
Today’s class: Kondo effect in quantum dots.

● Kondo effect and the “Kondo problem”.
● Wilson’s numerical renormalization group.
● Application: Kondo effect in nanostructures.
● Kondo signatures in quantum dot transport.

Prof. Luis Gregório Dias
luisdias@if.usp.br



Kondo effect and Wilson’s Numerical 
Renormalization Group method.



From atoms to metals + atoms…

Many Atoms!

Metal (non magnetic)

Conduction band

filled

EF

E

ATOM

E

Magnetic “impurities”
(e.g., transition atoms,
with unfilled d-levels, 
f-levels (REarths…))

(few)

Is the resulting compound still a metal ?



Kondo effect

 Magnetic impurity in a 
metal.
 30’s - Resisivity

measurements:
minimum in (T); 

Tmin depends on cimp.

 60’s - Correlation between
the existence of a Curie-
Weiss component in the
susceptibility (magnetic
moment) and resistance
minimum . 

µFe/µB

Top: A.M. Clogston et al Phys. Rev. 125 541(1962).
Bottom: M.P. Sarachik et al Phys. Rev. 135 A1041 (1964).
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Kondo effect M.P. Sarachik et al Phys. Rev. 135 A1041 (1964).
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K ~ vF/kBTK

Characteristic energy scale: the 
Kondo temperature TK

Resistivity decreases with 
decreasing T (usual)

Resistivity increases with 
decreasing T (Kondo effect)(T)



Kondo problem: s-d Hamiltonian
 Kondo problem: s-wave coupling with spin 

impurity (s-d model):

Metal (non magnetic, s-band)

Conduction band

filled

EF

E

Magnetic impurity (unfilled d-level)



Kondo’s explanation for Tmin (1964)

 Many-body effect: virtual bound state 
near the Fermi energy.

 AFM coupling (J>0)→ “spin-flip” scattering
 Kondo problem: s-wave coupling with spin 

impurity (s-d model):
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Metal: Free waves

Spin: J>0 AFM
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Kondo’s explanation for Tmin (1964)

 Perturbation theory in J3:
 Kondo calculated the 

conductivity in the linear 
response regime
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 Only one free paramenter: the 
Kondo temperature TK
 Temperature at which the 

perturbative expansion diverges.
01 2~ J

B Kk T De 

J. Kondo, Resistance Minimum in Dilute Magnetic Alloys, 
Prog. Theo. Phys. 37–49 32 (1964).



Kondo Lattice models

 Kondo impurity model suitable for 
diluted impurities in metals.

 Some rare-earth compounds 
(localized 4f or 5f shells) can be 
described as “Kondo lattices”.

 This includes so called “heavy 
fermion” materials (e.g. Cerium 
and Uranium-based compounds 
CeCu2Si2, UBe13).

“Concentrated” case: Kondo Lattice (e.g., some heavy-Fermion materials)



A little bit of Kondo history:

 Early ‘30s : Resistance minimum in some metals 
 Early ‘50s : theoretical work on impurities in metals “Virtual 

Bound States” (Friedel)
 1961: Anderson model for magnetic impurities in metals 
 1964: s-d model and Kondo solution (PT)
 1970: Anderson “Poor’s man scaling”
 1974-75: Wilson’s Numerical Renormalization Group (non 

PT)
 1980 : Andrei and Wiegmann’s exact solution



A little bit of Kondo history:

 Early ‘30s : Resistance minimum in some metals
 Early ‘50s : theoretical work on impurities in metals “Virtual 

Bound States” (Friedel)
 1961: Anderson model for magnetic impurities in metals 
 1964: s-d model and Kondo solution (PT)
 1970: Anderson “Poor’s man scaling”
 1974-75: Wilson’s Numerical Renormalization Group (non 

PT)
 1980 : Andrei and Wiegmann’s exact solution

Kenneth G. Wilson – Physics Nobel Prize in 1982
"for his theory for critical phenomena in connection
with phase transitions"



Kondo’s explanation for Tmin (1964)
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 Diverges logarithmically for T0 or D.
(T<TK  perturbation expasion no longer holds)
 Experiments show finite R as T0 or D. 
 The log comes from something like:

What is going 
on?

D-D

()


F

 All energy scales contribute! 



“Perturbative” Discretization of CB

 = (E)/D = (E-EF)/D





“Perturbative” Discretization of CB

A7 > A6 > A5 > A4 > A3 > A2 > A1

Want to keep all
contributions

for D?

Not a good 
approach!
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Wilson’s CB Logarithmic Discretization

n=-n (=2)

 = (E-EF)/D



Wilson’s CB Logarithmic Discretization

(=2)

log const.nA   
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A3 =     A2 = A1 Now you’re ok!



Kondo problem: s-d Hamiltonian
 Kondo problem: s-wave coupling with spin 

impurity (s-d model):

Metal (non magnetic, s-band)

Conduction band

filled

EF

E

Magnetic impurity (unfilled d-level)
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The problem: different energy scales!

~0.01 eV

Uncertainty of the calculation:
(E)/E~5%

E~1 eV

~0.1 eV

~0.1 eV

How to calculate these 
splittings accurately?

(E)~0.05 eV

(e.g.: all 2-level Hamiltonians)



Option 1: “Brute force”

Uncertainty of the calculation:
(E)/E~5%

E0~1 eV

E2~0.01 eV

Not too good!

 Directly diagonalize:

(E0)~0.05 eV
(E2)~0.05 eV

Uncertainty of the calculation:
(E2)/E2~500%!!!



Option 2: Do it by steps.

Uncertainty of the calculation:
(E)/E~5%

E1-E0~1 eV

~0.1 eV

~0.1 eV

(E)~0.05 eV

New basis:

is diagonal ! (E1)~0.005 eV

Uncertainty of the calculation:
(E1)/E1~5%

is not diagonal but 
can calculate matrix
elements within 5%. 

the uncertainty
in diagonalizing it is
still 5%!



Option 2: Do it by steps, again.

New basis:

is diagonal!

is not diagonal but 
can calculate matrix
elements within 5%. 

~0.1 eV

~0.1 eV

(E1)~0.005 eV

Uncertainty of the calculation:
(E2)/E2~5%

~0.01 eV

(E2)~0.0005 eV

the uncertainty
in diagonalizing it is
still 5%!



Kondo s-d Hamiltonian

 From continuum k to a discretized band.

 Transform Hs-d into a linear chain form (exact, as long as the 
chain is infinite):

()
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Logarithmic Discretization.
Steps:

1. Slice the conduction band 
in intervals in a log scale 
(parameter )

2. Continuum spectrum 
approximated by a single 
state

3. Mapping into a tight 
binding chain: sites 
correspond to different 
energy scales.

tn~-n/2



“New” Hamiltonian (Wilson’s RG method)

 Logarithmic CB discretization is the key to avoid 
divergences!

 Map: conduction band  Linear Chain
 Lanczos algorithm.

 Site n  new energy scale:

 D-(n+1)<| k- F |< D-n

 Iterative numerical solution 

J 1
...

2 3

n~-n/2

()



“New” Hamiltonian (Wilson)

 Recurrence relation (Renormalization procedure).

J 1
...

2 3

n~-n/2

()



Intrinsic Difficulty
 You ran into problems when N~5. The basis is too large! 

(grows as 2(2N+1))
 N=0; (just the impurity); 2 states (up and down)
 N=1; 8 states
 N=2; 32 states
 N=5; 2048 states
 (…) N=20; 2.199x1012 states: 

 1 byte per state  20 HDs just to store the basis.
 And we might go up to N=180; 1.88x10109 states. 

 Can we store this basis? 
(Hint: The number of atoms in the universe is ~ 1080)

 Cut-off the basis  lowest ~1500 or so in the next round 
(Even then, you end up having to diagonalize a 4000x4000 
matrix… ).

0





 
...



Renormalization Procedure

J 1 ...
2 3

n~n -n/2

 Iterative numerical 
solution.

 Renormalize by 1/2.

 Keep low-energy states.

...

HN

N

HN+1



Anderson Model

ed+U

ed

εF

D

 ed: energy level 

 U: Coulomb repulsion 

 eF: Fermi energy in the metal

 t: Hybridization

 D: bandwidth

Level broadening:

with

Strong interacting limit:

U





NRG: fixed points

 Fixed point H*: indicates 
scale invariance.

 Renormalization Group 
transformation: (Re-scale 
energy by 1/2).

...

HN

N

HN+1

Fixed points



NRG: fixed points

 Renormalization Group 
transformation: (Re-scale 
energy by 1/2).

Fixed points

 Fixed point H*: indicates 
scale invariance.



Fixed points of the Anderson Model

ed+U

ed

εF

D

Level broadening:

with

Strong interacting limit:

U

Fixed points





Spectral function 
At each NRG step:



Spectral function calculation (Costi)
To get a continuos curve, 
need to broaden deltas.
Best choice: log gaussian



NRG on Anderson model: LDOS

n~-n/21

1+U1
t 1

...
2 3

 Single-particle peaks at d

and d+U.

 Many-body peak at the 
Fermi energy: Kondo 
resonance (width ~TK).

 NRG: good resolution at 
low  (log discretization).

 

d d+ U

~TK



Summary: NRG overview

 NRG method: designed to handle quantum impurity 
problems

 All energy scales treated on the same footing.

 Non-perturbative: can access transitions between 
fixed points in the parameter space

 Calculation of physical properties



History of Kondo Phenomena 

 Observed in the ‘30s

 Explained in the ‘60s

 Numerically Calculated in the ‘70s (NRG)

 Exactly solved in the ‘80s (Bethe-Ansatz)
So, what’s new about it?

Kondo correlations observed in many different set ups:

 Transport in quantum dots, quantum wires, etc

 STM measurements of magnetic structures on metallic surfaces (e.g., 
single atoms, molecules. “Quantum mirage”)

 ...



Kondo Effect in Quantum Dots

Kowenhoven and Glazman Physics World – Jan. 2001.



Coulomb Blockade in Quantum Dots

Coulomb Blockade in Quantum Dots
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Coulomb Blockade in Quantum Dots

Coulomb Blockade in Quantum Dots

Y. Alhassid Rev. Mod. Phys. 72 895 (2000).
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Kondo Effect in Quantum Dots
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•T>TK: Coulomb blockade (low G)
•T<TK: Kondo singlet formation
•Kondo resonance at EF (width TK).
•New conduction channel at EF:
Zero-bias enhancement of G

DOS



D. Goldhaber-Gordon et al
Nature 391 156 (1998)

Even N Odd N



25mk

1K

Kondo effect in Quantum Dots 
D. Goldhaber-Gordon et al. Nature 391 156 (1998)

Also in: Kowenhoven and Glazman Physics 
World, (2001).

Semiconductor Quantum Dots:

Allow for systematic and 
controllable investigations of the 
Kondo effect.

QD in Nodd Coulomb Blockade 
valley: realization of the Kondo 
regime of the Anderson impurity 
problem.



Kondo Effect in CB-QDs

Kondo Temperature Tk : only scaling parameter (~0.5K, depends on Vg)

25mk

1K

Kowenhoven and Glazman Physics World – Jan. 2001.

From: Goldhaber-Gordon et al. Nature 391 156 (1998)

NODD valley: Conductance 
rises for low T (Kondo effect)



That’s it!
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