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We have applied Fourier analysis to our point-scattering theory of x-ray absorption
fine structure to invert experimental data forma11y into a radial structure function with
determinable structural parameters of distance from the absorbing atom, number of
atoms, and widths of coordination shells. The technique is iQustrated with a compari-
son of evaporated and crystalline Ge. We find that the first and second neighbors in
amorphous Ge are at the crystalline distance within the accuracy of measurement (1/0}.

Physicists have been tantalized for forty years' by the structurally sensitive extended x-ray absorp-
tion fine structure (EXAFS) or Kronig structure which appears on the high-energy side of x-ray ab-
sorption edges. Recently, we reported a point-scattering theory of K x-ray absorption fine structure
which gave excellent agreement with experimental structure. In this Letter we show that the point-
scattering theory can be used to invert formally the experimental EXAFS data to obtain a radial struc-
ture function containing interatomic distances, number of atoms, and widths of coordination shells in
the absorbing material. Amorphous and crystalline Ge are compared to illustrate the technique.

EXAFS arises from oscillations in the photoelectric cross section due to scattering of the ejected
photoelectron by atoms surrounding the absorbing atom. Our theory describes this surrounding atom-
ic array in terms of a system of point scatterers. The total photoelectron wave function, including
scattering, is calculated from scattering theory and used to calculate the dipole transition matrix ele-
ment of which x(k), the oscillatory part, is retained. ' The final expression for the EXAFS is

X(k) = —kf(k)g, [N~ exp(- yr&)/r&'] exp(- o,.'k'/2) sin[2kr&+ 2q(k)],

where k = 2m/X is the photoelectron wave vector, f(k) is the usual electron scattering factor' (i.e., the
Fourier transform of the scattering potential), r& is the distance from the absorbing atom to the jth
coordination shell, N, is the nu. mber of atoms at r, , exp( —yr, )is a photoel. ectron scattering range
term similar in form to that of Shiraiwa, Ishimura, and Sawada, ' and i}(k) is the phase shift of the pho-
toelectron caused by the potential of the absorbing atom. This result is similar to earlier theories';
however, its basis in an array of point scatterers is more realistic and flexible for calculating EXAFS
in any atomic environment.

Equation (1) differs from our previous result in that the temperature factor exp(- o,.'k'/2) is a gener-
al Debye form where 0,.' is the mean square amplitude of the relative displacement of the atoms in the
jth shell from the absorbing atom including both thermal and disorder contributions. Also, we have
retained only the dominant term of Eq. (32) in Ref. 2. The spectra calculated from this simplified ex-
pression have changes in peak positions of less than 1 eV and changes in amplitude of less than 2%
from the spectra calculated with the complete equation. '

Since EXAFS can be accounted for by a simple sum of damped sine waves, we formally invert the
data in the following way. If Eq. (1) is rewritten

—X(k)k 'f(k) ' =Q,.[N~ exp(- yr&)/r~']exp(- oz'k'/2) sin[2kr&+ 2q(k)], (2)

then taking the Fourier transform of this equation we obtain

y(r) = —(2/~)'I'J }|(k)k 'f(k) ' sin[2kr+ 2'(k) ]1k

= sg,.[N,.exp(- yr, )/r, 'v, ]exp[- 2(r —r,)'/o, '.]+a. (r.)
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Here b, (r) is a term which is in practice very
much smaller than the rest of the expression and

it will be neglected from now on.
The right-hand side of Eq. (3) is the structure-

related function y(r) obtained from the point-
scattering theory. It shows that the transform of
the experimental data is a sum of normalized
Gaussian curves whose amplitudes are

A, = N, exp(-y. r, )/2r, .'v, .

From the peak position, amplitude, and width
of the Gaussian, information about the number
of atoms and the magnitude of their distribution
about x,. may be determined. In order to obtain
complete information about the number of atoms
and their disorder smearing, other information
is needed. First, the width of the Gaussian con-
tains both structural and thermal components.
Assuming that both components are independent
of one another, we separate their contributions
by

2= 2 20„, =a~ +O'D,

where T and D indicate thermal and disorder
broadening, respectively. To evaluate 0~ sepa-
rately we must either calculate o~ from theory
which is not available for amorphous materials,
or, since EXAFS has been shown to be tempera-
ture dependent, ' ' we may measure EXAFS at
several temperatures and fit the variations in
width to a Debye function and thus obtain the
thermal widths. Another method is to compare
the data from amorphous and crystalline poly-
morphs and assume that the crystalline widths
are entirely thermal in origin and that the amor-
phous widths have the same temperature depen-
dence because of a similar short-range struc-
ture; then

(5)

+D (&) = &i. t'(&) —&t. 1.''(C)

hx = 3.8/k

at half-maximum. For our data k -20 and b,~
=0.19 A. These broadenings are difficult to cal-
culate but may be subtracted exactly if all the ex-
perimental conditions for the amorphous and
crystalline data are the same using the full ob-
served width including termination broadening in
(x„,(C) of Eq. (6).

where A and C stand for the amorphous and crys-
talline case. In a typical experiment there are
also contributions to the width because of an in-
strumental broadening and from finite Fourier
termination. The Fourier termination has been
discussed by Warren' and gives a broadening of

We have described previously"" the experi-
mental apparatus consisting of a single-crystal
x-ray spectrometer operated in a stepping mode
(b, 26=0.005'; b.eV-2) measuring the x-ray in-
tensity with the absorber in (I) and out (I,) of the
x-ray beam. The electronic and mechanical sta-
bility of the system were such that a precision of
0.3% (this corresponds to 10' photons recorded
for each I and I, at each step) was attainable.

Improved statistics (0.1%) were obtained by
combining several data runs (usually about ten)
on each sample. These statistics were neces-
sary in order to resolve the EXAFS signal to
-1000 eV. The absorber was cooled to VV.4'K in
a cryostat" (absorber material sandwiched be-
tween aluminum foil) to reduce thermal smearing
of the EXAFS peaks. The crystalline Ge was pre-
pared from a fine powder by casting in Duco ce-
ment. The amorphous Ge specimens were pre-
pared by evaporation from a tungsten boat onto
1-mil Mylar or aluminum foil in a vacuum better
than 5 &10 ' Torr. During deposition substrate
temperatures rose to 25-50'C due to radiant heat-
ing. The thickness of the foils was approximate-
ly 1 p. m; six layers were used to obtain the EXAFS
spectra. These samples were also analyzed by
x-ray diffraction, electron diffraction and mi-
croscopy, and differential scanning calorimetry.
The structural investigations showed diffraction
patterns with two diffuse rings, 4w sine/A. = 1.81
and 3.22 A '. Application of the Scherrer formu-
la to the linewidth gave an apparent domain size
of approximately 40 A." Microscopic investiga-
tions revealed a very fine 40-A wavelet structure
on top of a 300-500-A "pebble grain" texture. In
the microscope, crystallization could be induced
with the electron beam, and hot-stage examina-
tion proved a first crystallization step at 150-
200 C. This was confirmed with differential
scanning calorimetry where a first crystalliza-
tion peak (exotherm) at 200'C and two other peaks
at higher temperatures were observed.

The smoothed experimental EXAFS data" for
crystalline and amorphous Ge are shown in Fig.
1. The crystalline data have considerably more
detail than the amorphous although the major
maxima of both coincide.

Figure 2 shows the result of transforming the
smoothed data using Eq. (3). The amplitudes of
the two curves are not on an absolute scale since
the theory does not calculate an absolute value.
They are plotted on slightly different vertical
scales for comparison; however, the relative
amplitudes of each curve may be compared using
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amorphous cases gives the result

on'(A) =6c„,'(C).

This is a disorder smearing of approximately
0.15 A meaning that the tetrahedral bonds are
distorted + 5'.

In summary, the point-scattering theory of ex-
tended x-ray absorption fine structure can be
used, not only to calculate the EXAFS spectrum
given the atomic structure, but to invert the ex-
perimental data to obtain structural information
such as distance, number of atoms, and widths
of the coordination shells around a particular
atomic species in amorphous materials. Although
this technique is still in the developmental stage,
our preliminary results on amorphous Ge agree
quite well with other recent results and prove
that the EXAFS technique is comparable to con-
ventional x-ray or electron scattering methods.
The unique feature of this technique is an ability
to determine the near-neighbor environment
about each different type of atom in a complex
material since each atomic x-ray absorption edge
occurs at a discrete, easily separable x-ray en-
ergy
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