esT using the first-order approximation

s5
1

T
lnðzÞD 2

T

z2 1

z1 1

� �
(6.23)

where the constant c5 2/T. A digital filter C(z) is obtained from an analog filter
Ca(s) by the substitution

CðzÞ5CaðsÞ s5c z21
z11½ �

��� (6.24)

The resulting digital filter has the frequency response

CðejωT Þ5CaðsÞ
�����
s5c e

jωT21
ejωT11

� �
5Ca c

ejωT=22 e2jωT=2

ejωT=21 e2jωT=2

� �� �
Thus, the frequency responses of the digital and analog filters are related by

CðejωT Þ5Ca jctan
ωT
2

� �� �
(6.25)

Evaluating the frequency response at the folding frequency ωs/2 gives

CðejωsT=2Þ 5Ca jctan
ωsT
4

24 350@ 1A
5Ca jctan

2π
4

24 350@ 1A5CaðjNÞ
We observe that bilinear mapping squeezes the entire frequency response of the

analog filter for a frequency range 0-N into the frequency range 0-ωs/2. This
implies the absence of aliasing (which makes the bilinear transformation a popu-

lar method for digital filter design) but also results in distortion or warping of the
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frequency response. The relationship between the frequency ωa of the analog filter
and the associated frequency ω of the digital filter for the case c5 2/T—namely,

ωa5
2

T
tan
ωT
2

� �
is plotted in Figure 6.14 for T5 1. Note that, in general, if the sampling period is
sufficiently small so that ω{π/T, then

tan
ωT
2

� �
D
ωT
2

and therefore ωa� ω, so that the effect of the warping is negligible.
In any case, the distortion of the frequency response can be corrected at a sin-

gle frequency ω0 using the prewarping equality

Cðejω0T Þ5Ca jctan ω0T
2

� �� �
5Caðjω0Þ (6.26)

The equality holds provided that the constant c is chosen as

c5
ω0

tan ω0T
2

� � (6.27)

The choice of the prewarping frequency ω0 depends on the mapped filter.
In control applications, a suitable choice of ω0 is the 3-dB frequency for a PI or
PD controller and the upper 3-dB frequency for a PID controller. This is explored

further in design examples.
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Relationship between analog filter frequencies ωa and the associated digital filter
frequencies with bilinear transformation.
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In MATLAB, the bilinear transformation is accomplished using the following

command:

.. gd5 c2dðg; tc; 'tustin'Þ
where g is the analog system and tc is the sampling period. If prewarping is

requested at a frequency w, then the command is

.. gd5 c2dðg; tc; 'prewarp';wÞ

EXAMPLE 6.8
Design a digital filter by applying the bilinear transformation to the analog filter

CaðsÞ5 1

0:1s1 1
(6.28)

with T5 0.1 s. Examine the warping effect and then apply prewarping at the 3-dB
frequency.

Solution
By applying the bilinear transformation (6.22) to (6.28), we obtain

CðzÞ5 1

0:1 2
0:1
z2 1
z1 1
1 1
5
z1 1

3z2 1

The Bode plots of Ca(s) (solid line) and C(z) (dash-dot line) are shown in Figure 6.15,
where the warping effect can be evaluated. We select the 3-dB frequency ω05 10 as a pre-
warping frequency and apply (6.27) to obtain

CðzÞ5 1

0:1 10
tan 10U0:1

2ð Þ
z2 1
z1 1
1 1
D
0:35z1 0:35

z2 0:29
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FIGURE 6.15

Bode plots of the analog filter (solid) and the digital filter obtained with (dashed) and

without prewarping (dash-dot).
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The corresponding Bode plot is shown again in Figure 6.15 (dashed line). It coincides
with the Bode plot of C(s) at ω05 10. Note that for lower values of the sampling period,
the three Bode plots tend to coincide.

Another advantage of bilinear transformation is that it maps points in the LHP

to points inside the unit circle and thus guarantees the stability of a digital filter

for a stable analog filter. This property was discussed in Section 4.42 and is clearly

demonstrated in Figure 4.4.

Bilinear transformation of the analog PI controller gives the following digital

PI controller:

CðzÞ5K ðs1aÞ
s

�����
s5c z21

z11½ �

5K
a1 c

c

� �
z1 a2 c

a1 c

� �
z2 1

(6.29)

The digital PI controller increases the type of the system by one and can there-

fore be used to improve steady-state error. As in the analog case, it has a zero

that reduces the deterioration of the transient response due to the increase in sys-

tem type. The PI controller of (6.29) has a numerator order equal to its denomina-

tor order. Hence, the calculation of its output from its difference equation requires

knowledge of the input at the current time. Assuming negligible computational

time, the controller is approximately realizable.

Bilinear transformation of the analog PD controller gives the digital PD

controller

CðzÞ5Kðs1aÞ
�����
s5c z21

z11½ �

5Kða1 cÞ z1
a2 c
a1 c

� �
z1 1

(6.30)

This includes a zero that can be used to improve the transient response and a

pole at z521 that occurs because the continuous time system is not proper (see
Problem 6.8). A pole at z521 corresponds to an unbounded frequency response
at the folding frequency, as ejωsT=25 ejπ521, and must therefore be eliminated.
However, eliminating the undesirable pole would result in an unrealizable control-

ler. An approximately realizable PD controller is obtained by replacing the pole

at z521 with a pole at the origin to obtain

CðzÞ5Kða1 cÞ z1
a2 c
a1 c

� �
z

(6.31)
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A pole at the origin is associated with a term that decays as rapidly as possible

so as to have the least effect on the controller dynamics. However, this variation

from direct transformation results in additional distortion of the analog filter and

complication of the digital controller design and doubles the DC gain of the con-

troller. To provide the best approximation of the continuous-time controller, disre-

garding subsequent gain tuning, the gain K can be halved.

Bilinear transformation of the analog PID controller gives the digital PD

controller

CðzÞ5K ðs1aÞðs1bÞ
s

����
s5c z21

z11½ �

5K
ða1 cÞðb1 cÞ

c

z1 a2 c
a1 c

� �� �
z1 b2 c

b1 c

� �� �
ðz1 1Þðz2 1Þ

The controller has two zeros that can be used to improve the transient

response and a pole at z5 1 to improve the steady-state error. As with PD control,
transforming an improper transfer function yields a pole at z521, which must
be replaced by a pole at the origin to yield a transfer function with a bounded fre-

quency response at the folding frequency. The resulting transfer function is

approximately realizable and is given by

CðzÞ5K ða1 cÞðb1 cÞ
c

z1 a2 c
a1 c

� �� �
z1 b2 c

b1 c

� �� �
zðz2 1Þ (6.32)

As in the case of PD control, the modification of the bilinearly transformed

transfer function results in distortion that can be reduced by halving the

gain K.

Using Procedure 6.1 and equations (6.29), (6.31), and (6.32), respectively, dig-

ital PI, PD, and PID controllers can be designed to yield satisfactory transient and

steady-state performance.

EXAMPLE 6.9
Design a digital controller for a DC motor speed control system (see Example 3.6) where
the (type 0) analog plant has the transfer function

GðsÞ5 1

ðs1 1Þðs1 10Þ
to obtain zero steady-state error due to a unit step, a damping ratio of 0.7, and a settling
time of about 1 s.

Solution
The design is completed following Procedure 6.1. First, an analog controller is designed
for the given plant. For zero steady-state error due to unit step, the system type must be
increased by one. A PI controller affects this increase, but the location of its zero must be
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chosen so as to obtain an acceptable transient response. The simplest possible design is
obtained by pole-zero cancellation and is of the form

CaðsÞ5K
s1 1

s

The corresponding loop gain is

CaðsÞGðsÞ5
K

sðs1 10Þ
Hence, the closed-loop characteristic equation of the system is

sðs1 10Þ1K5 s21 2ζωns1ω2n
Equating coefficients gives ζωn5 5 rad/s and the settling time

Ts5
4

ζωn
5
4

5
5 0:8 s

as required. The damping ratio of the analog system can be set equal to 0.7 by appropriate
choice of the gain K. The gain selected at this stage must often be tuned after filter trans-
formation to obtain the same damping ratio for the digital controller. We solve for the
undamped natural frequency

ωn5 10=ð2ζÞ5 10=ð23 0:7Þ5 7:142 rad=s
The corresponding analog gain is

K5ω2n5 51:02
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Root locus for PI design.
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We therefore have the analog filter

CaðsÞ5 51:02 s1 1
s

Next, we select a suitable sampling period for an undamped natural frequency of about
7.14 rad/s. We select T5 0.02 s, 2π/(40ωd), which corresponds to a sampling frequency
higher than 40 times the damped natural frequency (see Chapter 2). The model of the
analog plant together with an ADC and sampler is

GZASðzÞ5 ð12 z21ÞZ
GðsÞ
s

� �
5 1:86043 1024

z1 0:9293

ðz2 0:8187Þðz2 0:9802Þ
Bilinear transformation of the PI controller, with gain K included as a free parameter, gives

CðzÞ5 1:01K z2 0:9802
z2 1

Because the analog controller was obtained using pole-zero cancellation, near pole-
zero cancellation occurs when the digital controller C(z) is multiplied by GZAS(z). The gain
can now be tuned for a damping ratio of 0.7 using a CAD package with the root locus of
the loop gain C(z)GZAS(z). From the root locus, shown in Figure 6.16, at ζ5 0.7, the gain K
is about 46.7, excluding the 1.01 gain of C(z) (i.e., a net gain of 47.2). The undamped
natural frequency is ωn5 6.85 rad/s. This yields the approximate settling time

Ts 5
4

ζωn
5

4

6:853 0:7

5 0:83 s
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Step response for PI design with K5 47.2.
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The settling time is acceptable but is slightly worse than the settling time for the ana-
log controller. The step response of the closed-loop digital control system shown in
Figure 6.17 is also acceptable and confirms the estimated settling time. The net gain
value of 47.2, which meets the design specifications, is significantly less than the gain
value of 51.02 for the analog design. This demonstrates the need for tuning the controller
gain after mapping the analog controller to a digital controller.

EXAMPLE 6.10
Design a digital controller for the DC motor position control system of Example 3.6, where
the (type 1) analog plant has the transfer function

GðsÞ5 1

sðs1 1Þðs1 10Þ
to obtain a settling time of about 1 second and a damping ratio of 0.7.

Solution
Using Procedure 6.1, we first observe that an analog PD controller is needed to improve
the system transient response. Pole-zero cancellation yields the simple design

CaðsÞ5Kðs1 1Þ
We can solve for the undamped natural frequency analytically, or we can use a CAD

package to obtain the values K5 51.02 and ωn5 7.143 rad/s for ζ5 0.7.
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A sampling period of 0.02 s is appropriate because it is less than 2π/(40ωd). The plant
with the ADC and DAC has the z-transfer function

GZASðzÞ5 ð12 z21ÞZ
GðsÞ
s

( )
5 1:26293 1026

ðz1 0:2534Þðz1 3:535Þ
ðz2 1Þðz2 0:8187Þðz2 0:9802Þ

Bilinear transformation of the PD controller gives

CðzÞ5K z2 0:9802
z

5Kð12 0:9802z21Þ

The root locus of the system with PD control (Figure 6.18) gives a gain K of 2,160
and an undamped natural frequency of 6.51 rad/s at a damping ratio ζ5 0.7. The settling
time for this design is about

Ts5
4

ζωn
5

4

0:73 6:51
5 0:88 s

which meets the design specifications.
Checking the step response with MATLAB gives Figure 6.19 with a settling time of

0.94 s, a peak time of 0.68 s, and a 5% overshoot. The time response shows a slight
deterioration from the characteristics of the analog system but meets all the design
specifications. In some cases, the deterioration may necessitate repeatedly modifying the
digital design or modifying the analog design and then mapping it to the z-domain until
the resulting digital filter meets the desired specifications.
Note that for a prewarping frequency ω05 1 rad/s, the 3-dB frequency of the PD con-

troller, ω0T5 0.02 rad and tan(ω0T/2)5 tan(0.01)D0.01. Hence, equation (6.25) is approxi-
mately valid without prewarping, and prewarping has a negligible effect on the design.
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FIGURE 6.19

Time step response for PD design with K5 2,160.
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EXAMPLE 6.11
Design a digital controller for a speed control system, where the analog plant has transfer
function

GðsÞ5 1

ðs1 1Þðs1 3Þ
to obtain a time constant of less than 0.3 second, a dominant pole damping ratio of at
least 0.7, and zero steady-state error due to a step input.

Solution
The root locus of the analog system is shown in Figure 6.20. To obtain zero steady-state
error due to a step input, the system type must be increased to one by adding an integrator
in the forward path. However, adding an integrator results in significant deterioration of
the time response or in instability. If the pole at 21 is canceled, the resulting system is
stable but has ζωn5 1.5—that is, a time constant of 2/3 s and not less than 0.3 s as speci-
fied. Using a PID controller provides an additional zero that can be used to stabilize the
system and satisfy the remaining design requirements.
For a time constant τ of 0.3 s, we have ζωn5 1/τ$ 3.33 rad/s. A choice of ζ5 0.7 and

ωn of about 6 rad/s meets the design specifications. The design appears conservative, but
we choose a larger undamped natural frequency than the minimum needed in anticipation
of the deterioration due to adding PI control. We first design a PD controller to meet these
specifications using MATLAB. We obtain the controller angle of about 52.4� using the
angle condition. The corresponding zero location is

a5
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ð0:7Þ2

q
tanð52:4�Þ 1ð0:7Þð6ÞD7:5

The root locus for the system with PD control (Figure 6.21) shows that the system with
ζ5 0.7 has ωn of about 6 rad/s and meets the transient response specifications with a gain
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FIGURE 6.20

Root locus for the analog speed control system.

1956.3 Digital implementation of analog controller design



of 4.4 and ζωn5 4.2. Following the PI-design procedure, we place the second zero of the
PID controller at one-tenth this distance from the jω axis to obtain

CaðsÞ5K
ðs1 0:4Þðs1 7:5Þ

s

To complete the analog PID design, the gain must be tuned to ensure that ζ5 0.7.
Although this step is not needed, we determine the gain K�5.8, and ωn5 6.7 rad/s
(Figure 6.22) for later comparison to the actual gain value used in the digital design. The
analog design meets the transient response specification with ζωn5 4.69. 3.33, and the
dynamics allow us to choose a sampling period of 0.025 s (ωs. 50ωd).
The model of the analog plant with DAC and ADC is

GZASðzÞ5 ð12 z21ÞZ
GðsÞ
s

� �
5 1:1703 1023

z1 0:936

ðz2 0:861Þðz2 0:951Þ
Bilinear transformation and elimination of the pole at 2 1 yields the digital PID

controller

CðzÞ5 47:975K ðz2 0:684Þðz2 0:980Þ
zðz2 1Þ

The root locus for the system with digital PID control is shown in Figure 6.23, and the
system is seen to be minimum phase (i.e., its zeros are inside the unit circle).
For design purposes, we zoom in on the most significant portion of the root locus and

obtain the plot of Figure 6.24. With K5 9.62, 13.2, the system has ζ5 0.7, 0.5, and ωn5 43.2,
46.2 rad/s, respectively. Both designs have a sufficiently fast time constant, but the second
damping ratio is less than the specified value of 0.7. The time response of the two digital sys-
tems and for analog control with K5 100 are shown in Figure 6.25. Lower gains give an unac-
ceptably slow analog design. The time response for the high-gain digital design is very fast.
However, it has an overshoot of over 4% but has a settling time of 5.63 s. The digital design
for ζ5 0.7 has a much slower time response than its analog counterpart.
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FIGURE 6.21

Root locus of a PD-controlled system.
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It is possible to improve the design by trial and error, including redesign of the analog
controller, but the design with ζ5 0.5 may be acceptable. One must weigh the cost of rede-
sign against that of relaxing the design specifications for the particular application at
hand. The final design must be a compromise between speed of response and relative
stability.
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FIGURE 6.22

Root locus of an analog system with PID control.
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Root locus of a system with digital PID control.
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Detail of the root locus of a system with digital PID control.
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Time step response for the digital PID design with K5 9.62 (light gray), K5 13.2 (dark

gray), and for analog design (black).
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6.3.4 Empirical digital PID controller tuning
As explained in Section 5.5, the parameters of a PID controller are often selected

by means of tuning rules. This concept can also be exploited to design a digital

PID controller. The reader can show (Problem 6.7) that bilinear transformation of

the PID controller expression (5.20) yields

CðzÞ5Kp 11
1

Ti

T

2

z1 1

z2 1
1 Td

2

T

z2 1

z1 1

� �
(6.33)

Bilinear transformation of the PID controller results in a pole at z521
because the derivative part is not proper (see Section 12.4.1). As in Section 6.3.3,

we avoid an unbounded frequency response at the folding frequency by replacing

the pole at z521 with a pole at z5 0 and dividing the gain by two. The resulting
transfer function is

CðzÞ5 Kp
2
11

T

2Ti

z1 1

z2 1
1
2Td

T

z2 1

z

� �
If parameters Kp, Ti, and Td are obtained by means of a tuning rule as in the

analog case, then the expression of the digital controller is obtained by substitut-

ing in the previous expression. The transfer function of a zero-order hold can be

approximated by truncating the series expansions as

GZOHðsÞ5
12 e2sT

s
D
12 11 Ts2 ðTsÞ2=21?

Ts
5 12

Ts

2
1?De2

T
2
s

Thus, the presence of the ZOH can be considered as an additional time delay

equal to half of the sampling period. The tuning rules of Table 5.1 can then be

applied to a system with a delay equal to the sum of the process time delay and a

delay of T/2 due to the zero-order hold.

EXAMPLE 6.12
Design a digital PID controller with sampling period T5 0.1 for the analog plant of Example 5.9

GðsÞ5 1

ðs11Þ4 e
20:2s

by applying the Ziegler-Nichols tuning rules of Table 5.1.

Solution
A first-order-plus-dead-time model of the plant was obtained in Example 5.9 using the tan-
gent method with gain cK5 1, a dominant time constant t5 3, and an apparent time delay
L5 1.55. The apparent time delay for digital control is obtained by adding half of the value
of the sampling period (0.05). This gives L5 1.551 0.055 1.6. The application of the tun-
ing rules of Table 5.1 yields

Kp5 1:2
τ
KL
5 2:25

Ti5 2L5 3:2

Td5 0:5L5 0:8
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Thus, the digital PID controller has the transfer function

CðzÞ5 19:145z
22 35:965z1 16:895

zðz2 1Þ
The response of the digital control system due to a unit step reference input applied

at time t5 0 and to a unit step change in the control variable at time t5 50 is shown in
Figure 6.26. The response is similar to the result obtained with the analog PID controller
in Example 5.9.

6.4 Direct z-domain digital controller design
Obtaining digital controllers from analog designs involves approximation that

may result in significant controller distortion. In addition, the locations of the con-

troller poles and zeros are often restricted to subsets of the unit circle. For exam-

ple, bilinear transformation of the term (s1 a) gives [z2 (c2 a)/(c1 a)], as seen
from (6.29) through (6.32). This yields only RHP zeros because a is almost

always smaller than c. The plant poles are governed by pz5 e
psT , where ps and pz

are the s-domain and z-domain poles, respectively, and can be canceled with RHP

zeros. Nevertheless, the restrictions on the poles and zeros in (6.29) through

(6.32) limit the designer’s ability to reshape the system root locus.

Another complication in digital approximation of analog filters is the need to

have a pole at 0 in place of the pole at 21, as obtained by direct digital transfor-
mation, to avoid an unbounded frequency response at the folding frequency. This

may result in a significant difference between the digital and analog controllers

and may complicate the design process considerably.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Time s

O
u
tp

u
t

FIGURE 6.26

Process output with the digital PID controller tuned with the Ziegler-Nichols method.
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