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A B S T R A C T

Citrus Huanglongbing (HLB), also known as citrus greening, is the most destructive disease in the citrus industry.
Detecting this disease as early as possible and eradicating the roots of HLB-infected trees can control its spread.
Ground diagnosis is time-consuming and laborious. Large area monitoring method of citrus orchard with high
accuracy is rare. This study evaluates the feasibility of large area detection of citrus HLB by low altitude remote
sensing and commits to improve the accuracy of large-area detection. A commercial multispectral camera (ADC-
lite) mounted on DJI M100 UAV(unmanned Aerial Vehicle) was used to collect green, red and near-infrared
multispectral image of large area citrus orchard, a linear-stretch was performed to remove noise pixel, vegetation
indices (VIs) were calculated followed by correlation analysis and feature compression using PCA (principal
components analysis) and AutoEncoder to discover potential features. Several machine learning algorithms, such
as support vector machine (SVM), k-nearest neighbour (kNN), logistic regression (LR), naive Bayes and ensemble
learning, were compared to model the healthy and HLB-infected samples after parameter optimization. The
results showed that the feature of PCA features of VIs combining with original DN (digital numbers) value
generally have highest accuracy and agreement in all models, and the ensemble learning and neural network
approaches had strong robustness and the best classification results (100% in AdaBoost and 97.28% in neural
network) using threshold strategy.

1. Introduction

Citrus huanglongbing (HLB) is the most destructive disease that
affects citrus growth because of its harmfulness and rapid spread.
Nowadays, the most common detection method of citrus HLB is con-
ducted by naked eyes diagnosis in the field (Wang and Deng, 2008).
This method is subjective, time-consuming and laborious. Polymerase
chain reaction (PCR) diagnosis is currently the most reliable and ob-
jective detection method, however, it is also time-consuming and high-
cost as it requires specialised equipment and professional staff. In large-
area orchard, it is nearly impossible to manually inspect all citrus tree.
Therefore, it is of great significance to develop a timely and effective
method to prevent and control the spread of citrus HLB in a large scale
so that improve the quality and yield of citrus produce.

Several remote sensing techniques, such as hyperspectral data from
airborne (Zhang, 2003; Ye, 2008; Lan,2019) and satellite platforms

(Ustin, 2004; Li, 2015) using multispectral (Hunt et al., 2006) and
optical imagery (Huang, 2019; Deng, 2016a; Chaoying et al., 2018),
were proposed for different agricultural applications. These techniques
commonly generate substantial datasets, proper and effective advanced
algorithms and high-power computation are necessary to analyse them.
Machine learning methods are a powerful tool to address this problem.
For example, Weng et al. (2018) successfully utilised a least squares-
support vector machine (LS-SVM) classifier to analyse hyperspectral
images of healthy, HLB-infected (asymptomatic and symptomatic), and
nutrient-deficient leaves. The results achieved 90.2%, 96.0%, and
92.6% classification accuracies during the cool season, hot season, and
overall, respectively. Deng (2014) proposed that the HLB recognition
accuracy can reach 95–100% within 1s with a Gaussian mixture model-
based object and feature extraction method. Deng et al. (2016a, 2016b)
also proposed a detection method for citrus HLB based on several colour
and texture features extracted from visual imagery and a two-stage back
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propagation neural network (BPNN) model, which reached an ap-
proximate 92% discrimination accuracy. Mei et al. (2014) presented a
partial least square discriminate analysis (PLS-DA) model to handle
hyperspectral data after pre-processing using Savitzky-Golay smoothing
with first derivative methods and achieved a classification accuracy of
more than 96.4%. Lu et al. (2017) utilised three classification dis-
criminant analysis algorithms (fisher discriminant analysis (FDA);
stepwise discriminant analysis (SDA); and kNN) to detect anthracnose
crown rot in strawberries. They achieved classification accuracies of
71.3%, 70.5% and 73.6% for the SDA, FDA and kNN, respectively.

Compared with satellite and manned aircraft remote sensing, un-
manned aerial vehicle (UAV) remote sensing technology has high
flexibility as the altitude can be adjusted based on the different spatial
and spectral resolution requirements for different tasks. Recently, re-
search around the world regarding crop management based on UAV
remote sensing image information and spraying has made great pro-
gress (Chaoying et al., 2018; LAN,2019). Swain et al. (2010) proposed
that an unmanned helicopter-based, low-altitude remote sensing plat-
form can substitute for satellite-based and costly manned airborne re-
mote sensing methods to estimate yield and biomass. Liu et al. (2018)
employed UAV imagery to detected wheat powdery mildew, and a re-
lationship between the image parameter lgR (Red band value loga-
rithmically transformed on the base of 10) and the disease severity was
observed by capturing UAV imagery at different altitudes over the
wheat fields.

For citrus HLB detection, some non-destructive methods have also
been recently proposed based on optical and spectroscopic methods.
Qin et al. (2009) proposed that analysing hyperspectral wavelengths
between 450 and 930 nm, coupled with spectral information with a
divergence-based image classification method, could detect citrus
canker with a classification accuracy of 95% under indoor conditions.
Kumar et al. (2012) achieved an 80% accuracy in HLB detection using a
mixture tuned matched filters on hyperspectral images with an 87%
accuracy using spectral angle mapping on multispectral images. Lee
et al. (2014) proposed the ESAM method that uses the Savitzky-Golay
smoothing filter to remove spectral noise, SVM to build a mask to se-
parate the tree canopy and the background, and vertex component
analysis to choose pure endmembers and the red-edge position to filter
out most of the false positive detections after a spectral angle mapping
(SAM). The method provided the highest detection accuracy of more
than 80% in the calibration set and 86.3% in the validation set for
hyperspectral imagery, while most of the tree canopies under shadows
were misclassified in the multispectral imagery. Sankaran et al. (2011)
used a portable spectrometer (visible-near-infrared) to detect HLB dis-
ease in citrus trees. The reflectance data were analysed as first and
second derivatives, while the overall classification accuracy of the de-
tection system was more than 90%. Similarly, Mishra et al. (2012)
utilised visible-near-infrared spectroscopy and three classification
methods (kNN, LR, and SVM) to detect HLB in tree canopies with more
than 90% accuracy. Sankaran and Ehsani (2013) achieved more than
90% classification accuracy by developing a technique to distinguish
healthy citrus leaves from leaves affected with canker and HLB using
portable spectroscopy (visible-near-infrared and mid-infrared) and two
classifiers (quadratic discriminant analysis and kNN). Abdulridha et al.
(2019) developed a hyperspectral (400–1000 nm) imaging system in
the laboratory to detect citrus canker in asymptomatic, early, and late
stage disease developments on Sugar Belle leaves and immature (green)
fruit using the radial basis function (RBF) and kNN. The results indicate
that the overall classification accuracy of the RBF was higher than the
kNN method for detecting canker in leaves, but detecting canker in fruit
was more difficult in the early stages.

The classification results may vary significantly with different fea-
ture processes and machine learning algorithms. However, there are
few studies on the performance comparison of different feature ex-
traction and learning methods based on the multi-spectral image col-
lected by UAV, and the research on the accuracy improvement of for

citrus HLB detection based on UAV remote sensing is also very rare.
This study is aimed at investigating feature pre-processing, feature ex-
traction, machine learning models and accuracy improvement on UAV
multispectral images so as to explore an effective, non-destructive in-
field detection of citrus HLB in a large-area scale. Our code and models
are available at: https://github.com/zixiaohuang/Project1_code.

2. Data collection

2.1. Field plot

The experiments were performed from 12.00 a.m. to 3.30 p.m. on
19 December 2017 at a citrus orchard in Huizhou, Guangdong province
(N23°49′95.0163″, E114°46′91.0973″). The weather was sunny with no
clouds. The field plot was planted with plant spacing of 2.5 m and row
spacing of 4 m. There were totally 334 citrus plants, divided into
healthy and HLB-infected trees. The degree of HLB infected tress was
confirmed in the HLB Research Laboratory of South China Agricultural
University by PCR test. Although there were various degrees of HLB,
this study categorized them into a single group of HLB infection.

2.2. Data collection

Matrice 100 UAV (produced by China DJI Company) was adopted as
the low-altitude remote sensing platform, and a multi-spectral camera
(ADC-lite) was mounted on DJI M100 UAV to collect the data of the
orchard. The specification of the camera is shown in Table 1.

A whiteboard calibration of the camera was performed. The flight
altitude was 60 m, the flight speed was 2–3 m/s and the forward and
side laps were both set to 60% during the experiments. The flight routes
were generated using the software of the ground station (DJI GS PRO).
During data collection, autonomous flight was performed according to
the planned route.

2.3. Data pre-processing

The PixelWrench2 software was used to reconstruct the raw images
to produce a set of JPG images. The images and GPS position files were
imported into the software Agisoft PhotoScan to stitch the images to-
gether and build a panorama. The images were cropped after stitching
and enhanced in the software ENVI. Similar to the Savitzky-Golay
smoothing filter methods from Li et al. (2014), linear stretching was
used for preliminary image denoising which removed abnormal DN
value that were less than 2% and greater than 98%. The image after
pre-processing is shown as Fig. 1 (combinations of the orders of Green,
Red and NIR band). The red circles were manually marked and re-
present the diseased plants, which were pre-marked and confirmed by
PCR testing.

Table 1
Specification of the multispectral image acquisition system.

Device Specification

Tetracam ADC-lite Resolution 2048×1536 pixels
Wavelength range
(3 channels)

Green: 520–600 nm
Red: 630–690 nm
NIR (Near Infrared): 760–900 nm

Dimension × ×114 77 22mm
Weight 0.2 kg
Lens size 8 mm/4.5–10 mm
Field of view 42.5°×32.5°

Calibration whiteboard Reflectivity 100%
size 50×50 cm

Y. Lan, et al. Computers and Electronics in Agriculture 171 (2020) 105234

2

https://github.com/zixiaohuang/Project1_code


3. Methodology

Fig. 2 shows the framework of this study, the detail of each process
is introduced later in this section. Six machine learning algorithms, the
SVM (Cortes, 1995), kNN (Fukunaga, 2013), LR (Larose, 2006), naïve
Bayes, neural network (Haykin,1994), ensemble learning (Polikar,
2006) including random forest (Breiman, 2001), Adaptive Boosting
(Freund et al., 1999) and Xgboost (Chen, 2016) were compared in terms
of their feasibility of classification after individually optimising their
different parameters. All the algorithms were implemented using Py-
thon 3.6.

3.1. ROI extraction and samples production

Using ENVI software, the region of interest was extracted from the
center of the canopy of diseased and healthy plants according to an
equidistant distribution. 27 diseased trees and 27 healthy ones were
selected from Fig. 1, 30 ROIs were manually extracted from each plant.
The radius of each ROI was set as 5 pixels (one example of ROI feature
extraction is shown in the upper right panel of Fig. 1). The intensity
value of the three bands (near-infrared, red and green) were exported
from each ROI in the ENVI software. Fig. 3 shows the ROI average in-
tensity comparison between the healthy and HLB-infected group. The
red band intensity within the ROI of healthy plants is lower than the
one of HLB-infected, while the NIR and green bands have the opposite
behaviour.

Due to the uneven distribution of HLB symptom on a plant, the
characteristics of different ROIs in the same tree show slight differ-
ences. To augment the scale and robustness of the datasets, 5 randomly
selected ROIs from 30 ROIs were averaged to product a sample data.
Thus, totally 7,695,324 samples including HLB-infected and healthy
ones were produced as the datasets in this study.

3.2. Vegetation indices calculation

To enhance the plant characteristic information (Abdulridha, 2019),
VIs were adopted to provide additional features in this study. 20 VIs
were computed from the DN value of three bands. The definitions of
these VIs are shown in Table 2. The NDVI, SIPI, TVI, DVI, RVI, SR, G,
MCARI1, MTVI-1, MTVI-2 and RDVI were suggested by some in the
HLB field (Mishra et al., 2011, 2009). Other VIs (GDVI, OSAVI, NDGI,
IPVI, CVI, GRNDVI, Normal R, Normal NIR and Normal G) were also
popularly used in remote sensing.

3.3. Feature extraction

To the best of our knowledge, most studies use all the VIs directly as
features. In this study, a correlation analysis and feature compression of
the VIs in Table 2 was conducted to remove redundancy and extract
lower relevant features. Each sample was composed of multi-dimen-
sional VIs features; therefore, all the samples can be formed as a matrix
X. The Pearson product-moment correlation coefficient (shown in
Equation 1–4) was adopted to analyse the correlation for different VIs.
Xi, Xj respectively represent VIs feature i and j in the matrix, and the
outcome was ranged between 0 and 1 (Equation (5)). The closer to
1, the higher linearly correlation of the VIs is, thus one of them should
be removed as its high redundancies.

=
var

X X
X X

cov( , )
var( ) ( )

i j

i j (1)

= E E EX X X X X Xcov( , ) [( ( ))( ( ))]i j i i j j (2)

= E EX X Xvar( ) [( ( )) ]i i i
2 (3)

= E EX X Xvar( ) [( ( )) ]j j j
2 (4)

× +0.5 0.5 (5)

PCA is mathematically defined as a linear orthogonal transforma-
tion that transforms the data into a new coordinate system such that the
component with the greatest variance by some projection of the data
becomes the first principal component; the second greatest variance is
the second principal component and so on (Jolliffe et al, 2011). An
AutoEncoder (Liou et al, 2014) consists of two parts: encoder and de-
coder. The encoder stage learns to compress input data =x Xd

and map it into =h Fp (shown in Eqs. (6) and (7)), and the decoder
stage decompresses h into the reconstruction x that closely matches
the original data, which is finally trained to minimise the reconstruc-
tion errors from “losses” (Eqs. (8) and (9)). The structure of the encoder
consists of three sub-modules based on the Conv-BatchNorm-

Fig. 1. Multi-spectral image pre-processing and labelling.

Fig. 2. The framework of the study.

Fig. 3. ROI mean intensity with the standard deviation indicated by the bars.
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LeakyRelu. The structure of the decoder consists of the same number of
sub-modules based on the DeConv-BatchNorm-Relu. The activation
function is ReLU function (Eq. (10)), the loss function is the Mean
Squared Error (Eq. (9)) and the Adam algorithm is chosen to optimise
the iteration. Dropout is a regularisation technique to reduce overfitting
in neural networks (Hinton et al, 2016). However, the loss, in this case,
was not improved by using dropout after the input layer or between the
input layer and the hidden layers in this study.

= +X F h Wx b: , ( ) (6)

= +F x W h b: , ( ) (7)

= °X X, argmin ( )
,

2

(8)

=L x x x x( , ) 2 (9)

=x x x( ), ( ) max(0, ) (10)

where , is activation function,W,W is a weight matrix and b, b is a
bias vector, L is loss function.

Unlike PCA, AutoEncoder was a non-linear compression. For a di-
rect comparison, this study compared PCA with AutoEncoder to extract
fewer VI features.

3.4. Learning methods optimization

As the parameters of each machine learner have a great impact on
performance, parameters of each leaner need to be determined so that
the most accurate and robust classifiers can be obtained. These para-
meters are summarised in Table 3. GridSearch method in sklearn was
used for parameter optimization of the different algorithms based on
the experimental results. While some of the algorithms were time-
consuming, the study tried to run the jobs in parallel for all CPU kernels
to accelerate the calculation speeds.

To SVM, the penalty C and kernel function are needed to be opti-
mized: penalty C was searched for the optimal value from 0.01 to 1000

with 10 steps, and the degree was searched from 1 to 3 in polynomial
kernel, and the gamma value was searched from 0 to 1000 with 10 steps
in Gaussian kernel. To kNN, the neighbour number was searched in odd
value from 3 to 2000, and the leaf size in kd-tree algorithm was sear-
ched from 30 to 1000 with 50 steps, the samples weights based on
uniform or distance were also compared. To LR, L1 and L2 regular-
ization were compared, and the optimized function was compared
among quasi-newton, stochastic average gradient descent and newton
with hessian matrix. For the neural network classifier, we searched the
classifier with various combination: hidden layer numbers ranging from
2 to 3 and neuron number from 8 to 64. The activation function was
searched among sigmoid, tanh, relu; and the optimizer function was
searched among gradient decent, quasi-newton, adam algorithm
(Kingma and Ba, 2014). The learning rate was set as adaptive mode. To
decision tree and ensemble learning, the depth of tree was searched
from 2 to 150, and the minimum samples number in each leaf node was
searched from 1 to 4, the min samples number to split a new node was
searched from 2 to 30, the maximum nodes, maximum samples and
features of the nodes all have no limit, and the estimator number was
searched from 30 to 500 in ensemble learning. The study uses the CART
algorithm, which obtains higher accuracy than the ID3 algorithm in the
experiment.

4. Results and discussions

4.1. Comparison of different feature extraction methods

We tried to retain enough features without redundancy, thus, only
when the correlation result between two VIs is near to 1.0 (highly linear
correlation), one of these two VIs will be removed. The results of the
correlation analysis for various VIs are shown in Fig. 4. For example,
OSAVI and IPVI were highly linear correlated with NDVI, we removed
OSAVI and IPVI and reserve NDVI. Similarly, TVI and SIPI, MCARI1 and
MTVI1, DVI and MTVI1, GRNDVI and Norm NIR also have highly linear
correlation with each other, we removed TVI, MCARI1, DVI and
GRNDVI.

Table 2
Definition of selected VIs.

Vegetation index equation References

= +NIR REDNormalisedDifferenceVegetationIndex(NDVI) (NIR RED)/( ) Peñuelas et al., 1997
= +StructureIntensivePigment(SIPI) (NIR GREEN)/(NIR RED)] Peñuelas et al., 1995
=TriangularVegetationIndex(TVI) 0.5[120(NIR GREEN) 200(RED GREEN)] Haboudane et al., 2004
=DifferenceVegetationIndex(DVI) NIR RED Becker et al., 1988

=DifferenceNIR/GreenDifferentVegetationIndex(GDVI) NIR GREEN Tucker et al., 1979

OptimiisedSoil AdjustedVegetationIndex = =+
+ +NIR RED L(OSAVI) ( ) ; 0.16L

NIR RED L
1 Rondeaux et al., 1996

=RatioVegetationIndex(RVI) NIR/RED Jordan et al., 1969
=SimpleRationIndex(SR) NIR/GREEN Daughtry et al., 2000

=GreenIndex(G) GREEN/RED Clevers et al., 1989
= +NormalizedDifferenceGreennesIndex(NDGI) (GREEN RED)/(GREEN RED) Chamadn et al., 1991

= +InfraredPercentageVegetationIndex(IPVI) NIR/(NIR RED) Crippen et al., 1990
=ChlorophyllVegetationIndex(CVI) (NIR RED)/(GREEN)2 Vincini et al., 2008

=ModifiedChlorophyllAbsorptioninReflectanceIndex(MCARI1)
1.2 [2.5 (NIR RED) 1.3 (NIR GREEN)]

Daughtry et al., 2000

=ModifiedTriangularVegetationIndex 1(MTVI1)
1.2 [1.2 (NIR GREEN) 2.5 (RED GREEN)]

Haboudane et al., 2004

=
+

ModifiedTriangularVegetationIndex 2(MTVI2)
NIR NIR RED

1.5[1.2(NIR GREEN) 2.5 (RED GREEN)]
(2 1)2 (6 5 ) 0.5

Smith et al., 2008

=
+

RenormalizedDifferenceVegetationIndex(RDVI)
NIR RED

(NIR RED)
( )

Roujean et al., 1995

=
+ +

GreenRedNormalizedDifferenceVegetationIndex(GRNDVI)
(NIR RED GREEN)/(NIR RED GREEN)

Wang et al., 2007

= + +NormalizedRedBandIndex(NormR) RED/(NIR RED GREEN) Original formula
= + +NormalizedNear InfraredBand(NormNIR) NIR/(NIR RED GREEN) Original formula

= + +NormalizedGreenBandIndex(NormG) GREEN/(NIR RED GREEN) Original formula
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The result of PCA linear compression with different number com-
ponents are shown in Fig. 5, it is shown that the data after dimension
reduction can retain more than 99.9% of the variance information when
the original data are compressed into three or more features by PCA.
Therefore, 3 components were chosen in the PCA scheme of feature
extraction in this study.

For a direct comparison with the PCA, AutoEncoder was also used to
compress the original data into 3 dimensions. The comparison between
AutoEncoder and PCA is shown in Fig. 6. The green dots represent the
healthy samples distribution while the red triangles are the HLB-

infected samples. From Fig. 6, the two groups can be separated by
naked eyes although there are some outliers which might be affected by
environment or the uneven appearance of the leaves.

4.2. Comparison of different machine learning methods

4.2.1. Classification assessment
The classification assessment measures (Eqs. (11)–(15)), including

accuracy, recall, precision, specificity and F1-score, are calculated from
the Table 4 confusion matrices (Kenney and Keeping, 1957; Sankaran
et al., 2013). The precision and specificity represent the classification
accuracies of the healthy and HLB samples, respectively, and the ac-
curacy represents the percentage of correctly classified healthy and HLB
samples. The F1-score is a combination of the recall and the precision. A
higher F1-score indicates a more robust classification model.

= +
+ + +

×TN TP
TN TP FN FP

Accuracy(%) 100 (11)

=
+

×Specificity TN
TN P

(%)
F

100 (12)

=
+

×TP
TP FN

Recall(%) 100 (13)

=
+

×Precision(\% ) TP
TP FP

100 (14)

= × ×
+

×F1(%) 2 Precision Recall
Precision Recall

100 (15)

Cohen Kappa (Cohen, 1969) was also introduced to assess the
agreement in different algorithm of categorical assessment (Equation
16–18).

= +
+ + +

p TN TP
TN TP FN FP0 (16)

= + + + + +
+ + +

p TP FP TP FN FN TN FP TN
TP FP FN TN

( ) ( ) ( ) ( )
( )e 2 (17)

=
p p

p1
e

e

0

(18)

where p0 (Eq. (16)) represents the observed proportional agreement
and pe(Eq. (17)) represents the expected agreement by chance. The
value of (Eq. (18)) is closer to 1, the better consistency of the model is
obtained. When the value is greater than 0.75, the consistency is sa-
tisfied, whereas when the value is close to negative 1, the opposite is
true. Integrating dimension-reduced datasets with Original reflectance
datasets can achieve a better classification result and a faster con-
vergence rate (Deng et al., 2019). Therefore, five sets of the data were
chosen and compared: the original reflectance datasets, the datasets by
PCA, the datasets by AutoEncoder, the datasets combining original re-
flectance data and PCA components, and the datasets combining

Table 3
Algorithm parameters.

Algorithm Hyper-parameter tuning
SVM Penalty C Kernel function (linear/polynomial/gaussian)
kNN K Neighbors Weights(uniform/distance) Leaf size
LR L1/l2 Regularization Optimize function
Naïve Bayer Bernoulli/Gaussian/Polynomial
Neural Network Hidden layer Neuros numbers Activation function Learning rate Optimize function
Decision Tree ID3/C4.5/CART Max depth Min leaf node samples Min split samples Max leaf nodes
Ensemble Learning Random Forest ID3/C4.5/CART Max depth Min leaf node samples Min split samples Max leaf nodes Estimator

numbers
Adaptive Boosting Base Estimator Estimator

numbers
Learning rate

Xgboost Linear/tree booster Estimator
numbers

Max depth Learning rate Min child leaf weight gamma

Max leaf nodes subsamples

Fig. 4. Correlation analysis heat map.

Fig. 5. Explained variance ratio for PCA.
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original reflectance data and AutoEncoder data. The dimensions of the
above datasets are shown in Table 5. The datasets partition ratio for
training, validation and testing is shown in Fig. 7. Among the dataset
produced by the sample production method in section 3.1, 60% was
used for training, 20% was used for parameter validation to optimize
the trained model and 20% for testing. There was no intersection
among these partitions. The time module of python was used (the
temporal resolution was limited to a microsecond) and the mean times
for the different algorithms to process the different datasets were re-
corded for comparison.

4.2.2. Algorithm parameter optimisation
For SVM classifiers, we found that larger degrees in polynomial

kernel required much more time with approximately the same accu-
racy. Therefore, the degree was set to 3 for a comparison with the other
kernel functions. The penalty factor C and gamma value of the Gaussian
kernel function, both set as 100, could achieve a better score.

The classification results of the SVM approach are shown in Fig. 8.
The horizontal axis represents different datasets while the vertical axis
represents the classification accuracy results. From Fig. 8(a)–(e), the
classification accuracy varies with different datasets and different
kernel functions. Generally, feature extraction (PCA, AutoEncoder)
slightly improved the classification results, especially with the poly-
nomial kernel and Gaussian kernel. Inserting the original reflectance
data into the datasets after feature extraction further improved the

classification results. The graph in Fig. 8(d) reflects that the polynomial
kernel averagely cost much more time than the others, and adding the
original reflection data can accelerate the convergence time. Fig. 8(e)
reveals that PCA combine original reflection datasets have highest
agreement in different models. Overall, the Gaussian kernel got the best
classification accuracy and agreement among the three SVM kernels.

For kNN classifiers, the leaf size of KD-tree was selected as 30. The
optimal number of neighbouring points set about 7 generated the best
classification accuracy. The Euclidean distance obtained a better ac-
curacy in the case of uniform weights, whereas the distance weight
performed better for the Manhattan distance. The analysis results for
the different datasets are shown in Fig. 9(a). It can be seen from the
figure that the classifiers have similar accuracy between uniform and
distance weight, and PCA features with original reflectance data also
performed better than the others.

For LR classifiers, the L2 regularisation had a higher score than the
L1 regularisation. The stochastic average gradient solver was selected to
optimise the loss function as this algorithm can attain better results for
large datasets. The classification results are shown in Fig. 10(a), the
ability of LR models to distinguish HLB-samples seem worse than health
one (The specificity score is much lower than the others).

For the naïve Bayes classifier, it is apparent from Fig. 11(a) that the
AutoEncoder feature had a substantial drop in the classification accu-
racy results compared with other datasets. It is also seen from the graph
in Fig. 11(b) that the Bernoulli naïve Bayes had even worse results
when detecting HLB-infected samples after feature extraction. Overall,
the naïve Bayes classifier have a poor classification result in this study
and the Gaussian naïve Bayes generally had better classification accu-
racy while the nonlinear features had worst results.

For the decision tree classifier, the CART algorithm with the Gini
impurity obtained a better score than the ID3 algorithm based on the
information gain. And the depth of the tree is selected as 8. The clas-
sification results for the decision tree algorithm are shown in Fig. 12.
The graph in Fig. 12(a) illustrates an obvious improvement of classifi-
cation results after adding the original reflectance data to compressed
features. Fig. 12(b) indicates that the time dramatically increased for

Fig. 6. Comparison of AutoEncoder and PCA for feature compression.

Table 4
Confusion matrix and associated classification measures.

Actual Predicted

Healthy HLB

Healthy True Positive
(TP)

False Positive
(FP)

HLB False Negative
(FN)

True Negative
(TN)

Table 5
The dimensions and numbers of various datasets.

Original reflectance
Datasets

Datasets after
PCA

Datasets after
AutoEncoder

Original reflectance + PCA datasets Original reflectance + AutoEncoder datasets

Dimensions 3 3 3 6 6
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the larger datasets and Fig. 12(c) indicates that the PCA combined with
original reflection datasets got the best agreement in different models.

For the ensemble learning classifier, the AdaBoost and the random
forest are based on the optimised decision tree algorithm above, the
XgBoost is based on the gbtree. As the AdaBoost cannot run in parallel
using sklearn, it needs much more time than other algorithms
(Fig. 13(d)). The XgBoost pre-orders and stores the data and exploits the
sparsity of features to split the node; thus, it is more efficient although it
is also unstable (Fig. 13(d)). Overall, these three ensemble learning
classifiers got the similar performance, while the AdaBoost using PCA
data combing original reflection datasets had a slightly better result.

For the neural network classifier, a better result was achieved with 3
hidden layers and 64,64,8 neuron numbers in layers in sequence among
the combination of hidden layer numbers ranging from 2 to 3 and
different neuron numbers ranging from 8 to 64. The accuracy achieved
to 99.6% with the datasets combining the original data with the PCA
data, as shown in Fig. 14(a). A deeper network may achieve better
results, but with a cost of a considerable increase in the training time.
What’s more, the linear feature cost fewer time and higher agreement
than non-linear features in neural network classifier.

Overall, the classification result for healthy group was better than
the one for the HLB-infected. Both PCA and AutoEncoder features, ex-
tracted from original reflectance data, obtained an obviously im-
provement than primary data, which shows that feature extraction from
VIs is beneficial for classification. Also, the linear PCA features have
apparent better results than non-linear AutoEncoder feature in each
classifier consistently. Therefore, PCA feature extraction was adopted in
the later multispectral image analysis process. Compressed features for
VIs combining with original reflectance data got the best performance,
including the accuracy and agreement. Among the classifiers, neural
network and AdaBoost classifiers had considerably better classification
accuracies but with much more calculation times.

4.3. Multispectral image analysis

In section 4.2.2, different parameters for the various traditional
machining learning algorithms were compared and optimized in ROI
level, however, in the practical application, the whole plant is the ob-
ject of diagnosis and prediction. Thus, in this section, six trained models
(SVM with a Gaussian kernel, kNN with a distance weight, LR with an
L2 penalty, Gaussian naïve Bayes, AdaBoost with an optimised decision
tree and the neural network classifier) were applied to classify each
plant in the orthophoto and generate a disease distribution map.

The original reflection datasets were extracted again but in plant
level, and the datasets were pre-processed as previously described in
Section 2.3. In each plant, totally 30 ROIs were extracted, 5 among
these 30 ROIs were randomly averaged so that a total of 142,506
samples for each plant were produced.

A threshold strategy was adopted to determine whether a tree is
infected by HLB based on the classification result of all ROIs of it. As the
results showed that different models had their own “classification
preference.” The SVM and LR tended to predict the ROI samples as
healthy; the AdaBoost and neural network tended to predict as HLB-
infected; while the kNN and Gaussian naïve Bayes were relatively fair.
Therefore, different thresholds were set for the models to obtain better
classification results for each plant. One example of the classification
distribution results based different thresholds with the AdaBoost model
is shown in Fig. 15. We clearly see that the classification accuracy
steadily increased before reaching a peak and then before declined
sharply. As a result, the peak was set as the threshold to determine
whether the tree was infected by HLB.

Using the above method, the thresholds for SVM, kNN, LR, Gaussian
naïve Bayes, neural network and AdaBoost were set to 65%, 55%, 68%,
58%, 80% and 90% respectively. If the number of ROIs predicted as
HLB exceeded the threshold, this plant was considered as infected by
HLB. The best classification results of six learners are shown in Fig. 16.
The yellow circle indicates false negative, that is, the predicted result

Fig. 7. Feature extraction and data partitioning.

Fig. 8. Classification result for ROIs by SVM with different kernels.
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was HLB-infected while the ground truth was healthy, and the red circle
indicates false positive, that is, the classifier did not properly predict the
HLB plants. Among these classifiers, AdaBoost got an exactly right

prediction result in our study, no matter health plants or HLB-infected
ones.

More detailed classification information is shown in Table 6. The

Fig. 9. Classification result for ROIs by kNN with different weights and datasets.

Fig. 10. Classification results for ROIs by LR model with different datasets.

Fig. 11. Classification result for ROIs by naïve Bayes classifiers with different datasets.

Fig. 12. Classification result for ROIs by decision tree algorithm with different datasets.

Fig. 13. Classification result for ROIs by ensemble learning with different datasets.
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performance of SVM, kNN, LR and naïve Bayes algorithms for detecting
HLB plants sharply declined as the predicted samples increased. What’s
more, it’s surprising shown that the Cohen Kappa value in these four
models is lower than 75% while AdaBoost and neural network remain
high. It means that SVM, kNN, LR and naïve Bayes in our study are
easier effected by the samples changing than AdaBoost and neural
network. The neural network method remained constant and the Ada-
Boost maintained the best classification result. Therefore, it is strongly
considered that the ensemble learning (AdaBoost) and neural network

had good robustness, regardless of the number of samples.

5. Discussion and conclusion

5.1. Discussion

To the best of our knowledge, most existing studies used VIs directly
to monitor the crop, however, there are a great deal of redundancy
particularly when two VIs are highly correlated. In this study, the re-
dundant features were removed by analysing their correlations and the
feature dimensions were reduced by linear and nonlinear compression.
The result shows that the combination of VIs features compressed and
original DN value performed better than the one using DN value in-
dividually.

Most existing studies (Lee, 2014; Qin, 2011) showed that multi-
spectral images had rather poorer classification results than

Fig. 14. Classification result for ROIs by neural network classifier with different datasets.

Fig. 15. AdaBoost classification distribution results for different thresholds.

Fig. 16. Classification results in plant level with different algorithms.

Table 6
Optimised algorithm classification results based on plant.

Algorithm
(threshold)

SVM
(65%)

kNN
(55%)

LR
(68%)

Naïve
Bayes
(58%)

AdaBoost
(90%)

Neural
network
(80%)

Accuracy 79.76 81.27 72.20 80.06 100 97.28
Specificity 33.33 42.47 27.96 34.69 100 88.89
Precision 88.57 85.0 76.07 88.57 100 97.86
Recall 87.63 92.24 89.49 87.94 100 98.91
F1-score 88.10 88.48 82.24 88.26 100 98.38
Cohen Kappa 34.86 50.09 27.12 33.28 100 92.20
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hyperspectral images for limited band information available in multi-
spectral images. Therefore, most studies commonly use more suitable
hyperspectral images based on band selection to detect citrus HLB. The
method proposed in this study proved that multispectral images with
NIR, red and green bands can effectively detect HLB under proper
feature extraction and classification models. After parameter opti-
mizing and threshold setting, AdaBoost and neural network can accu-
rately classify HLB-infected and health one while the others (SVM, kNN,
LR and naïve Bayes) perform worse as the number of predicted samples
increasing, and the Cohen Kappa values also reveal that the AdaBoost
and neural network had a strongly robustness while SVM, kNN, LR and
naïve Bayes were unstable in our study.

This study also explored a strategy to enhance the scale of the da-
tasets by randomly selecting and averaging ROIs intensities, and ef-
fectively enriched the information of the original dataset. Nonlinear
features performed worse than PCA linear features, no matter in ac-
curacy or time. PCA components datasets combining with original DN
value have the highest agreement according to Cohen Kappa. Through
tracking the training time, it was proven that the original DN value
datasets can effectively accelerate the convergence in some models
(SVM, naïve Bayes and neural network).

Although almost perfect classification results were obtained by
Adaboost and neural network using PCA features of VIs and original DN
value, there are limitations in this study. Firstly, the application sce-
narios are restricted, as the growth of fruit trees is dynamic, the image
data captured in different growing periods represents different features,
leading to the performance of the models varies dynamically. It is hard
to construct a model to fit every growing period of the citrus. Secondly.
The method poses requirements for equipment. There are not standards
of band’s requirement and whiteboard calibration for multispectral
cameras, different multispectral cameras have different band widths,
leading the DN value from different equipment also various slightly. For
practical application, deeply investigation on regularization and stan-
dardization of data should be continued.

5.2. Conclusions

This study explored the potential of UAV multispectral remote
sensing method to detect citrus HLB in a large-area scale. Various fea-
ture extraction methods were compared using different machine
learning algorithms based on multispectral imagery captured by ADC-
Lite. The following conclusions can be summarised:

(1) A randomly selected averaging strategy over ROIs can augment the
data scale and increase the robustness. A threshold strategy to de-
termine whether plants are infected by HLB based on classification
results of ROIs improved the accuracy of plant classification.

(2) Combining the original DN value and the PCA components of VIs
features improved the accuracy and accelerated convergence speed
of most algorithms.

(3) Linear feature compression performed better than nonlinear com-
pression on representing the feature of citrus HLB.

(4) The ensemble learning and neural network models demonstrate
their promising application through better classification results and
stronger robustness.
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