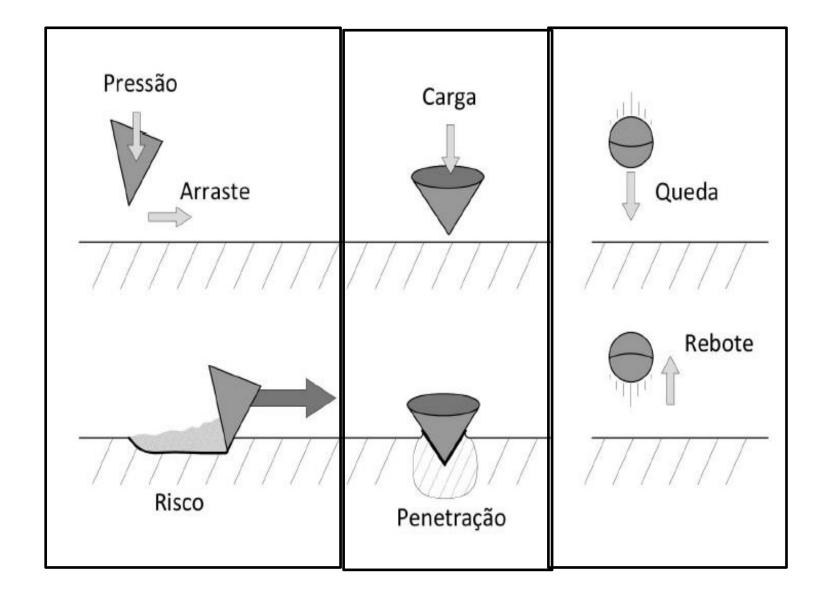


SMM 0342 - INTRODUÇÃO AO ENSAIO MECÂNICO DOS MATERIAIS

Prof. Dr. José Benedito Marcomini

- Mohs(1822) capacidade de riscar;
- J.A. Brinell((1849-1925) 1900 dureza por penetração;
- Os irmãos Stanley e Hugh Rockwell 1919.

Um dos desenhos da primeira patente do durômetro Rockwell, de 1919.



Métodos de medição:

- Dureza de risco (escala de Mohs)
- Dureza de choque ou ressalto (Shore)
- Dureza de penetração (Brinell, Rockwell, Vikers)

Importância:

- Análise prévia-movimentação;
- Análise prévia- T.Térmico;
- Controle de qualidade. Ex: Trefilação.

Definição: Medida da resistência de um material a uma deformação plástica (permanente) localizada (pequena impressão ou risco)

Principais Vantagens:

- Fácil execução e barato (muito utilizado na indústria)
- Rapidez na execução
- Ensaio pode ser considerado não destrutivo (tamanho impr.)
- Conhecimento aproximado da resistência mecânica através do uso de tabelas de correlação

Deformação Elástica e Deformação Plástica

Seleção do Tipo de Ensaio de Dureza

Material	Tipo de Ensaio			
Widterial	Rockwell	Vickers	Knoop	Brinell
Aços macios, ligas de cobre, ligas de alumínio, ferro fundido maleável	•	•	•	•
Aços, ferros fundidos duros, ferro perlítico maleável, titânio, aço c/ endurecimento profundo	•	•	•	•
Metal duro , aços de pouca espessura , aço com endurecimento superficial	•	•	•	
Aços de pouca espessura,aço c/ endurecimento de média profundidade, ferro perlítico maleável	•	•	•	
Ferro fundido, alumínio, ligas de magnésio, metais macios	•	•	•	•
Ligas recozidas de cobre, chapas finas de metal macio	•	•	•	
Bronze fosforoso, berílio, cobre, alumínio, zinco, chumbo	•	•	•	•
Metais macios e outros materiais finos e macios	•	•	•	
Estanho	•	•	•	
Alumínio	•	•	•	•
Zinco	•	•	•	•
Pinturas e revestimentos orgânicos			•	
Borracha dura	•			
Plásticos	•	•	•	

Dureza Mohs - risco

DUREZA

AUMENTO

O primeiro método padronizado de ensaio de dureza foi baseado no processo de riscagem de minerais padrões, desenvolvido por Mohs, em 1822.

Curiosidade Escala Mohs (1822)

- 1 Talco
- 2 Gipsita
- 3 Calcita
- 4 Fluorita
- 5 Apatita
- 6 Feldspato (ortóssio)
- 7 Quartzo
- 8 Topázio
- 9 Safira e corindo
- 10 Diamante

Indicação essencialmente **qualitativa** por comparação com outros minerais (qquer. mineral da escala risca o que os precede e é riscado pelo seguinte)

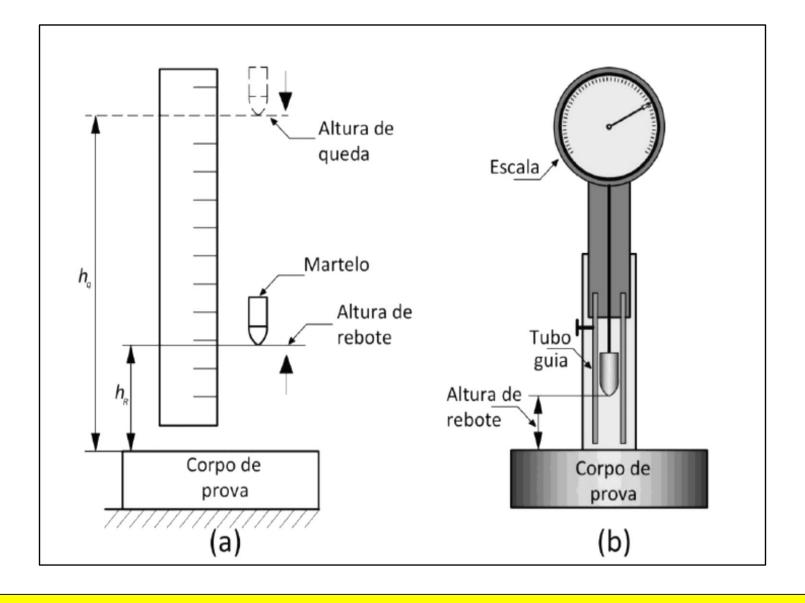
Pouco utilizada (**imprecisa**) nos metais (dureza entre 4 a 8)

Ex. aço dúctil corresponde a uma dureza de 6 Mohs, a mesma dureza Mohs de um aço temperado.

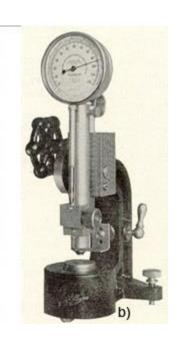
Dureza Shore (HS) – choque ou ressalto

Shore propôs uma medida de dureza por choque que mede a altura do ressalto de um peso que cai livremente até bater na superfície lisa e plana de um CP. Esta altura de ressalto mede a perda de energia do peso, absorvida pelo CP: diferença de Energia potencial.

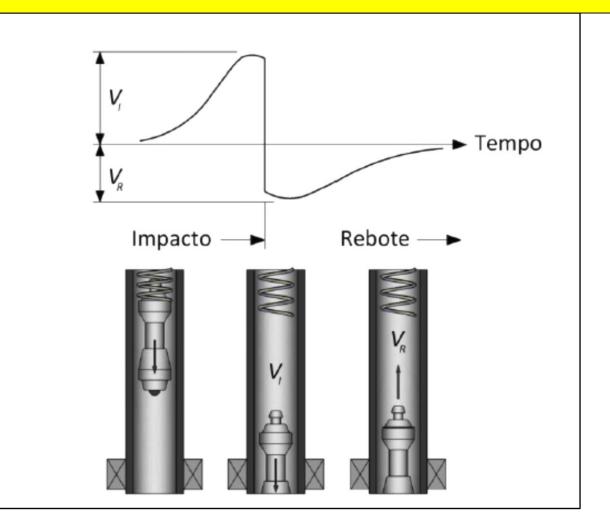
Bancada


Portáteis

Dureza Shore (HS) – choque ou ressalto


Características e vantagens

- Normalmente equip. portátil e de fácil utilização;
- Possibilidade de medir durezas de peças de grandes dimensões que não cabem em máquinas de penetração (em campo);
- Impressão muito pequena sendo utilizada em peças acabadas (controle qualidade);
- Utilizado em polímeros, borracha e metais.


Dureza Shore (rebote). Escleroscópio, modelo clássico criado em 1905

Dureza Shore (HS) – choque ou ressalto

Escleroscópio Shore

Em 1975, Leeb e Brandestini desenvolveram a medida por meio de aparelhos portáteis. O ensaio é regido por normas como ASTM A956 Standard Test Method for Leeb Hardness Testing of Steel Products e ISO/DIS 16859-1 Leeb hardness test Part 1: Test method.

$$HL = \frac{V_R}{V_I} \cdot 1000$$

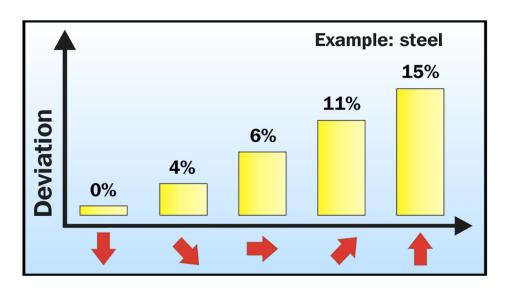
EQUIPAMENTOS PORTÁTEIS MODERNOS

DynaPOCKET

DynaMIC

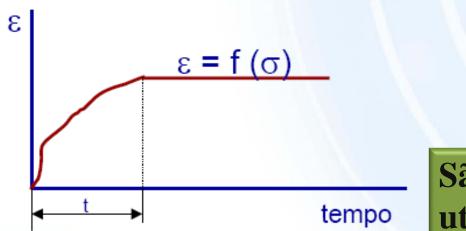
MIC 20

APLICAÇÃO


ROGÉRIO CENI

Influência da direção da sonda

Dependendo da direção do impacto, ocorre uma redução da medida real de Dureza, conforme o gráfico de barras abaixo


Impact direction

Aparelhos modernos (DynaMIC / DynaPOCKET / MIC 20) possuem um autobalanceamento: correção automática.

Dureza por penetração (princípios gerais)

Cuidados na realização dos ensaios:

- Perpendicularidade entre a direção de aplicação da força e a superfície da peça;
- Aplicação lenta da carga;
- Preparação correta da superfície da peça;
- Tempo de espera após aplicação da carga antes da descarga (fenômeno de fluência transitória).

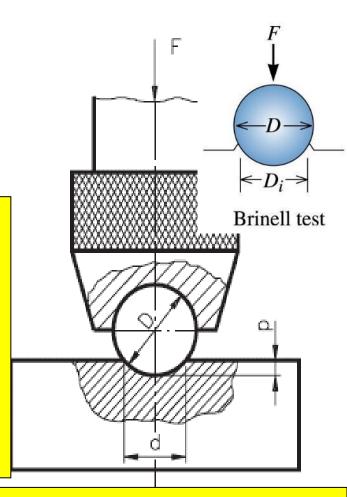
Valores de t:

Mg - 60s

Aços - 10s

São os ensaios de dureza mais utilizados na atualidade

Dureza Brinell (HB) – Ano 1900


Consiste em comprimir lentamente uma esfera de carbeto de tungstênio (CW), de diâmetro D, sobre uma superfície polida e limpa de um metal através de uma carga F, durante um tempo t.

Penetrador **esférico** Φ : 1, 2, 2.5, 5 ou 10 mm (NBR NM187-1999) e/ou 1, 2.5, 5 e 10 (ASTM E10-2007)

Cargas: entre 500 e 3000 kg

Tempo: entre 10 e 30 s

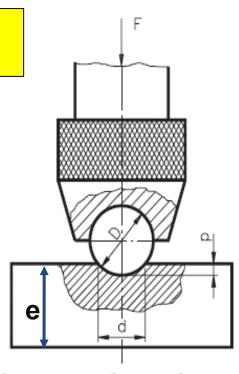
$$HB = \frac{F}{A}$$
 $HB = \frac{F}{\pi Dp}$

P = prof. de impressão (da calota)

Dureza Brinell (HB)

Teste de Dureza Brinell

Relação carga (F) – diâmetro do penetrador (D)


A relação carga aplicada e diâmetro do penetrador é dada por:

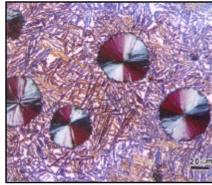
$$\frac{F}{D^2} = K = Cte.$$
 (Fator de carga)

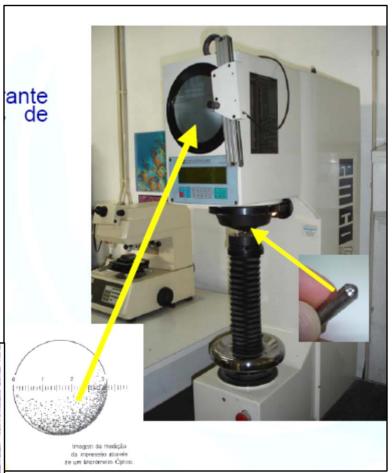
$\frac{F}{D^2}$	DUREZA	MATERIAIS
30	90 a 415 HB	Aços e ferros fundidos
10	30 a 140 HB	Cobre, alumínio e suas ligas mais duras
5	15 a 70 HB	Ligas antifricção, cobre, alumínio e suas ligas mais moles
2,5	até 30 HB	Chumbo, estanho, antimônio e metais-patente

Dureza Brinell (HB)

O diâmetro da esfera (D) é determinado em função da espessura do CP ensaiado (e). No caso da norma brasileira, a espessura mínima do material ensaiado deve ser 17 vezes a profundidade da calota (p).

O quadro a seguir mostra os diâmetros de esfera mais usados e os valores de carga para cada caso, em função do fator de carga escolhido.


diâmetro da esfera (mm)	$F (kgf) = 30 D^2$	$F (kgf) = 10 D^2$	$F (kgf) = 5 D^2$	$F (kgf) = 2.5 D^2$
10	3.000	1.000	500	250
5	750	250	125	62,5
2,5	187.5	62,5	31.25	15.625


Mecanismo de Medição Brinell

$$HB = \frac{2F}{\pi D(D - \sqrt{D^2 - d^2})}$$

- o D=diâmetro da esfera
- o d=diâmetro da impressão*

*medido com microscópio especial acoplado, utilizando uma escala gravada em sua ocular

Dureza Brinell (HB)

A unidade kgf/mm², que deveria ser sempre colocada após o valor de HB, é omitida, uma vez que a dureza Brinell não é um conceito físico satisfatório, pois a força aplicada no material tem valores diferentes em cada ponto da calota.

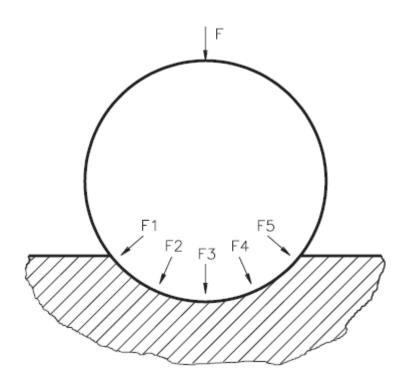


Tabela que fornece os valores de dureza Brinell normal, em função de um diâmetro de impressão d.

dureza brinell em função do diâmetro da impressão (diâmetro da esfera do penetrador: 10 mm)

d (mm)	HB (F = 3000 kgf)	d (mm)	HB (F = 3000 kgf)
2,75	(495)	4,05	223
2,80	(477)	4,10	217
2,85	(461)	4,15	212
2,90	444	4,20	207
2,95	429	4,25	201
3,00	415	4,30	197
3,05	401	4,35	192
3,10	388	4,40	187
3,15	375	4,45	183
3,20	363	4,50	179
3,25	352	4,55	174
3,30	341	4,60	170
3,35	331	4,65	167
3,40	321	4,70	163
3,45	311	4,75	159
3,50	302	4,80	156
3,55	293	4,85	152
3,60	285	4,90	149
3,65	277	4,95	146
3,70	269	5,00	143
3,75	262	5,10	137
3,80	255	5,20	131
3,85	248	5,30	126
3,90	241	5,40	121
3,95	235	5,50	116
4,00	229	5,60	111

Relação entre dureza Brinell e limite de resistência à tração

No caso dos aços existe uma relação empírica entre dureza Brinell e o limite de resistência, σ_r , dada por:

$$\sigma_r = 0.36 * HB$$
 [kgf/mm²]

Segundo O'Neill, o valor de 0,36 vale para aços doces (aço carbono), entretanto este valor pode mudar para:

- > 0,49 para Ni recozido
- > 0,41 para Ni e latão encruado
- > 0,52 para cobre recozido
- > 0,40 para alumínio e suas ligas
- >0,34 aços Cr-Mo

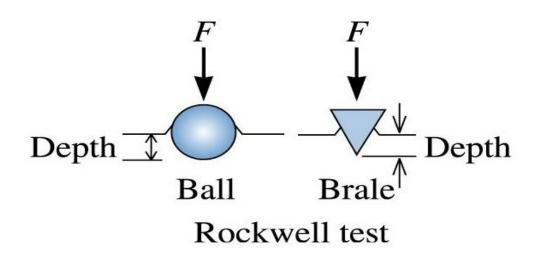
Dureza Brinell (HB)

Vantagens e limitações

Vantagens:

- Estimativa do limite de resistência à tração (σ_r) ;
- Baixo custo e simples operação;
- A deformação produzida não afeta o comportamento do material;
- Ensaio pode ser considerado não destrutivo (depende do tamanho da impressão final, dimensões da peça e aplicação)

Limitações:


- Não é aplicável em peças muito finas e em materiais muito duros;
- Método relativamente lento para a produção industrial;
- A impressão obtida é muito grande para peças acabadas.

Dureza Rockwell (HR) - 1922

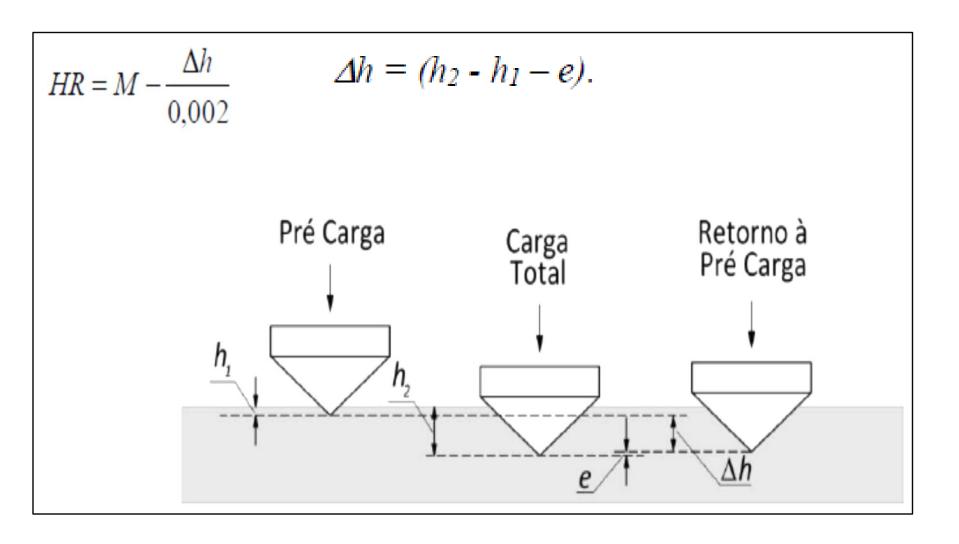
- Método mais utilizado para se medir dureza
- •Não é necessário **medir** a impressão, portanto, é **mais rápido** e com **menor** possibilidade de erros humanos;
- Fácil execução, facilidade em detectar pequenas diferenças de durezas e pequeno tamanho da impressão;
- Existe a possibilidade de medida de **dureza Rockwell superficial** é realizado em corpos de prova mais finos (delgados).

Método de Medição Rockwell

Ensaio Rockwell

- Pré-carga = 10 kgf
- Principal = 60,100 e 150 kgf

Ensaio Rockwell Superficial


- Pré-carga = 3 kgf
- Principal = 15, 30 e 45 kgf

- •Para materiais metálicos, o **ensaio** é regido no Brasil pela **norma ABNT NBR NM ISO 6508-1:2019**, intitulada "Materiais metálicos Ensaio de dureza Rockwell Parte 1: Método de ensaio (escalas A, B, C, D, E, F, G, H, K, N, T)";
- •A norma norte-americana para esse ensaio é a ASTM E18-19 Standard Test Methods for Rockwell Hardness of Metallic Materials;
- Existem ao todo **30 escalas**, mas a maioria das aplicações envolvendo **materiais metálicos** são cobertas pelas escalas **B e C**;
- •As escalas L, M, P, R, S e V são empregadas para borracha, madeira e plásticos;
- •As escalas N, T, W, X e Y são usadas no ensaio de dureza Rockwell superficial.

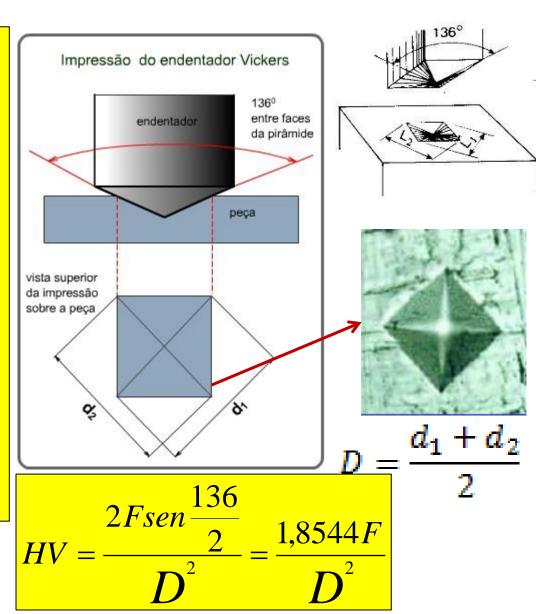
- •Os penetradores esféricos podem ter os seguintes diâmetros:
- •1/16 in (1,588 mm) para as escalas B, F, G e T;
- •1/8 in (3,175 mm) para as escalas E, H, K e W;
- •1/4 in (6,35 mm) para as escalas L, M, P e X;
- •1/2 in (12,7 mm) para as escalas R, S, V e Y.

As escalas A, C, D e N empregam um cone de diamante com ângulo de 120° e ponta arredondada com raio 0,2 mm, denominado penetrador Brale.

Escala	Penetrador	Força (kgf)	Aplicação Típica
A	Brale	60	Aço cementado
D	Brale	100	Ferro fundido maleável
С	Brale	150	Aços duros, ligas de titânio
В	esfera 1/16 in	100	Ligas de Cu e de Al, aço macio
Е	esfera 1/8 in	100	Ligas de Al e de Mg
M	esfera 1/4 in	100	Metais macios, polímeros duros
R	esfera 1/2 in	60	Polímeros de baixo módulo

e: recuperação elástica, M=130 para penetrador esférico e M=100 para penetrador Brale

Dureza Rockwell (HR)


Teste de Dureza Rockwell

VER O VIDEO - DUREZA ROCKWELL

- •Esfera de aço: máquinas mais antigas. As **esferas de CW** são mais aceitas (**permitidas atualmente, pelas normas**) : **menor deformação- menor erro da medida**;
- •Representação: se um aço temperado apresenta dureza Rockwell C igual a 43, escreve-se HRC 43 ou 43 HRC;
- •HR15T 57 significa que a dureza superficial na escala T com carga de 15 kgf é igual a 57;

Dureza Vickers (HV) - 1925

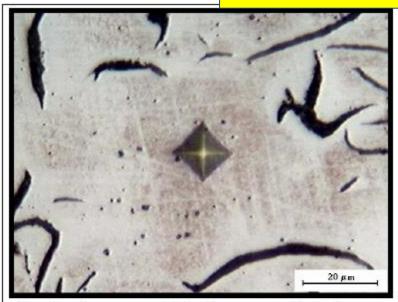
- Por penetração de uma pirâmide de base quadrada, com ângulo entre as faces opostas de 136° feita de diamante;
- Adequado para regiões pequenas e selecionadas do corpo de prova;
- Impressão é observada em um microscópio e medida.

Vantagens e limitações

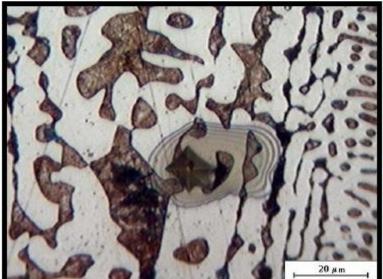
Vantagens:

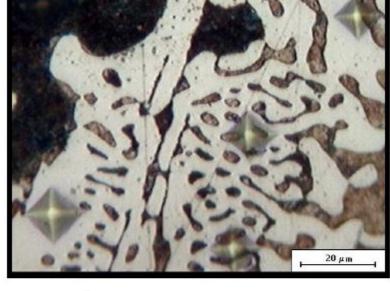
- Impressões muito pequenas que não inutilizam a peça;
- Grande precisão das medidas: muito utilizada em pesquisa;
- Aplicação de toda a **gama de durezas** encontradas nos diferentes materiais;
- **Deformação nula** do penetrador (diamante);
- Aplicação em **qualquer espessura** de material podendo portanto medir durezas superficiais: **camada** nitretada ou cementada;

Limitações:

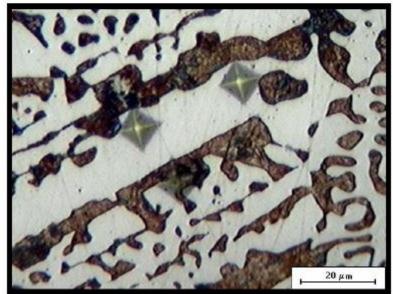

- Morosidade do ensaio;
- Exige **preparação cuidadosa** da superfície para tornar nítida a impressão;
- Equipamento e acessórios caros.

Dureza Vickers (HV)

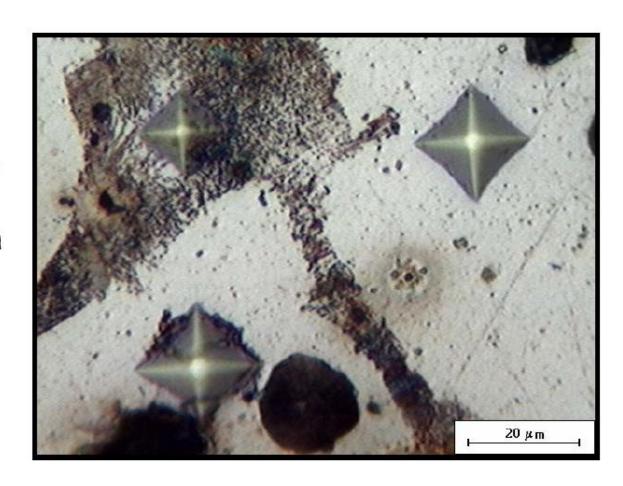

Teste de Dureza Vickers


VER O VIDEO - DUREZA VICKERS

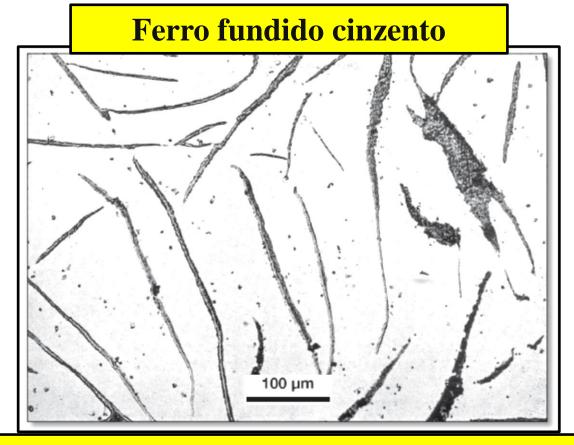
Indentação Vickers



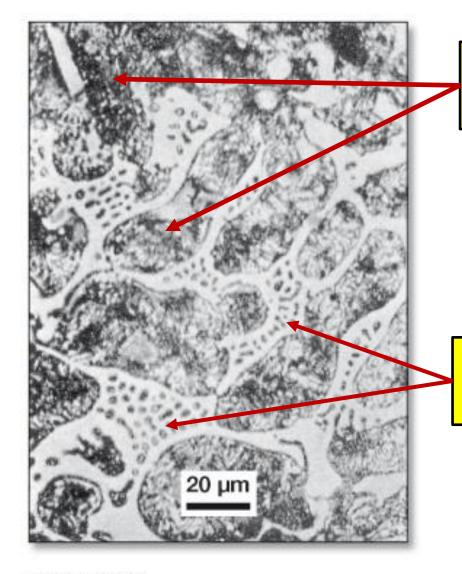
Identação em um fofo Cz, na região interna aos veios de grafite. Sem ataque 500x



Identação em um fofo Br Hipo, na região da Ledeburita. 951HV (Inter-Ledeburita), 750HV (fase clara – Cementita), 534HV (fase escura - Perlita). Ataque Nital, 500x

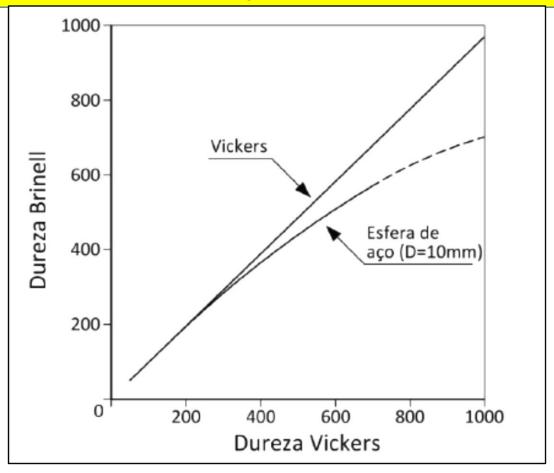


Indentação Vickers


Identação em um fofo Nodular, 162HV (fase clara – Ferrita), 324HV (fase escura – Perlita). Ataque Nital, 500x

FERROS FUNDIDOS

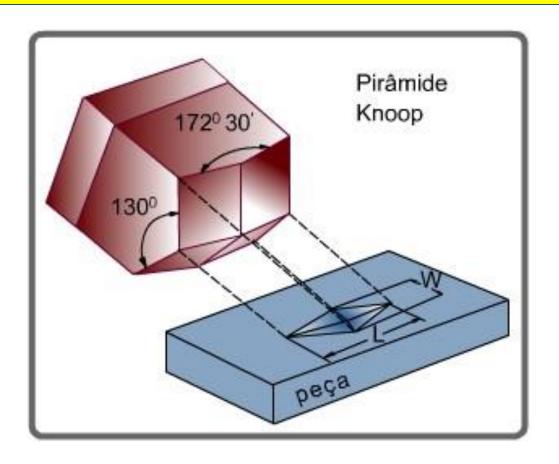
Resfriamento lento: veios de grafita (grafitização) e ferrita



Dendritas de austenita transformadas em perlita.

Ledeburita: cementita(clara) e pontos de perlita

Figura 17.12


Aspecto com maior aumento da microestrutura da Figura 17.11(b). Ledeburita transformada entre as dendritas de austenita transformada em perlita. Ataque: Picral. Valores de dureza Brinell e Vickers, mostrando que estes são praticamente idênticos até próximo de 300 HB. A partir daí os resultados passam a divergir devido à deformação sofrida pelo penetrador Brinell (esfera de aço) ao ensaiar materiais de alta dureza

[Suryanarayana, 2011].

Ensaios de dureza Knoop (alternativa à dureza Vickers)

Microdureza Knoop: utiliza o mesmo princípio de ensaio de dureza Vickers, mas o penetrador possui geometria diferente

DUREZA X LIMITE DE RESISTÊNCIA

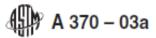


TABLE 2 Approximate Hardness Conversion Numbers for Nonaustenitic Steels⁴ (Rockwell C to Other Hardness Numbers)

								•
Rockwell C Scale, 150-kgf Load, Diamond Penetrator	Vickers Hardness Number	Brinell Hardness, 3000-kgf Load, 10-mm Ball	Knoop Hardness, 500-gf Load and Over	Rockwell A Scale, 60-kgf Load, Diamond Penetrator	Rockwell Superficial Hardness			
					15N Scale, 15-kgf Load, Diamond Penetrator	30N Scale 30-kgf Load, Diamond Penetrator	45N Scale, 45-kgf Load, Diamond Penetrator	Approximat Tensile Strength, ksi (MPa)
68	940		920	85.6	93.2	84.4	75.4	
67	900		895	85.0	92.9	83.6	74.2	
66	865		870	84.5	92.5	82.8	73.3	
65	832	739	846	83.9	92.2	81.9	72.0	
64	800	722	822	83.4	91.8	81.1	71.0	
63	772	706	799	82.8	91.4	80.1	69.9	
62	746	688	776	82.3	91.1	79.3	68.8	
61	720	670	754	81.8	90.7	78.4	67.7	
60	697	654	732	81.2	90.2	77.5	66.6	
59	674	634	710	80.7	89.8	76.6	65.5	351 (2420
58	653	615	690	80.1	89.3	75.7	64.3	338 (2330
57	633	595	670	79.6	88.9	74.8	63.2	325 (2240
56	613	577	650	79.0	88.3	73.9	62.0	313 (2160
55	595	560	630	78.5	87.9	73.0	60.9	301 (2070
54	577	543	612	78.0	87.4	72.0	59.8	292 (2010
53	560	525	594	77.4	86.9	71.2	58.6	283 (1950
52	544	512	576	76.8	86.4	70.2	57.4	273 (1880
51	528	496	558	76.3	85.9	69.4	56.1	264 (1820
50	513	482	542	75.9	85.5	68.5	55.0	255 (1760
49	498	468	526	75.2	85.0	67.6	53.8	246 (1700
48	484	455	510	74.7	84.5	66.7	52.5	238 (1640
47	471	442	495	74.1	83.9	65.8	51.4	229 (1580
46	458	432	480	73.6	83.5	64.8	50.3	221 (1520
45	446	421	466	73.1	83.0	64.0	49.0	215 (1480

APLICAÇÃO DO ENSAIO DE DUREZA

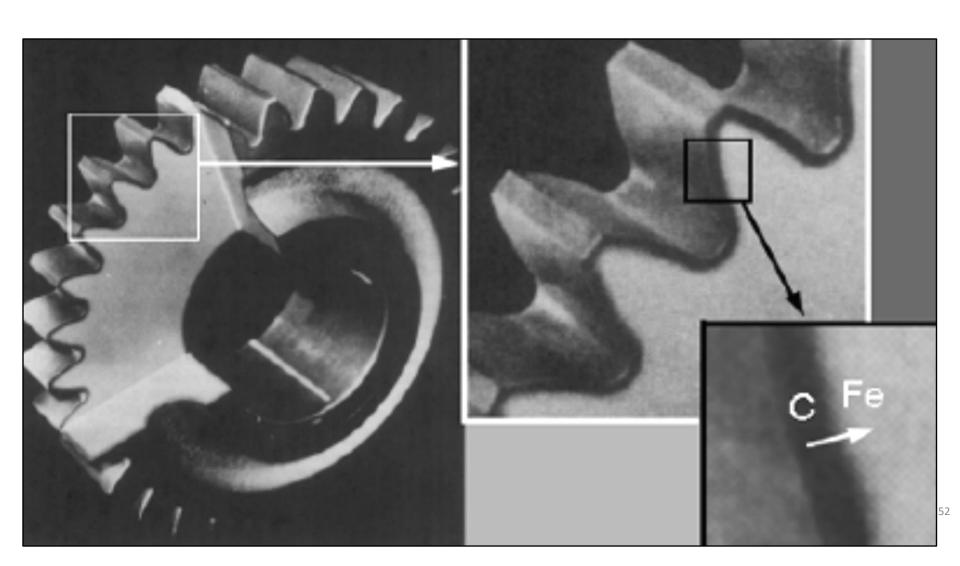
Tratamentos superficiais: térmicos ou termoquímicos.

Térmicos:

• Têmpera superficial (indução)`: transformação martensítica superficial (aumento de dureza) até uma certa profundidade (controlada);

Termoquímicos:

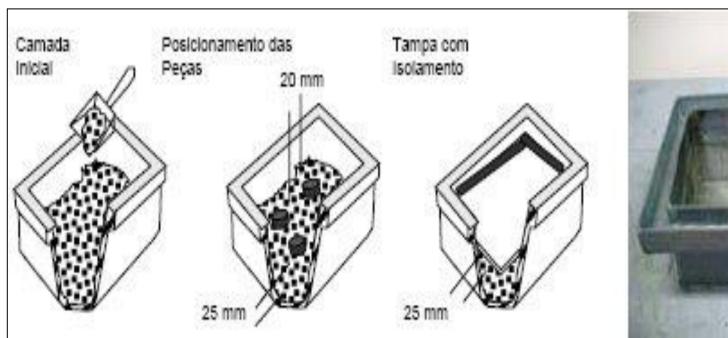
- Cementação: introdução de carbono, por difusão, até uma certa profundidade (controlada) seguida de têmpera e revenimento (aumento de dureza);
- Nitretação: introdução de nitrogênio até uma certa profundidade (controlada). Formação de nitretos aumenta a dureza superficial;


TÊMPERA POR INDUÇÃO



VER O VIDEO - TÊMPERA POR INDUÇÃO

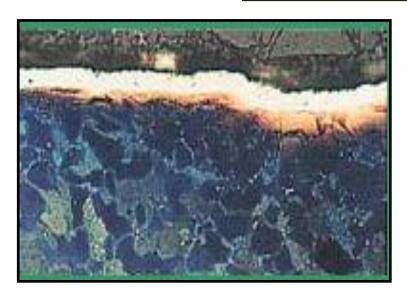
CEMENTAÇÃO

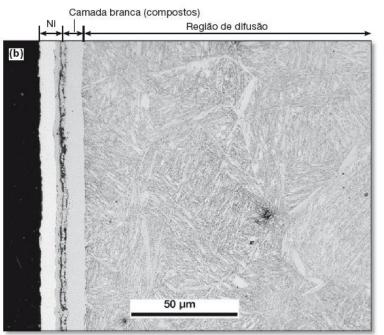

CEMENTAÇÃO

(Adaptado de : http://www.techgaz.ru/)

Cementação sólida ou em caixa

- Substâncias carbonáceas sólidas são utilizadas por isso é chamada de cementação sólida;
- Misturas carburizantes (fonte e carbono): carvão de madeira; aglomerado com 5% à 20% de óleo comum ou óleo de linhaça;
- Substância ativadora (50% à 70% de carbonato de bário).




5/

PEÇA DURANTE NITRETAÇÃO A PLASMA

NITRETAÇÃO

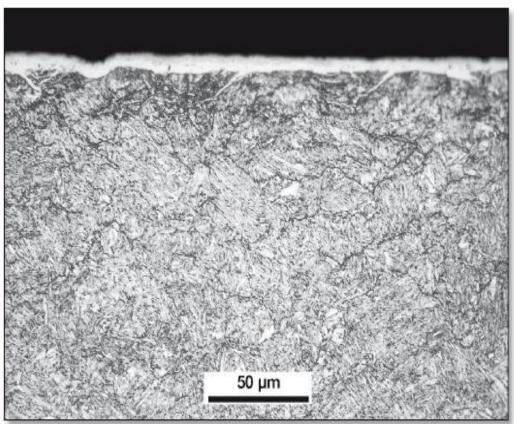
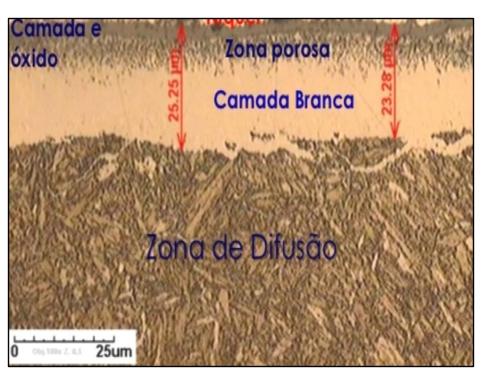
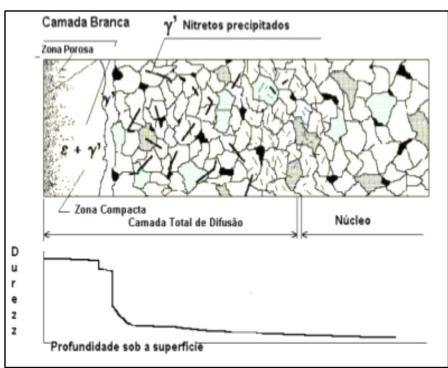
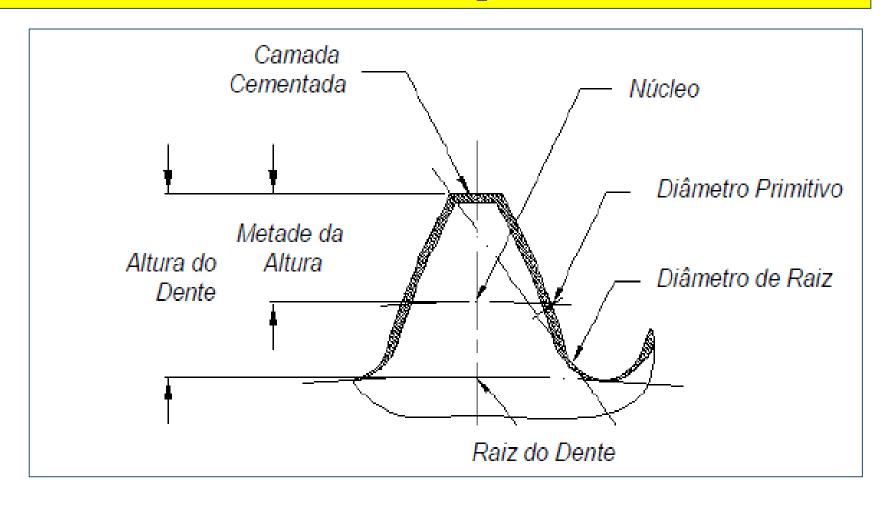
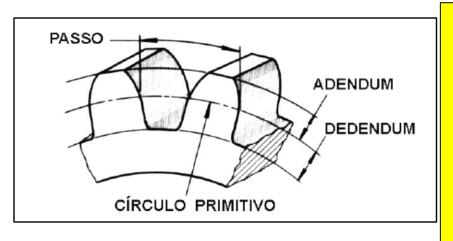




Figura 10.94

Seção transversal à superfície de uma peça de aço AISI 4340 temperado e revenido e nitretado. Observa-se a camada branca, de nitreto de alta dureza (ver [2]). Cortesia A. Zeemann, Tecmetal, RJ, Brasil.

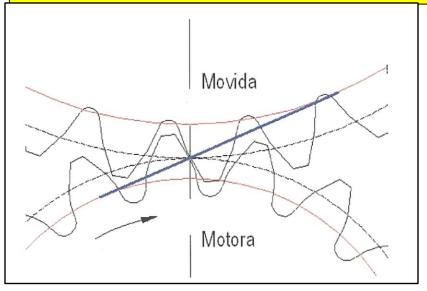
Camada Branca e camada de difusão-Imagem de MO e desenho esquemático com perfil de dureza



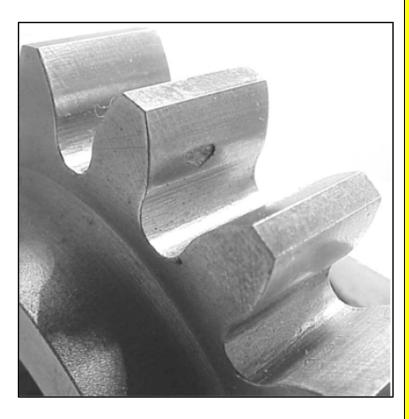

A camada branca é formada por uma combinação do nitreto ϵ e γ '. O nitreto γ ' é mais duro e frágil. A camada branca é dura e frágil e pode ser reduzida ou eliminada, conforme a aplicação. Abaixo desta camada existe a camada de difusão.

Determinação da profundidade de camada efetiva Effective Hardness Testing (EHT)

Case Hardness Depth (CHD)

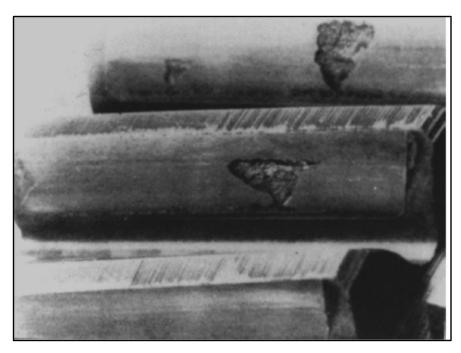


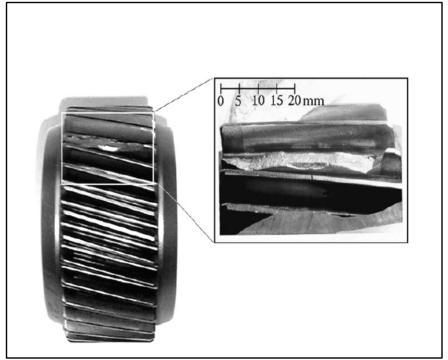
FADIGA DE CONTATO -ENGRENAGEM



MAIORES TENSÕES E O
ESCORREGAMENTO
OCORREM NO DEDENDUM,
LOCAL DE MAIOR
PROBABILIDADE DE
NUCLEAÇÃO DE TRINCA.

FADIGA DE CONTATO -ENGRENAGEM


 Próximo ao diâmetro primitivo: causado por especificações inadequadas de durezas, profundidades de camada ou tratamento térmico;


No diâmetro primitivo: causado por sobrecarga;

• Logo abaixo ou acima do diâmetro primitivo: falha de engrenamento.

FADIGA DE CONTATO -ENGRENAGEM - SPALLING

O "Spalling" é a propagação de um "pitting" e pode ter contribuição do lubrificante presente nas superfícies de contato. Nucleação se dá nos "micropittings".

FIM