
Today’s class: Kondo effect in quantum dots.

● Kondo effect and the “Kondo problem”.
● Wilson’s numerical renormalization group.
● Application: Kondo effect in nanostructures.
● Kondo signatures in quantum dot transport.
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Kondo effect and Wilson’s Numerical 
Renormalization Group method.



From atoms to metals + atoms…

Many Atoms!

Metal (non magnetic)

Conduction band

filled

EF

E

ATOM

E

Magnetic “impurities”
(e.g., transition atoms,
with unfilled d-levels, 
f-levels (REarths…))

(few)

Is the resulting compound still a metal ?



Kondo effect

 Magnetic impurity in a 
metal.
 30’s - Resisivity

measurements:
minimum in (T); 

Tmin depends on cimp.

 60’s - Correlation between
the existence of a Curie-
Weiss component in the
susceptibility (magnetic
moment) and resistance
minimum . 

µFe/µB

Top: A.M. Clogston et al Phys. Rev. 125 541(1962).
Bottom: M.P. Sarachik et al Phys. Rev. 135 A1041 (1964).
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Kondo effect M.P. Sarachik et al Phys. Rev. 135 A1041 (1964).

/4.2K

T (oK)

Mo.9Nb.1

Mo.8Nb.2

Mo.7Nb.3

1% Fe
Mo.2Nb.8

K ~ vF/kBTK

Characteristic energy scale: the 
Kondo temperature TK

Resistivity decreases with 
decreasing T (usual)

Resistivity increases with 
decreasing T (Kondo effect)(T)



Kondo problem: s-d Hamiltonian
 Kondo problem: s-wave coupling with spin 

impurity (s-d model):

Metal (non magnetic, s-band)

Conduction band

filled

EF

E

Magnetic impurity (unfilled d-level)



Kondo’s explanation for Tmin (1964)

 Many-body effect: virtual bound state 
near the Fermi energy.

 AFM coupling (J>0)→ “spin-flip” scattering
 Kondo problem: s-wave coupling with spin 

impurity (s-d model):
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Kondo’s explanation for Tmin (1964)

 Perturbation theory in J3:
 Kondo calculated the 

conductivity in the linear 
response regime
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 Only one free paramenter: the 
Kondo temperature TK
 Temperature at which the 

perturbative expansion diverges.
01 2~ J

B Kk T De 

J. Kondo, Resistance Minimum in Dilute Magnetic Alloys, 
Prog. Theo. Phys. 37–49 32 (1964).



Kondo Lattice models

 Kondo impurity model suitable for 
diluted impurities in metals.

 Some rare-earth compounds 
(localized 4f or 5f shells) can be 
described as “Kondo lattices”.

 This includes so called “heavy 
fermion” materials (e.g. Cerium 
and Uranium-based compounds 
CeCu2Si2, UBe13).

“Concentrated” case: Kondo Lattice (e.g., some heavy-Fermion materials)



A little bit of Kondo history:

 Early ‘30s : Resistance minimum in some metals 
 Early ‘50s : theoretical work on impurities in metals “Virtual 

Bound States” (Friedel)
 1961: Anderson model for magnetic impurities in metals 
 1964: s-d model and Kondo solution (PT)
 1970: Anderson “Poor’s man scaling”
 1974-75: Wilson’s Numerical Renormalization Group (non 

PT)
 1980 : Andrei and Wiegmann’s exact solution



A little bit of Kondo history:

 Early ‘30s : Resistance minimum in some metals
 Early ‘50s : theoretical work on impurities in metals “Virtual 

Bound States” (Friedel)
 1961: Anderson model for magnetic impurities in metals 
 1964: s-d model and Kondo solution (PT)
 1970: Anderson “Poor’s man scaling”
 1974-75: Wilson’s Numerical Renormalization Group (non 

PT)
 1980 : Andrei and Wiegmann’s exact solution

Kenneth G. Wilson – Physics Nobel Prize in 1982
"for his theory for critical phenomena in connection
with phase transitions"



Kondo’s explanation for Tmin (1964)
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 Diverges logarithmically for T0 or D.
(T<TK  perturbation expasion no longer holds)
 Experiments show finite R as T0 or D. 
 The log comes from something like:

What is going 
on?

D-D

()


F

 All energy scales contribute! 



“Perturbative” Discretization of CB

 = (E)/D = (E-EF)/D





“Perturbative” Discretization of CB

A7 > A6 > A5 > A4 > A3 > A2 > A1

Want to keep all
contributions

for D?

Not a good 
approach!
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Wilson’s CB Logarithmic Discretization

n=-n (=2)

 = (E-EF)/D



Wilson’s CB Logarithmic Discretization

(=2)

log const.nA   

n=-n
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A3 =     A2 = A1 Now you’re ok!



Kondo problem: s-d Hamiltonian
 Kondo problem: s-wave coupling with spin 

impurity (s-d model):

Metal (non magnetic, s-band)

Conduction band

filled

EF

E

Magnetic impurity (unfilled d-level)

()



The problem: different energy scales!

~0.01 eV

Uncertainty of the calculation:
(E)/E~5%

E~1 eV

~0.1 eV

~0.1 eV

How to calculate these 
splittings accurately?

(E)~0.05 eV

(e.g.: all 2-level Hamiltonians)



Option 1: “Brute force”

Uncertainty of the calculation:
(E)/E~5%

E0~1 eV

E2~0.01 eV

Not too good!

 Directly diagonalize:

(E0)~0.05 eV
(E2)~0.05 eV

Uncertainty of the calculation:
(E2)/E2~500%!!!



Option 2: Do it by steps.

Uncertainty of the calculation:
(E)/E~5%

E1-E0~1 eV

~0.1 eV

~0.1 eV

(E)~0.05 eV

New basis:

is diagonal ! (E1)~0.005 eV

Uncertainty of the calculation:
(E1)/E1~5%

is not diagonal but 
can calculate matrix
elements within 5%. 

the uncertainty
in diagonalizing it is
still 5%!



Option 2: Do it by steps, again.

New basis:

is diagonal!

is not diagonal but 
can calculate matrix
elements within 5%. 

~0.1 eV

~0.1 eV

(E1)~0.005 eV

Uncertainty of the calculation:
(E2)/E2~5%

~0.01 eV

(E2)~0.0005 eV

the uncertainty
in diagonalizing it is
still 5%!



Kondo s-d Hamiltonian

 From continuum k to a discretized band.

 Transform Hs-d into a linear chain form (exact, as long as the 
chain is infinite):
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Logarithmic Discretization.
Steps:

1. Slice the conduction band 
in intervals in a log scale 
(parameter )

2. Continuum spectrum 
approximated by a single 
state

3. Mapping into a tight 
binding chain: sites 
correspond to different 
energy scales.

tn~-n/2



“New” Hamiltonian (Wilson’s RG method)

 Logarithmic CB discretization is the key to avoid 
divergences!

 Map: conduction band  Linear Chain
 Lanczos algorithm.

 Site n  new energy scale:

 D-(n+1)<| k- F |< D-n

 Iterative numerical solution 

J 1
...

2 3

n~-n/2

()



“New” Hamiltonian (Wilson)

 Recurrence relation (Renormalization procedure).

J 1
...

2 3

n~-n/2

()



Intrinsic Difficulty
 You ran into problems when N~5. The basis is too large! 

(grows as 2(2N+1))
 N=0; (just the impurity); 2 states (up and down)
 N=1; 8 states
 N=2; 32 states
 N=5; 2048 states
 (…) N=20; 2.199x1012 states: 

 1 byte per state  20 HDs just to store the basis.
 And we might go up to N=180; 1.88x10109 states. 

 Can we store this basis? 
(Hint: The number of atoms in the universe is ~ 1080)

 Cut-off the basis  lowest ~1500 or so in the next round 
(Even then, you end up having to diagonalize a 4000x4000 
matrix… ).

0





 
...



Renormalization Procedure

J 1 ...
2 3

n~n -n/2

 Iterative numerical 
solution.

 Renormalize by 1/2.

 Keep low-energy states.

...

HN

N

HN+1



Anderson Model

ed+U

ed

εF

D

 ed: energy level 

 U: Coulomb repulsion 

 eF: Fermi energy in the metal

 t: Hybridization

 D: bandwidth

Level broadening:

with

Strong interacting limit:

U





NRG: fixed points

 Fixed point H*: indicates 
scale invariance.

 Renormalization Group 
transformation: (Re-scale 
energy by 1/2).

...

HN

N

HN+1

Fixed points



NRG: fixed points

 Renormalization Group 
transformation: (Re-scale 
energy by 1/2).

Fixed points

 Fixed point H*: indicates 
scale invariance.



Fixed points of the Anderson Model

ed+U

ed

εF

D

Level broadening:

with

Strong interacting limit:

U

Fixed points





Spectral function 
At each NRG step:



Spectral function calculation (Costi)
To get a continuos curve, 
need to broaden deltas.
Best choice: log gaussian



NRG on Anderson model: LDOS

n~-n/21

1+U1
t 1

...
2 3

 Single-particle peaks at d

and d+U.

 Many-body peak at the 
Fermi energy: Kondo 
resonance (width ~TK).

 NRG: good resolution at 
low  (log discretization).

 

d d+ U

~TK



Summary: NRG overview

 NRG method: designed to handle quantum impurity 
problems

 All energy scales treated on the same footing.

 Non-perturbative: can access transitions between 
fixed points in the parameter space

 Calculation of physical properties



History of Kondo Phenomena 

 Observed in the ‘30s

 Explained in the ‘60s

 Numerically Calculated in the ‘70s (NRG)

 Exactly solved in the ‘80s (Bethe-Ansatz)
So, what’s new about it?

Kondo correlations observed in many different set ups:

 Transport in quantum dots, quantum wires, etc

 STM measurements of magnetic structures on metallic surfaces (e.g., 
single atoms, molecules. “Quantum mirage”)

 ...



Kondo Effect in Quantum Dots

Kowenhoven and Glazman Physics World – Jan. 2001.



Coulomb Blockade in Quantum Dots

Coulomb Blockade in Quantum Dots
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Coulomb Blockade in Quantum Dots

Coulomb Blockade in Quantum Dots

Y. Alhassid Rev. Mod. Phys. 72 895 (2000).
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Kondo Effect in Quantum Dots

Vg

Vg

C
o

n
d
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ta
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e 

(G
)

~Ec

Ec=e2/2C

~Ec

TK

•T>TK: Coulomb blockade (low G)
•T<TK: Kondo singlet formation
•Kondo resonance at EF (width TK).
•New conduction channel at EF:
Zero-bias enhancement of G

DOS



D. Goldhaber-Gordon et al
Nature 391 156 (1998)

Even N Odd N



25mk

1K

Kondo effect in Quantum Dots 
D. Goldhaber-Gordon et al. Nature 391 156 (1998)

Also in: Kowenhoven and Glazman Physics 
World, (2001).

Semiconductor Quantum Dots:

Allow for systematic and 
controllable investigations of the 
Kondo effect.

QD in Nodd Coulomb Blockade 
valley: realization of the Kondo 
regime of the Anderson impurity 
problem.



Kondo Effect in CB-QDs

Kondo Temperature Tk : only scaling parameter (~0.5K, depends on Vg)

25mk

1K

Kowenhoven and Glazman Physics World – Jan. 2001.

From: Goldhaber-Gordon et al. Nature 391 156 (1998)

NODD valley: Conductance 
rises for low T (Kondo effect)



That’s it!
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