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Alignment is the first step in most RNA-seq analysis 
pipelines, and the accuracy of downstream analyses depends 
heavily on it. Unlike most steps in the pipeline, alignment is 
particularly amenable to benchmarking with simulated data. 
We performed a comprehensive benchmarking of 14 common 
splice-aware aligners for base, read, and exon junction-level 
accuracy and compared default with optimized parameters. 
We found that performance varied by genome complexity, 
and accuracy and popularity were poorly correlated. The most 
widely cited tool underperforms for most metrics,  
particularly when using default settings.

The majority of RNA-seq studies start with alignment to a 
reference genome or transcriptome. Analysis is also possible 
without a reference genome but generally underperforms align-
ment-guided analysis1. Many algorithms have been developed 
for this critical alignment step (Supplementary Fig. 1). Most of 
these are specific to RNA-seq, but BWA and Bowtie are designed 
for DNA alignment and do not properly handle intron-sized 
gaps; therefore we strongly advise against using these tools for  
genome alignment.

Polymorphisms, sequencing error, low-complexity sequences, 
intron-sized gaps, intron signal, incomplete annotation, alter-
native splicing, and pathological splicing can all complicate 
alignment. For an aligner to be viable for RNA-seq it must 
(i) align reads across splice junctions, (ii) handle paired-end 
reads, (iii) handle strand-specific data, and (iv) run efficiently.  
Since annotation is never perfect, the ability to align reads 
across unannotated splice junctions is also a plus. We identified 
14 algorithms which satisfy these four basic requirements: CLC 
Genomics Workbench v8.5 (http://www.qiagenbioinformatics. 
com/products/clc-genomics-workbench/), ContextMap2 v2.6.0 
(ref. 2), CRAC v2.4.0 (ref. 3), GSNAP v2015-9-29 (ref. 4), HISAT 
v0.1.6beta5, HISAT2 v2.0.0beta5, MapSplice2 v2.2.0 (ref. 6), 
Novoalign v3.02.13 (http://www.novocraft.com/products/ 
novoalign/), OLego v1.1.6 (ref. 7), RUM v2.0.5_06 (ref. 8), 
SOAPsplice v1.10 (ref. 9), STAR v2.5.0a (ref. 10), Subread v1.5.0 
(ref. 11), and TopHat v2.1.0 (ref. 12).

Simulating data for benchmarking alignment algorithms is 
straightforward on account of the discrete nature of the data. 
Simulated data were used for comprehensive RNA-seq alignment  
benchmarking studies in 2011 (ref. 8) and 2013 (ref. 13), but align-
ment methods have undergone considerable development since 
then. Here we analyze performance at the base, read, and junction 
levels using default and optimized parameters. We also exam-
ine execution time and memory usage; differential behavior at 
canonical versus noncanonical junctions; the effect of untrimmed 
adapters; performance on indels, reads that map to multiple sites 
(multimappers); and other factors.

Even aligning human reads to a human reference presents diffi-
culties for some genes, and aligning across different strains or spe-
cies can be globally difficult. It is therefore necessary to use aligners 
that handle both low- and high-complexity regions effectively.  
Thus it is important to simulate different levels of complexity 
and preferentially use aligners that generally perform well in  
all scenarios.

RESULTS
We simulated data from human and the malaria parasite 
Plasmodium falciparum at three complexity levels (T1, T2 and T3)  
for each of the two organisms. Each data type was simulated three 
times, giving a total of 18 data sets, that are used throughout  
(Online Methods). P. falciparum was chosen because it is a com-
monly studied organism with a very different genome from 
that of the human; its genes are 80% AT rich on average14. For 
each data set, 10 million 100-base read pairs (2 × 109 bases)  
were generated.

The least complex data sets, denoted T1, were generated with 
low polymorphism rates (0.001 substitution, 0.0001 indel) and 
error rates (0.005, a typical Illumina error rate15), similar to 
aligning most RNA-seq reads to the reference human genome. 
T2-level complexity data has moderate polymorphism and error 
rates (0.005 substitution, 0.002 indel, 0.01 error), similar to data 
from model organisms. T3 has high polymorphism and error rates 
(0.03 substitution, 0.005 indel, 0.02 error).
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Base and read level
Of our base-, read- and junction-level metrics, base-level met-
rics are the strictest and require the highest degree of accuracy  
(Fig. 1). Each base of each read constitutes an ‘event’ which can be 
either right or wrong. Roughly speaking, recall measures the frac-
tion of all bases that were aligned correctly, and precision meas-
ures the fraction of all aligned bases that were aligned correctly. 
Precision is high for most aligners, even at T3-level complexity. 
In other words, what the aligners do align, they tend to align well, 
at least at the base level. The greatest variance in performance is 
seen in recall.

On T1 libraries, base-level recall is high for most tools, rang-
ing from 86.1% (CRAC) to 97.8% (MapSplice2) on human 
data and from 92.4% (CRAC) to 99.3% (CLC) on malaria data. 
For results organized by class of misalignment (misaligned,  
aligned ambiguously, and unaligned) see Supplementary  
Figure 2.

In contrast, T2 libraries reveal significant differences in perform-
ance, ranging from 78.8% (CRAC) to 98.9% (GSNAP) on human 
data. Five tools maintain a recall greater than 95% (Contextmap2, 
GSNAP, Mapsplice2, Novoalign, STAR). On malaria data, per-
formance ranges from 72.1% (TopHat) to 98.9% (CLC).

The T3 libraries show a vast difference in recall, ranging from 12.5% 
(TopHat2) to 90.3% (Novoalign) for human and 2.1% (TopHat2) 

to 91.2% (CLC) for malaria data. Novoalign, GSNAP, CLC, STAR, 
Mapsplice2, and RUM exceed 50% on both organisms.

For malaria data at the base level, CLC consistently has the best 
recall, while Novoalign and GSNAP also do well. For human data, 
Novoalign, GSNAP, Mapsplice2, and STAR are the best. Despite 
its popularity, TopHat2 is consistently among the worst perform-
ers on both human and malaria T2 and T3 libraries.

Reads are considered properly aligned if they are not multi
mappers and at least one base is aligned correctly. Read-level 
analysis is most relevant for gene-level quantification, because  
for a read that has at least one base aligned correctly, the correct 
gene which produced that read will usually be identified. Read-
level results are similar to base-level results (Supplementary 
Figs. 3 and 4). On human and malaria T1 libraries, all the tools 
except CLC map more than 96% of the reads. On human data, 
Contextmap2, GSNAP, Mapsplice2, Novoalign, and STAR have 
recall ≥97%. On malaria, all the tools except HISAT, HISAT2, 
OLego, and TopHat2 have recall ≥97%. CRAC shows the greatest 
percentage of reads mapped incorrectly.

Junction level
A junction is where a read is spliced across an intron-sized gap that 
is typically thousands of bases long. When a read aligns across an 
intron gap, the shorter aligned segment is referred to as the anchor.  
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Figure 1 | Base-level precision and recall for human and malaria data sets.
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Figure 2 | Junction-level precision and recall for human and malaria data sets.
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Aligning across intron-sized gaps is particularly challenging, as 
the anchor can be as short as one base. For shorter anchors, more 
accurate annotation should help with the alignment.

Junction information is used extensively in downstream analy-
sis programs; particularly in reconstructing alternative splicing 
events. Ambiguous cases, such as when the first base of an intron 
matches the first base of the next exon, can often be resolved by 
prioritizing canonical splice signals, but there is considerable lati-
tude in how aligners accomplish this. Therefore, we assessed junc-
tion accuracy as a function of anchor length and splice signal.

An event is defined as a single read crossing a single splice  
junction. Not all reads involve events, and some reads involve 
multiple events. Postalignment analysis, which combines infor-
mation across reads, is provided by some aligners and was not 
included in our tests; instead we assessed the quality of the 
individual read alignments. A correct event is scored when 
an algorithm aligns the read uniquely and properly identifies 
intron boundaries. The most consistently accurate performers 
are CLC, STAR, and NOVOALIGN (Fig. 2). As before, a much 
greater separation is seen with regards to the recall. CLC is the top  
performer in all data sets except human T1 and T2, two of the 
least complex data sets.

This is somewhat surprising, as CLC only detects alternative 
splice sites at annotated junctions. If, for example, an exon ends at 
position N1, and the adjacent exon starts at position N2 according 
to the annotation, then CLC will align reads even if they splice 
from N1 to N2 + 3, for example. However, CLC does not connect 
exons that are never connected in the annotation; if, for example, 
a gene has only one annotated transcript consisting of exons E1, 
E2, and E3, then CLC will not properly align a read connecting 
E1 and E3. In contrast, Novoalign can identify unannotated con-
nections, but it does not recognize changes from the annotated 
start or end position of an exon. In spite of these limitations, both 
CLC and Novoalign are among the top performers.

We further investigated the differential effect of anchor length 
on performance, both with and without annotation, and we found 
large variation (Supplementary Note 1 and Supplementary  
Fig. 5). HISAT, HISAT2, and ContextMap2 are remarkably 
accurate even on the shortest anchors and without annotation. 
CRAC, GSNAP, and SOAPsplice have the most trouble with short 
anchors; while OLego, STAR, and MapSplice2 have trouble with 
anchors of one or two bases but perform well on longer anchors. 
As long as annotation is provided, CLC, ContextMap2, HISAT, 
HISAT2, Novoalign, STAR, and TopHat2 perform well. CLC and 
Novoalign require annotation.

As the vast majority of splice junctions are canonical, we 
analyzed canonical and noncanonical junctions separately 
(Supplementary Fig. 6). All algorithms have significantly lower 
accuracy on noncanonical junctions as compared to canonical 
junctions, and no algorithm’s performance on noncanonical  
junctions improves much with annotation. As with short anchors, 
STAR, HISAT, HISAT2, and ContextMap2 perform best.

Annotation
At the base and read levels, the use of annotation does not pro-
vide significant improvement—most tools map just a few more 
reads (Supplementary Fig. 7) with annotation than without. This 
should not be surprising, since annotation is mainly expected to 
affect accurate placement of reads across exon–exon junctions; 

and the further a base is from a junction, the less likely it is to 
benefit. Only a small percent of bases are at exon–exon junctions, 
limiting the advantage of annotation at the base level, and even 
more so at the read level. The greatest effect of annotation is seen 
at the junction level (Supplementary Fig. 8).

Some algorithms require annotation (CLC and Novoalign), 
while others cannot utilize annotation (CRAC, SOAPsplice, 
Subread). Among those that can be run in both cases, annotation 
often helps to increase the junction-level recall, while it does not 
tend to increase the precision. Not surprisingly, the improvement 
of recall increases from T1 to T3 (Supplementary Note 2).

Overall the greatest improvements from annotation are seen 
in TopHat2, RUM, GSNAP, and STAR (Supplementary Table 1). 
Generally the two-pass aligners (such as HISAT or STAR-2-pass) 
have similar performance with and without annotations, while one-
pass aligners (RUM, GSNAP, STAR-1-pass) benefit the most. It is 
worth nothing that one-pass performance with annotations is com-
parable to two-pass performance, which may reduce the required 
computing time two-fold, as the second pass is not necessary.

General improvement from annotation is perhaps more modest 
than one might expect. This could be because algorithms do not 
use annotation effectively, or because they achieve nearly optimal 
performance without the use of annotation. When no annotation 
is available, as in the case that sequencing of new organismal 
genomes outpaces their annotation, one should in fact favor algo-
rithms that perform well without the need for annotation.

There may be other advantages of annotation which are not 
captured here. For example, several methods perform a postalign-
ment analysis to produce a set of quality splice-junction calls. In 
this case annotation is likely to increase the accuracy of such calls, 
particularly on genes which are expressed at low levels.

Parameter optimization
It is important to explore the effect of parameters on performance 
and to identify algorithms which perform well with default settings.  
For each algorithm, the parameter space is enormous; we thus used 
a heuristic strategy to search the parameter space, which may not 
necessarily produce a global optimum (see Supplementary Note 3).  
Parameter optimization was performed on the T3-complexity  
data sets, which have the greatest room for improvement. It is gener-
ally not possible to optimize both precision and recall simultaneously 
or to optimize at the base, read, and junction level simultaneously.  
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Furthermore, we found that optimizing the precision generally  
results in low recall. Since precision is already high in most 
cases, our focus was on optimizing the recall, which was 
done independently for base, read, and junction levels (Fig. 3  
and Supplementary Figs. 9 and 10). The algorithm that benefits 
most dramatically from parameter tuning is TopHat2, while CLC, 
Novoalign, GSNAP, MapSplice2, and STAR perform the best with 
defaults. Unfortunately there is no clear way to optimize parameters 
on real data. Therefore, an algorithm that is robust to parameter 
settings and exhibits good performance using defaults is desir-
able (see Supplementary Note 3 and Supplementary Tables 2–43  
for the most impactful parameters for each algorithm).

Other analyses
In additional analyses, we addressed issues relating multimappers 
(Supplementary Note 4 and Supplementary Fig. 11), adapters 
(Supplementary Note 5 and Supplementary Fig. 12), indels 
(Supplementary Note 6 and Supplementary Figs. 13 and 14), 
two-pass modes (Supplementary Note 7), and computational per-
formance (Supplementary Note 8 and Supplementary Fig. 15).

DISCUSSION
RNA-seq alignment has not undergone comprehensive bench-
marking studies, making it hard to know how well individual 
algorithms work. Our results identify some effective aligners that 

are robust to parameter settings and others that display startling 
differences between default and optimized settings. TopHat2, for 
example, exhibits an alignment recall on malaria T3 that var-
ies from under 3% using defaults to over 70% using optimized 
parameters. This is important since many TopHat2 users only 
use the defaults. The most important TopHat2 parameter is the 
number of mismatches. For a random set of 20 publications which 
used TopHat, the authors were contacted to determine the param-
eters they used. 10 of 13 authors who responded used the default 
mismatch parameter, and 5 used the defaults for all parameters. 
Since parameter optimization is not straightforward in practice, 
good default performance is an advantage. Based on this analy-
sis the most reliable general-purpose aligners appear to be CLC, 
Novoalign, GSNAP, and STAR.

Three extensive RNA-seq alignment benchmarking studies that 
we are aware of considered both the accuracy and performance 
of spliced aligners8,13,16. They compared between four and seven 
spliced aligners plus some unspliced aligners. Other compari-
sons have considered only real data17,18 and are limited by the 
inability to know the ground truth. Fonseca et al.19 used simu-
lated data to assess performance at the count level; however, the 
analysis focused on quantification output and not individual steps 
in the pipeline. Our results are consistent with prior studies of 
full RNA-seq aligners8,13 in spite of new versions of almost all 
applications; the notable difference being runtime (Fig. 4 and 
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Supplementary Fig. 15). STAR was released in 2013 with a RAM-
intensive approach that dramatically increased speed. Since then 
the STAR approach influenced other developers; for example, 
GSNAP, whose runtime has decreased dramatically. The new 
HISAT and HISAT2 also incorporate a fast search algorithm, yet 
their accuracy is comparable to that of TopHat2. Novoalign was 
available in the public domain when the previous studies were 
performed, while CLC has never been included in a benchmark-
ing study, as far as we are aware.

One categorical difference between aligners that can help to 
explain the differences in performances is that several aligners are 
built on top of Bowtie or Bowtie2, which were designed to align 
DNA without intron-sized gaps.

Although the new results are largely consistent with those of 
past studies, this analysis should be updated regularly, as it is a 
fast-developing field. Standardizing methods for benchmarking 
will help to facilitate this in the future.

Methods
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Simulated data. Simulating data for benchmark analyses of align-
ment algorithms is straightforward because of the discrete nature 
of the data. Since all algorithms align reads one at a time without 
combining information across reads or across samples, it is not 
necessary to model sample-to-sample variance or the dependence  
structure within or between samples—reads can therefore be 
generated from a reference genome and a set of accurate gene 
models, introducing polymorphisms (in the form of substitu-
tions and indels), intron signal, and sequence errors, to varying 
degrees. Ultimately, it is introns and indels that give algorithms 
the greatest difficulty. All algorithms perform well when there are 
few indels or substitutions, as is the case for most regions of the 
human genome. By introducing an increasing number of poly-
morphisms, a separation of performance is observed, indicating 
which methods handle the complex regions better. Even aligning 
human to human presents a difficult challenge for some genes, 
while aligning across different strains or species, which is often 
necessary, can be difficult for all genes. Since most alignment 
tasks will involve some problematic regions, even when aligning 
human to human, it is always necessary to use an aligner than 
handles both low and high complexity most effectively.

The simulation engine BEERS8 (https://github.com/itmat/
beers_simulator) was used to generate simulated data. Data of 
three different qualities were generated for each of two species, 
in triplicate, resulting in 18 data sets. Each data set consists of  
10 million 100-base paired-end strand-specific reads. The genomes 
used were Homo sapiens hg19 and Plasmodium falciparum.  
Human data were limited to chromosomes 1–22, X and Y. For 
human data, 30,000 transcript models were chosen at random from 
a conglomeration of 858,063 gene models obtained by taking the 
union of ten annotation tracks: RefSeq, GeneID, Aceview, Augustus, 
ENSEMBL, UCSC, Vega, GenCode, GenScan, and lincRNA.  
This was done so as not to give unfair advantage to any algorithm 
that utilizes or was optimized on any particular set of annotation.  
For each gene an alternate splice form was generated by randomly 
including or excluding exons. Thus, a total of 60,000 transcript 
models were used. Expression levels were taken from an exponen-
tial distribution with P = 0.01 applied to a random 2/3 of the tran-
scripts; the rest were left unexpressed. Intron signal was introduced 
at levels representative of real data, resulting in approximately 40% 
of reads coming from introns. Intron signal is introduced by insert-
ing one intron back into the edited transcript before fragmenta-
tion. Two genomes, H. sapiens and P. falciparum, were simulated 
at each of three levels of complexity. Complexity level T1 had a 
substitution rate of 0.001, indel rate of 0.0005, and error rate of 
0.005. Complexity level T2 had a substitution rate of 0.005, indel 
rate of 0.002, and error rate of 0.01. Complexity level T3 had a 
substitution rate of 0.03, indel rate of 0.005, and error rate of 0.02. 
In addition, in T3 there is a higher error rate equal to 0.5 in the last 
ten bases. The fragment length distribution has minimum length 
equal to 100 bases, mean equal to 200 bases, and maximum length 
equal to 500 bases. The P. falciparum genome was used because it 
is notorious for being difficult, mainly because it is approximately 
80% AT rich in exons and 90% in introns and intergenic regions20. 
All simulated data are available at http://bioinf.itmat.upenn.edu/
BEERS/bp1. Public repositories do not accept simulated data.

The T3 parameters were chosen to create a data set with 
uniformly high polymorphism rates. Data sets with uniform  

polymorphism rates are preferable to data sets with variable rates 
for benchmarking in order to isolate the performance in com-
plex regions. T3 also represents polymorphism rates which can be 
observed when aligning across different (but similar) species–for 
example aligning Deer to Cow produces similar polymorphism 
rates. In practice, RNA-seq data is often generated for species for 
which the genome is not available or is of low quality. Aligning 
Deer to Cow, for example, enabled us to reconstruct the Deer clock 
pathway before any deer genomes were available (data not shown).  
In this way meaningful RNA-seq analysis of all mammals will be 
enabled if the genome is available from a sufficient number of 
mammalian organisms, even though it is unlikely there will be 
genomes of all mammals anytime soon; sequencing may be cheap, 
but genome assembly of new organisms is still very expensive. 
Therefore, RNA-seq aligners will continue to be applied to high-
polymorphism data.

Data sets were generated in triplicate; however, as virtually no 
variance between replicates was observed, for the sake of effi-
ciency the results shown are based on one replicate, except for 
the performance analyses (runtime and memory usage), where 
all three replicates were used.

Alignment metrics and statistics. Accuracy and performance 
metrics were compiled. The accuracy metrics consider accuracy 
on several levels: bases, reads, junctions, insertions, and dele-
tions. Both the precision and recall were computed for each of 
these metrics.

An extensive set of metrics were defined in order to measure 
the most important aspects of the mapping process. First, the 
metrics already employed in previous studies were included8,13,
16,17,19,21,22. Then additional metrics were defined with the goal 
of finding the smallest set of indices able to describe the most 
important characteristics of the RNA-seq data alignment. The 
resulting set of metrics can be organized into three levels, one 
for each basic concept of the RNA-Seq data alignment. As such, 
the metrics are based on events defined as follows: a single base 
of a single read aligning to the right location (base level), a single 
read having at least one base aligning to the right location (read 
level), and a single read crossing a single intron (junction level). 
Note that a single read may cross none, one, or multiple introns, 
in which case one read may involve none, one, or multiple junc-
tion-level events.

Metrics are then based on standard measures of accuracy for 
each type of event. In particular, we computed the standard accu-
racy metrics ‘precision’ and ‘recall’ for each level. Alternatively, 
the results can be presented as the ‘false negative rate’ (FNR) and 
‘false discovery rate’ (FDR) using the relations FNR = 1 – recall 
and FDR = 1 – precision. Moreover, we collected summary statis-
tics based on these basic concepts. As ground truth, we used the 
.cig file provided by the simulator engine. The .cig file describes 
the true position of the simulated reads in similar format to that 
of a SAM file23. The scripts developed to collect the alignment 
metrics and statistics are available at https://github.com/khayer/
aligner_benchmark.

In the main body of this paper a few of the results were focused 
on and the rest can be found in Supplementary Notes 1–8. The 
base-wise accuracy involves the individual bases of the reads that 
aligned uniquely and to the correct location. There are three ways 
to be wrong at the base level: a base can either be not aligned at 

https://github.com/itmat/beers_simulator
https://github.com/itmat/beers_simulator
http://bioinf.itmat.upenn.edu/BEERS/bp1
http://bioinf.itmat.upenn.edu/BEERS/bp1
https://github.com/khayer/aligner_benchmark
https://github.com/khayer/aligner_benchmark
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all, aligned to the wrong place, or aligned ambiguously to sev-
eral places. The base-level ‘recall’ is defined as the ratio between 
the number of bases aligned correctly and uniquely to the total 
number of bases in the data set. The base-level ‘precision’ is the 
ratio of the number of bases that were aligned correctly and 
uniquely to the total number of bases that were aligned uniquely. 
There has to be some flexibility in this metric, in that some cases 
are ambiguous. For example, if GG in the reference is replaced 
by G in the read, then the aligner will typically choose one of the 
two G’s to call the aligned base and the other to call the deleted 
base. Ultimately the simulator did delete one of the two G’s spe-
cifically, but in reality evolution has replaced two G’s with one, so 
it does not make sense to indicate which one of the two G’s was 
retained and which was lost. Therefore, the aligner is credited for 
specifying either of the two possibilities. If one is interested only 
in gene-level quantification, then it may be sufficient to get the 
general location of the read correct without having to get every 
base correct. Thus accuracy is also measured at the read level, and 
accuracy in this case is determined by counting the percentage of 
reads for which at least one base is in the right location. 

The SAM CIGAR string specifies whether indels are insertions, 
deletions, or introns. Junctions are differentiated from deletions 
in the SAM file, the former being indicated in the CIGAR string 
by an ‘N’ and the latter by a ‘D’. So the accuracy of each of these 
specifications can be measured. Furthermore, the left and right 
junctions were considered separately to determine whether any 
algorithm exhibits differential performance between left and right. 
Basic alignment statistics were collected on all algorithms. These 
consist of summary statistics such as the number of reads aligned 
and the number of reads aligned ambiguously. Supplementary 
Software developed to collect alignment metrics and statistics is 
available at http://bioinf.itmat.upenn.edu/BEERS/bp1.

For the performance metrics, the execution time, CPU time, 
and the maximum amount of RAM used by each tool were col-
lected using the LSF tools provided by our HPC system. More 
details about the computational performance metrics are given 
in Supplementary Note 8.

Alignment of RNA-seq data. The goal of the alignment process 
is finding the right position of the input reads in the reference 
genome. Each read would be declared as ‘aligned’ or ‘unaligned’, 
depending on the ability of the aligner to find any putative posi-
tion in the reference sequence. Obviously, where the minimum 
amount of information for a correct mapping is not available, the 
aligner cannot provide an alignment as output. However, with cur-
rent sequencing technology the percent of reads that are impos-
sible to align due to sequencing issues should be very small.

Except for being low quality, there are two main reasons why a 
read would be declared ‘unaligned’: the aligner is not able to find 
the right position in the reference sequence, or there is no right 
position in the reference sequence. The first scenario depends 
on the ability of each tool to manage the common alignment 
issues: sequencing errors, splicing events, intron-sized gaps, low-
complexity sequence, and polymorphisms. The second scenario 
happens when a portion of the read comes from an adaptor or a 
contaminant, for which there are no reference sequences. Reads 
declared ‘aligned’ can be summarized in three main groups: reads 
aligned correctly, reads aligned incorrectly, and reads aligned 
ambiguously. Hopefully, an effective tool will report the majority  

of reads aligned correctly, with a few reads aligned ambiguously 
and very few reads aligned incorrectly. Of course this depends on 
exactly how we define ‘correct’ at the read level. The details of base-
level, read-level, and junction-level accuracy are given below.

Base-level analysis. The base-level metrics focus on the behavior 
of the aligner with single-base resolution. The base-wise accuracy 
is calculated by determining whether individual bases of the reads 
align uniquely and to the correct location. Some flexibility was 
introduced in this metric, since some cases are ambiguous. Other 
metrics involve insertions and deletions.

The basic terms used in the base-level analysis are:

• � Aligned base: a base is defined as aligned if its read is  
aligned and its CIGAR character is different from ‘S’ and ‘H’ 
(clipping).

• � Unaligned base: a base is defined as unaligned if its read  
is unaligned or its read is aligned and its CIGAR character 
is ‘S’ or ‘H’ (clipping).

• � Ambiguously aligned base: a base is defined as ambiguously 
aligned if its read is ambiguously aligned.

• � Correctly aligned base: a base is defined as correctly aligned 
if it is aligned (uniquely, not ambiguously) and the CIGAR 
character in the SAM file is the same as the corresponding 
one in the .cig file (as provided by the simulator).

• � Incorrectly aligned base: a base is defined as incorrectly 
aligned if it is aligned (uniquely, not ambiguously) and the 
CIGAR character in the SAM file is different from the corre-
sponding one in the .cig file (as provided by the simulator).

• � Insertion: a base is called insertion if its CIGAR character in 
the SAM file is an ‘I’.

• � Deletion: a base is called deletion if its CIGAR character in 
the SAM file is a ‘D’.

• � Skip: a base is called a skip if its CIGAR character in the SAM 
file is an ‘N’ (these are introns).

The base-level metrics are defined as follows:

• � Base-level precision: (no. correctly aligned bases) / (no. uniquely  
aligned bases)

• � Base-level recall: (no. correctly aligned bases) / (total  
no. bases)

• � Insertion precision: (no. insertions called correctly by the 
tool) / (no. insertions called by the tool)

• � Insertion recall: (no. insertions called correctly by the tool) 
/ (total no. of real insertions)

• � Deletion precision: (no. deletions called correctly by the tool) 
/ (no. deletions called by the tool)

• � Deletion recall: (no. deletions called correctly by the tool) / 
(total no. of real deletions)

• � Skip precision: (no. skips called correctly by the tool) /  
(no. skips called by the tool)

• � Skip recall: (no. skips called correctly by the tool) / (total  
no. of real skips)

The base-level statistics are defined as follows:

• � Percent of bases aligned correctly: (no. correctly aligned bases) /  
(total no. bases)

http://bioinf.itmat.upenn.edu/BEERS/bp1
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• � Percent of bases aligned incorrectly: (no. incorrectly aligned 
bases) / (total no. bases)

• � Percent of bases aligned ambiguously: (no. ambiguously 
aligned bases) / (total no. bases)

• � Percent of bases unaligned: (no. unaligned bases) / (total  
no. bases)

• � Percent of bases aligned: (no. aligned bases) / (total  
no. bases)

Read-level analysis. The read-level metrics focus on the read as 
a unit and are appropriate for gene-level quantification. Indeed, 
in gene-level quantification it is generally sufficient to get the 
location of the read correct without the constraint of having every 
single base correctly aligned. Thus we measure accuracy at the 
read level in terms of percentage of reads for which at least one 
base is in the right location.

The basic terms used in the read-level analysis are:

• � Aligned read: a read is defined as aligned if the SAM bit  
flag 0×4 is unset.

• � Unaligned read: a read is defined as unaligned if the SAM 
bit flag 0×4 is set.

• � Ambiguously aligned read: a read is defined as aligned 
ambiguously if either read in the read pair (fragment) was 
aligned but has multiple entries in the SAM file.

• � Correctly aligned read: a read is defined as aligned correctly 
if it is aligned (uniquely, not ambiguously) and at least one 
base of the read is mapped to the right position.

• � Incorrectly aligned read: a read is defined as aligned  
incorrectly if it is aligned (uniquely, not ambiguously) and no 
base of the read is mapped to the right position.

The read-level statistics are defined as follows:

• � Read-level precision: (no. correctly aligned reads) /  
(no. uniquely aligned reads)

• � Read-level recall: (no. correctly aligned reads) / (total  
no. reads)

The read-level statistics are defined as follows:

• � Percent of reads aligned correctly: (no. correctly aligned reads) /  
(total no. reads)

• � Percent of reads aligned incorrectly: (no. incorrectly aligned 
reads) / (total no. reads)

• � Percent of reads aligned ambiguously: (no. ambiguously 
aligned reads) / (total no. reads)

• � Percent of reads unaligned: (no. unaligned reads) / (total  
no. reads)

• � Percent of reads aligned: (no. aligned reads) / (total  
no. reads)

Junction-level analysis. Aligning over a junction is one of the 
most important features of RNA-seq aligners. This feature is  
so important that it defines one of the most relevant ways to  
classify an NGS aligner: ‘splice aware’ versus ‘splice unaware’.  
All the tools involved in our benchmark are splice-aware algo-
rithms, since RNA-seq data require the ability to map reads across 
such junctions.

The basic terms used in the junction level analysis:

• � Correctly called junction: a junction is defined as being  
called correctly if both the junction start and the junction 
end sites were identified correctly.

• � Incorrectly called junction: if either (or both) junction sites 
were called incorrectly, the whole junction is classified as an  
incorrectly called junction.

• � Junction sides none: called junctions where neither side was 
identified correctly.

• � Junction sides left: called junctions where only the upstream 
junction was called correctly.

• � Junction sides right: called junctions where only the  
downstream junction was called correctly.

• � Junction sides both: correctly called junctions.

The junction-level metrics are defined as follows:

• � Junction-level precision: (no. junctions called correctly  
by the tool) / (no. junctions called by the tool)

• � Junction-level recall: (no. junctions called correctly by the 
tool) / (total no. of real junctions)

The junction-level statistics are defined as follows:

• � Percent of junction sides none: (no. junctions sides none) /  
(no. junctions called by the tool)

• � Percent of junction sides left: (no. junctions sides left) /  
(no. junctions called by the tool)

• � Percent of junction sides right: (no. junctions sides right) /  
(no. junctions called by the tool)

• � Percent of junction sides both: (no. junctions sides both) /  
(no. junctions called by the tool)

Multimapper analysis. To identify the recall and precision in the 
case of multimapping fragments, the alignment with the most cor-
rect bases aligned was chosen, and any further calculations were 
based on this best alignment. Here the same statistics were calcu-
lated as introduced in the read- and base-level analysis section.

Read alignment. In the alignment process only the information 
available in a typical real data set was used. This information 
consists of annotation, read length, fragment length distribution, 
and raw data. RefSeq was used as generic base annotation for all 
algorithms. In order to perform a fair comparison, an index was 
created for each aligner even though some indexes were already 
available. In this way all the aligners use the same version of the 
genome and the same annotation.

For each tool an alignment was performed starting from the 
default parameters. When the tool provides specific parameter 
presets or precise suggestions to increase the quality of the align-
ment, these suggestions were followed. In particular, parameters 
related to the read were set (i.e., read length, fragment length, 
inner mate distance) or related to the genome, for example, sug-
gested seed size, k-mer size, etc. This set of alignments are referred 
to as ‘default’; they are the typical alignments obtained by follow-
ing the tools′ documentation as the typical user would do.

Moreover, many alignments were performed with each tool in 
search of optimal parameter settings for our particular data sets.  
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The documentation was followed to determine which param-
eters are most important. Usually the suggestions from the 
specific documentation of each tool are more qualitative  
than quantitative, for this reason they were not included in the 
default. Where these suggestions were not provided, the most 
exhaustive and reasonable sets of parameters we could identify 
were searched. Additionally all authors were contacted and given 
the opportunity to make further suggestions. This required per-
forming thousands of alignments involving a large amount of com-
putation. In order to search as large a space as possible, each set of 
parameters was run on 1 million reads in the T3 complexity level 
data sets. T3 data sets were used because the greatest improvement 
from the defaults can be made in these sets. This set of alignments 
is referred to as ‘tweaked’ or ‘tuned’. The goal of these alignments 
is to determine how far the default performance is from the real 
potential of the tool. Moreover, this information provides some 
general suggestion as to what are the most important parameters 
for each tool. Most tools will use annotation as a guide. In order to 
determine the effect of using annotation, alignment was performed 
both with and without providing this information. Parameter opti-
mization was performed with annotation, as the goal was to try to 
get the best possible performance from each tool.

Both the default and the tweaking alignments were performed 
using 16 threads. When available, the performance parameters 

that guaranteed the shortest execution time were used (without  
any loss of precision). These options sometimes use more RAM 
than the default option. However, in practice the available 
amount of RAM is usually a smaller problem than the required  
execution time.

Details about each aligner are given in Supplementary Notes 9  
and 10. More details about the default and the optimized (tweaked) 
alignments can be found in Supplementary Note 3.

Data availability. No accession codes are associated with this study 
since public repositories do not maintain simulated data. All data 
used in this study, including data used for the figures and all scripts 
used in the analysis are available in the Supplementary Data 1–15 
and at http://www.bioinf.itmat.upenn.edu/BEERS/bp1/.

Source data for Figures 1–4 and Supplementary Figures 1–15 
are available online.

20.	 Gardner, M.J. et al. Genome sequence of the human malaria parasite 
Plasmodium falciparum. Nature 419, 498–511 (2002).

21.	 Lindner, R. & Friedel, C.C. A comprehensive evaluation of alignment 
algorithms in the context of RNA-seq. PLoS One 7, e52403 (2012).
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