
File: DISTL2 155501 . By:CV . Date:03:06:98 . Time:11:52 LOP8M. V8.B. Page 01:01
Codes: 6353 Signs: 4177 . Length: 60 pic 11 pts, 257 mm

Journal of Computer and System Sciences�SS1555

Journal of Computer and System Sciences 56, 133�152 (1998)

On the Learnability and Usage of Acyclic Probabilistic
Finite Automata

Dana Ron

Laboratory of Computer Science, MIT, Cambridge, Massachusetts 02139

E-mail: danar�theory.lcs.mit.edu

Yoram Singer

AT6T Labs, 600 Mountian Avenue, Murray Hill, New Jersey 07974

E-mail: singer�research.att.com

and

Naftali Tishby

Institute of Computer Science and Center for Neural Computation, Hebrew University, Jerusalem 91904, Israel
E-mail: tishby�cs.huji.ac.il

Received November 13, 1995; revised March 3, 1997

We propose and analyze a distribution learning algorithm for a sub-
class of acyclic probalistic finite automata (APFA). This subclass is
characterized by a certain distinguishability property of the automata's
states. Though hardness results are known for learning distributions
generated by general APFAs, we prove that our algorithm can
efficiently learn distributions generated by the subclass of APFAs we
consider. In particular, we show that the KL-divergence between the
distribution generated by the target source and the distribution
generated by our hypothesis can be made arbitrarily small with high
confidence in polynomial time.

We present two applications of our algorithm. In the first, we show
how to model cursively written letters. The resulting models are part of
a complete cursive handwriting recognition system. In the second
application we demonstrate how APFAs can be used to build multiple-
pronunciation models for spoken words. We evaluate the APFA-based
pronunciation models on labeled speech data. The good performance
(in terms of the log-likelihood obtained on test data) achieved by the
APFAs and the little time needed for learning suggests that the learning
algorithm of APFAs might be a powerful alternative to commonly used
probabilistic models.] 1998 Academic Press

1. INTRODUCTION

An important class of problems that arise in machine
learning applications is that of modeling classes of natural
sequences with their possibly complex variations. Such
sequence models are essential, for instance, in handwriting
and speech recognition, natural language processing, and
biochemical sequence analysis. Our interest here is specifi-
cally in modeling short sequences that correspond to objects
such as single handwritten letters, spoken words, or short
protein sequences.

In this paper we consider using acyclic probabilistic finite
automata (APFAs) for modeling distributions on short
sequences such as those mentioned above. Probabilistic
finite automata1 (PFA), as referred to in this work, are finite
state machines that generate strings in the following
probabilistic manner: Starting from the start state, at each
step an edge going out of the current state is chosen accord-
ing to the probability assigned to that edge, and the symbol
labeling the edge is emitted (where for each state there is
at most one outgoing edge labeled by each symbol). We
consider in particular PFAs whose underlying graph is
acyclic. We present and analyze an efficient and easily
implementable learning algorithm for a subclass of APFAs
that have a certain distinguishability property which is
defined subsequently. We describe two applications of our
algorithm. In the first application we construct models for
cursive handwritten letters, and in the second we build
pronunciation models for spoken words. These application
use in part an on-line version of our algorithm which is also
given in this paper.

The algorithm described in this paper is an efficient
algorithm for learning distributions on strings generated by
all APFAs M which have the following property. For every
pair of states in M, the distance in the L� norm between
the distributions generated starting from these two states
is non-negligible, namely, this distance is an inverse polyno-
mial in the size of M. We show that for every such target

Article No. SS971555

133 0022-0000�98 �25.00
Copyright � 1998 by Academic Press

All rights of reproduction in any form reserved.

1 These automata should not be confused with probabilistic acceptors of
strings, which are often also called probabilistic automata.

File: DISTL2 155502 . By:CV . Date:03:06:98 . Time:11:52 LOP8M. V8.B. Page 01:01
Codes: 6639 Signs: 5899 . Length: 56 pic 0 pts, 236 mm

APFA, given a large enough sample (though of size polyno-
mial in the number of states of the target APFA and other
relevant parameters), our learning algorithm constructs a
hypothesis APFA such that with high probability, the
Kullback�Liebler (KL) divergence between the hypothesis
APFA and the target APFA is small. The learning
algorithm is efficient in the sense that its running time is
polynomial in the parameters of the problem.

Our result should be contrasted with the intractability
result for learning PFAs proved by Kearns et al. [8]. They
show that PFAs are not efficiently learnable under the
assumption that there is no efficient algorithm for learning
parity functions in the presence of noise in the PAC model.2

Furthermore, the subclass of PFAs which they show are
hard to learn are (width two) APFAs in which the distance
in the L1 norm (and hence also the KL-divergence) between
the distributions generated starting from every pair of states
is large.

One of the key techniques applied in this work is that
of using some form of signatures of states in order to
distinguish between the states of the target automaton.
This technique was presented in the pioneering work of
Trakhtenbrot and Brazdin' [20] in the context of learning
deterministic finite automata (DFAs). The same idea was
later applied by Freund et al. [6] in their work on learning
typical DFAs.3 In the same work they proposed to apply the
notion of statistical signatures to learning typical PFAs.

The outline of our learning algorithm is roughly the
following. In the course of the algorithm we construct a
sequence of directed edge-labeled (leveled) acyclic graphs.
The first graph in this sequence, named the sample tree, is
constructed based on the sample generated by the target
APFA, while the last graph in the sequence is the underlying
graph of our hypothesis APFA. Each graph in this sequence
is transformed into the next graph by a folding operation in
which a pair of nodes that have passed a certain similarity
test are merged into a single node (and so are the pairs of
their respective successors). With each node we associate a
multiset of prefixes of sample strings. The similarity test
compares the statistics of multisets of suffixes of sample
strings which correspond to these multisets of prefixes. Put
another way, we view suffixes of the sample strings as
``originating'' from particular nodes and associate the
statistics of the suffixes with these nodes. If two nodes have
similar statistics, then they are assumed to correspond to
the same state in the target APFA. In the initial graph, the
sample tree, such statistics are reliable only for nodes which
are very close to the root of the tree, and hence have

relatively many sample strings passing through them.
However, as a consequence of the folding operation, nodes
which are further away from the root are merged, and so are
their respective multisets of originating strings. Thus the
folding operation in levels closer to the root enhances the
reliability of the statistics that correspond to nodes which
are further away from the root. As a result, with high prob-
ability, the algorithm only folds pairs of nodes that in fact
correspond to the same state, and the nodes which are left
unmerged can be shown to contribute little to the error of
the hypothesis.

In a previous work [14] we introduced an algorithm for
learning distributions (on long strings) generated by
ergodic Markovian sources that can be characterized by a
different subclass of PFAs which we refer to as variable
memory PFAs. Our two learning algorithms complement
each other. Whereas the variable memory PFAs capture the
long-range, stationary, statistical properties of the source,
the APFAs capture the short sequence statistics. Together,
these algorithm constitute a complete language modeling
scheme, which we applied to cursive handwriting recogni-
tion [16].

1.1. Other Related Work

The most common approaches to the modeling and
recognition of sequences such as those studied in this paper
are string matching algorithms (e.g., dynamic time warping
[15]) and hidden Markov models (in particular left-to-
right HMMs) [11, 12]. The string matching approach
usually assumes the existence of a sequence prototype
(reference template) together with a local noise model, from
which the probabilities of deletions, insertions, and sub-
stitutions can be deduced. The string matching models tend
to be too weak for the type of applications we are interested
in since they cannot easily capture statistical dependencies
which are not local.

HMMs (which PFAs are a special case of) are popular in
speech recognition and have better ability than the string-
matching-based techniques to capture context-dependent
variations. The commonly used training procedure for
HMMs which is based on the forward�backward algorithm
[2] is guaranteed to converge only to a local maximum of
the likelihood function. Furthermore, there are theoretical
results indicating that the problem of learning distributions
generated by HMMs is hard [1, 8]. In addition, the success-
ful applications of the HMM approach occur mostly in
cases where its full power is not utilized, and the hypothesis
constructed is essentially a PFA (or even an APFA).
Another drawback of HMMs is that the current HMM
training algorithms are neither on-line nor adaptive in the
model's topology.

A technique of merging states which is similar to the one
used in this paper was also applied by Carrasco and Oncina

134 RON, SINGER, AND TISHBY

2 The problem of learning parity with noise is closely related to the long
standing problem of decoding random linear codes. Additional evidence to
the intractability of this problem is provided in [3, 9].

3 They define typical DFAs to be DFAs in which the underlying graph
is arbitrary, but the accept�reject labels on the states are chosen randomly.

File: DISTL2 155503 . By:CV . Date:03:06:98 . Time:11:52 LOP8M. V8.B. Page 01:01
Codes: 5830 Signs: 4363 . Length: 56 pic 0 pts, 236 mm

[4], and by Stolcke and Omohundro [18]. Carrasco and
Oncina give an algorithm which identifies distributions
generated by PFAs in the limit of infinite examples. Stolcke
and Omohundro describe a learning algorithm for HMMs
which merges states based on a Bayesian approach and
apply their algorithm to build pronunciation models for
spoken words. Examples of alternative approaches for
modeling multiple pronunciation, such as decision trees,
can be found in [5, 13]. For general reviews on cursive
handwriting recognition see [10, 19].

1.2. Organization of the Paper

The paper is organized as follows. In Sections 2 and 3 we
give several definitions related to APFAs and define our
learning model. In Section 4 we present our learning algo-
rithm. In Section 5 we state and prove our main theorem
concerning the correctness of the learning algorithm. In
Section 6 we give an on-line version of our algorithm, and
in Section 7 we describe two applications of the batch and
on-line algorithms. We conclude with several suggestions
for future research in Section 8.

2. PRELIMINARIES

A probabilistic finite automaton4 (PFA) is an automaton
which has a designated starting state and a designated final
state. The edges going out of each state are labeled by sym-
bols drawn from an alphabet 7, where for every state, each
outgoing edge is labeled by a different symbol. The states
of the PFA are unlabeled. With each edge we associate a
probability, where for every state, the probabilities of all
outgoing edges sum up to one. All edges pointing at the final
state (and those edges only) are labeled by a special final
symbol `. A PFA can be thought of as mechanism for
generating strings in 7*` in the following straightforward
manner. Starting from the starting state and until the final
state is reached, at each step an edge going out of the current
state is chosen according to the probabilities associated with
the edges. The chosen edge is then traversed to the next
state, and the symbol labeling the edge is emitted.

More formally, a PFA M is a 7-tuple (Q, q0 , qf , 7, `, {, #)
where

v Q is a finite set of states;

v q0 # Q is the starting state;

v qf � Q is the final state;

v 7 is a finite alphabet;

v ` � 7 is the final symbol;

v {: Q_[7 _ [`]] � Q _ [qf] is the transition function;

v #: Q_[7 _ [`]] � [0, 1] is the next symbol probabil-
ity function.

The function # satisfies the following requirement: for
every q # Q, �_ # 7 _ [`] #(q, _)=1. We allow the transition
function { to be undefined only on states q and symbols _,
for which #(q, _)=0. We require that for every q # Q such
that #(q, `)>0, {(q, `)=qf . We also require that qf can be
reached (i.e., with non-zero probability) from every state q
which can be reached from the starting state, q0 . { can be
extended to be defined on Q_7* (similarly on Q_7*`)
in the following recursive manner: {(q, s1s2 } } } sl)=
{({(q, s1 } } } sl&1), sl).

A PFA M can be thought of as a mechanism for generating
strings of finite length ending with the symbol `, in the
following sequential manner. Starting from q0 , until qf is
reached, if qi is the current state, then the next symbol is
chosen (probabilistically) according to #(qi , }). If _ # 7 _
[`] is the symbol generated, then the next state, qi+1 , is
{(qi , _). Thus, the probability M generates a string s=
s1 } } } sl&1 sl , where sl=`, denoted by PM(s) is

PM(s) =
def

`
l&1

i=0

#(qi , si+1). (1)

This definition implies that PM(}) is in fact a probability
distribution over strings ending with the symbol `, i.e.,

:
s # 7*`

PM(s)=1.

For a string s=s1 } } } sl where sl {` we choose to use the
same notation PM(s) to denote the probability that s is a
prefix of some generated string s$=ss"`. Namely, PM(s)=
>l&1

i=0 #(qi , s i+1).
Given a state q in Q, and a string s=s1 } } } sl (that does

not necessarily end with `), let PM
q (s) denote the probability

that s is (a prefix of a string) generated starting from q.
Namely,

PM
q (s) =

def
`

l&1

i=0

#({(q, s1 , ..., si), s i+1),

where the convention is that for the empty string *,
{(q, *)=q. The following definition is central to this work.

Definition 2.1. For +>0, we say that two states, q1

and q2 , in Q are +-distinguishable if there exists a string s for
which |PM

q1
(s)&PM

q2
(s)|�+. In other words, the distance in

the L� norm between the distributions PM
q1

and PM
q2

is at

135ACYCLIC PROBABILISTIC FINITE AUTOMATA

4 The definition we use is slightly non-standard in the sense that we
assume a final symbol and a final state.

File: DISTL2 155504 . By:CV . Date:03:06:98 . Time:11:52 LOP8M. V8.B. Page 01:01
Codes: 6500 Signs: 5093 . Length: 56 pic 0 pts, 236 mm

least +. We say that a PFA M is +-distinguishable if every
pair of states in M is +-distinguishable.5

We restrict our attention to a subclass of PFAs which
have the following property: the underlying graph of every
PFA in this subclass is acyclic. The depth of an acyclic PFA
is defined to be the length of the longest path from q0 to qf .
In particular, we consider leveled APFAs. In such an APFA,
each state belongs to a single level d, where the starting
state, q0 , is the only state in level 0, and the final state, qf ,
is the only state in level D, where D is the depth of the
APFA. All transitions from a state in level d are to states
in level d+1, except for transitions labeled by the final
symbol, `, which can go from any state to the final state. We
denote the set of states belonging to level d, by Qd . In
the following lemma we show that every APFA can be
transformed to a leveled APFA that is not much larger.

Lemma 2.1. For every APFA M having n states and
depth D, there exists an equivalent APFA, M� , that is leveled
and has at most n(D&1) states.

Proof. We define M� =(Q� , 7, `, {~ , #~ , q~ 0 , q~ f) as follows.
For each state q in Q&[qf], we create at most D&1 copies
of q, each belonging to a different level in M� . We create a
copy of q in level d if there exists some path of length d from
q0 to q in M. If there was an edge from q to q${qf in M, then
for each level d we put an edge from the copy of q in level
d (if such a copy exists) to the copy of q$ in level d+1. If
q$=qf then we have a single copy q~ f of qf in level D of M� ,
and an edge labeled by ` from every copy of q to q~ f .

More formally, for every state q # Q&[qf], and for each
level d such that there exists a string s of length d for which
{(q0 , s)=q, we have a state q~ d # Q� d . For q=q0 , (q~ 0)0 is
simply the starting state of M� , q~ 0 , and qf has a single
copy, q~ f # Q� D (which is the final state of M�). For every level
d and for every _ # 7 _ [`], #~ (q~ d , _)=#(q, _). For _ # 7,
{~ (q~ d , _)=q$� d+1 where q$={(q, _). Finally, if {(q, `) is
defined then {~ (q~ d , `)=q~ f . Every state is copied at most
D&1 times; therefore the total number of states in M� is at
most n(D&1). K

3. THE LEARNING MODEL

In this section we describe our learning model which is
similar to the one introduced by Kearns et al. [8]. We start
by defining an =-good hypothesis APFA with respect to a
given target APFA.

Definition 3.1. Let M be the target APFA and let MM@

be a hypothesis APFA. Let PM and PM@ be the two probability

distributions they generate, respectively. We say that M@ is
an =-good hypothesis with respect to M, for =�0, if

DKL[PM & PM@]�=,

where DKL[PM & PM@] is the Kullback�Liebler divergence
(also known as the cross-entropy) between the distributions
and is defined as

DKL[PM & PM@] =
def

:
s # 7*`

PM(s) log
PM(s)

PM@ (s)
.

Our learning algorithm for APFAs is given a confidence
parameter $>0 and an accuracy parameter =>0. We
assume the algorithm is given an upper bound n on the
number of states in M and a distinguishability parameter
+>0, indicating that the target automaton is +-distin-
guishable. The algorithm has access to strings generated by
the target APFA, and we ask that it output with probability
at least 1&$ an =-good hypothesis with respect to the target
APFA. We also require that the learning algorithm be
efficient, i.e., that it run in time polynomial in 1�=, log 1�$,
|7|, n, and 1�+.

4. THE LEARNING ALGORITHM

In this section we describe our algorithm for learning
APFAs. An on-line version of this algorithm is described in
Section 6. We start with a brief informal description of the
algorithm and the data structure it maintains.

4.1. An Informal Description of the Algorithm

Given a set, or more precisely a multiset, of sample
strings, the algorithm starts by building a sample tree. Each
path from the root of the sample tree to a leaf corresponds
to a string in the sample, where the edges of the sample tree
are labeled by the corresponding symbols in the string. Each
internal node thus corresponds to a prefix of a string from
the sample. With each edge the algorithm associates a count
which is the number of strings in the sample that pass
through this edge. If we wanted to predict accurately the
probability that the APFA generates short prefixes of
strings, then we could do so using the counts on the edges.
For example, a good approximation of the probability that
M generates a string starting with a certain symbol, _, is
the count associated with the edge going out of the root
node, and labeled by _, divided by the total sample size.
The accuracy of such an approximation can be proven
using Chernoff bounds. However, we cannot use the counts
in the sample tree to reliably predict the probability that
M generates longer strings. Such strings have very few
appearances in the sample or may not even appear in it at
all (clearly, if the sample is of size polynomial in M, and the

136 RON, SINGER, AND TISHBY

5 As noted later, in the analysis of our algorithm in Section 5, we can use
a slightly weaker version of the above definition, in which we require that
only pairs of states with non-negligible weight be distinguishable.

File: DISTL2 155505 . By:CV . Date:03:06:98 . Time:11:52 LOP8M. V8.B. Page 01:01
Codes: 6501 Signs: 5692 . Length: 56 pic 0 pts, 236 mm

support of PM is considerably larger, then most long strings
do not appear in the sample). In other words, the sample
tree cannot serve as a good hypothesis for M. Therefore, we
need to use the information in the sample tree in a slightly
more sophisticated way.

Given a target APFA M, each node v in the sample tree
can be mapped to a single state in M. This state is simply the
state reached when following the path defined by the string
corresponding to v (in the sample tree), starting from q0 .
This mapping is clearly a many-to-one mapping. Assume
the algorithm was given this mapping. Then, for each state
in M it could merge all nodes which are mapped to that
state to a single node. For every symbol _ the algorithm
would also merge all edges going out of these nodes and
labeled by _ into a single edge, adding up the counts
associated with the merged edges. Using the resulting
acyclic graph and the counts associated with its edges, the
algorithm could define a hypothesis APFA which is a good
hypothesis with high probability (for a large enough sample
size). Since such a mapping is not given to the algorithm it
tries to infer this mapping for as many nodes as possible,
using the fact that M is +-distinguishable.

The learning algorithm has the following structure. Start-
ing from the first level in the sample tree, the algorithm tests
whether pairs of nodes which correspond to a large enough
number of prefixes of sample strings seem to map to the
same state. It does this by comparing the counts on the
edges in the two subtrees rooted at these nodes. These
counts provide us with approximations to the probabilities
that strings are generated starting from the states these
nodes map to. The idea is that if two nodes correspond to
different states then, since the states are +-distinguishable,
there should be evidence to this difference in the sample. If
the algorithm decides that two nodes are mapped to the
same state then it merges them and the corresponding nodes
in their subtrees. Doing so the algorithm enhances the
reliability of the test for pairs of nodes in deeper levels which
had low counts (or even zero counts) associated with them
prior to any mergings. In our analysis we show that with
high probability, in this process, the algorithm does not
merge pairs of nodes that are mapped to different states,
while it does merge most pairs of nodes that do correspond
to the same state, resulting in a reliably accurate hypothesis.

4.2. A Formal Description of the Algorithm

We start by describing the data structure used by the
algorithm. Let S be a given multiset of sample strings
generated by the target APFA M. In the course of the
algorithm, a series of directed leveled acyclic graphs
G0 , G1 , ..., GN+1 are constructed, where the final graph,
GN+1 , is the underlying graph of the hypothesis automaton.
The initial graph G0 is the sample tree, TS . The edges of TS

are labeled by single symbols, and each node in TS is

associated with a single string which is a prefix of a string
in S. The root of TS , v0 , corresponds to the empty string,
and every other node, v, is associated with the prefix corre-
sponding to the labeled path from v0 to v.

In general, in each of the graphs, G0 , ..., GN+1 , there is
one node, v0 , which we refer to as the starting node. Every
directed edge in a graph Gi is labeled by a symbol
_ # 7 _ [`]. There may be more than one directed edge
between a pair of nodes, but for every node, there is at most
one outgoing edge labeled by each symbol. If there is an
edge labeled by _ connecting a node v to a node u, then we
denote it by v w�_ u. If there is a labeled (directed) path from
v to u corresponding to a string s, then we denote it similarly
by v O

s u. Each node v is virtually associated with a multiset
of strings S(v)�S. These are the strings in the sample which
correspond to the (directed) paths in the graph that pass
through v when starting from v0 , i.e.,

S(v) =
def [s: _s$, s" s.t. s=s$s" # S and v0 O

s$ v]multi .

We define an additional, related, multiset, Sgen(v), that
includes the substrings in the sample which can be seen as
generated from v. Namely,

Sgen(v) =
def [s": _s$ s.t. s$s" # S and v0 O

s$ v]multi .

By this definition, each string s" in Sgen(v) is a suffix of some
string s=s$s" in S(v), where its corresponding prefix, s$, is
such that v0 O

s$ v.
For each node v, and each symbol _, we associate a count,

mv(_), with v$s outgoing edge labeled by _. If v does not
have any outgoing edges labeled by _, then we define mv(_)
to be 0. We denote �_ mv(_) by mv . Note that mv(_) equals
the number of strings in Sgen(v) whose first symbol is _,
and it always holds by construction that mv=|S(v)|
(=|Sgen(v)|).

We now describe our learning algorithm. For a more
detailed description see the pseudo-code that follows. We
would like to stress that the multisets of strings, S(v),
are maintained only virtually for the sake of clarity of our
algorithm; thus the data structure used along the run of the
algorithm is only the current graph, Gi , together with the
counts on the edges. For i=0, ..., N&1, we associate with
Gi a level, d(i), where d(0)=1, and d(i)�d(i&1). This is
the level in Gi the algorithm operates on in the transforma-
tion from Gi to Gi+1 . We transform Gi into Gi+1 by what
we call a folding operation. In this operation the algorithm
chooses a pair of nodes u and v, both belonging to d(i),
which have the following properties: for a predefined
threshold m0 both mu�m0 and mv�m0 , and the nodes are
similar in a sense defined below. The algorithm then merges
u and v, and all pairs of nodes they reach, respectively. If
u and v are merged into a new node, w, then for every _,

137ACYCLIC PROBABILISTIC FINITE AUTOMATA

File: 571J 155506 . By:XX . Date:29:05:98 . Time:08:11 LOP8M. V8.B. Page 01:01
Codes: 3458 Signs: 2470 . Length: 56 pic 0 pts, 236 mm

mw(_)=mu(_)+mv(_). The virtual multiset of strings corre-
sponding to w, S(w), is simply the union of the multisets
S(u) with S(v). An illustration of the folding operation is
depicted in Fig. 1. Note that since the algorithm proceeds
level by level, for every Gi , the nodes at level d(i) are all
roots of |7|-ary trees, while this is not the case in general in
levels d<d(i) where the folding operation altered the
original tree structure.

Let GN be the last graph in this series for which there
does not exist such a pair of similar nodes. The algorithm
transforms GN into GN+1 , by performing the following
operations. First, it merges all leaves in GN into a single
node vf . Next, for each level d in GN , it merges all nodes u
in level d for which mu<m0 . Let this node be denoted by
small(d). Finally, for each node u, and for each symbol _
such that mu(_)=0, if _=`, then it adds an edge labeled by
` from u to vf , and if _ # 7, then it adds an edge labeled by
_ from u to small(d+1) where d is the level u belongs to.

Finally, the algorithm defines the hypothesis APFA
M@ =(Q� , q̂0 , q̂f , 7, `, {̂, #̂) based on GN+1. We let GN+1 be
the underlying graph of M@ , where v0 corresponds to q̂0 , and
vf corresponds to q̂f . For every state q̂ in level d that
corresponds to a node u, and for every symbol _ # 7 _ [`],
the algorithm defines

#̂(q̂, _)=(mu(_)�mu)(1&(|7|+1) #min)+#min , (2)

where #min is set in the analysis of the algorithm.
It remains to define the notion of similar nodes used in the

algorithm. Roughly speaking, two nodes are considered
similar if the statistics, according to the sample of the strings
which can be seen as generated from these nodes, are
similar. Formally, for a given node v and a string s, let
mv(s) =

def
|[t: t # Sgen(v), t=st$]multi | be the number of

FIG. 1. An illustration of the folding operation. The graph on the right
is constructed from the graph on the left by merging nodes 1 and 2. The dif-
ferent edges represent different output symbols: gray is 0, black is 1, and
bold black is `.

strings viewed as generated from v and contain s as a prefix.
We say that a given pair of nodes u and v are similar if for
every string s,

|mv(s)�mv&mu(s)�mu |<+�2.

As noted before, the algorithm does not maintain the multi-
sets of strings Sgen(v). However, the values mv(s)�mv and
mu(s)�mu can be computed efficiently using the counts on
the edges of the graphs, as described in the function Similar
presented at the end of this section.

138 RON, SINGER, AND TISHBY

File: 571J 155507 . By:XX . Date:29:05:98 . Time:08:12 LOP8M. V8.B. Page 01:01
Codes: 4136 Signs: 3260 . Length: 56 pic 0 pts, 236 mm

For the sake of simplicity of the pseudo-code that follows,
we associate with each node in a graph Gi , a number in
[1, ..., |Gi |]. The algorithm proceeds level by level. At each
level, it searches for pairs of nodes, belonging to that same
level, which can be folded. It does so by calling the function
Similar on every pair of nodes j and j $, whose counts, mj and
mj $, are above the threshold m0 . The function Similar returns
similar if and only if there is no string s in Sgen(j) or Sgen(j $),
such that |mj (s)�mj&mj $(s)�mj |�+�2. If the function returns
similar, then the algorithm merges j and j $ using the routine

Fold. Each call to Fold creates a new (smaller) graph. When
level D is reached, the last graph, GN , is transformed into
GN+1 as described in the routine AddSlack. The final graph,
GN+1 is then transformed into an APFA while smoothing the
transition probabilities (Procedure GraphToPFA).

The function Similar is implemented as a recursive func-
tion. It receives four parameters, u, v, pu , and pv , where u
and v are two nodes, and 0�pu , pv�1. At the top level
of the recursion, Similar is always called by Learn-Acyclic-
PFA for some pair of nodes j, j $ which the algorithm is
interested in comparing, where pj and pj $ are both set to
one. In deeper levels of the recursion, pu and pv are the
probabilities of reaching u and v starting from j and j $,
respectively. If for some u and v, which correspond to
equivalent paths in the two respective subtrees of j and j $, pu

and pv are found to be very different, the function returns
non-similar for u and v. Otherwise, the function is called
recursively for each pair of respective children of u and v. If
some child is missing, then the node is set to be undefined
(where its corresponding probability, by definition, is 0).
Finally, if all respective node pairs are found to be similar,
then u and v are declared to be similar.

5. ANALYSIS OF THE LEARNING ALGORITHM

In this section we state and prove our main theorem
regarding the correctness and efficiency of the learning
algorithm Learn-Acyclic-PFA, described in Section 4.

Theorem 1. For every given distinguishability parameter
+>0, for every +-distinguishable target APFA M, and for
every given confidence parameter $>0, and accuracy
parameter =>0, Algorithm Learn-Acyclic-PFA outputs a
hypothesis APFA, M@ , such that with probability at least
1&$, M@ is an =-good hypothesis with respect to M. The run-
ning time of the algorithm is polynomial in 1�=, log 1�$, 1�+,
n, D, and |7|.

We would like to note that for a given accuracy
parameter =, we may slightly weaken the requirement that
M be +-distinguishable. Let us say that a state q in M is non-
negligible if the probability at reaching q starting from q0 is
greater than some = (which is a function of =, +, and n). Then
it suffices to require that every pair at non-negligible states
be +-distinguishable. For the sake of simplicity, we give our
analysis under the slightly stronger assumption.

Based on Lemma 2.1, we may assume without loss of
generality that M is a leveled APFA with at most n state in
each of its D levels. We add the following notation.

v For a state q # Qd ,

�� W(q) denotes the set of all strings in 7d which reach
q; PM(q) =

def �s # W(q) PM(s).

139ACYCLIC PROBABILISTIC FINITE AUTOMATA

File: DISTL2 155508 . By:CV . Date:03:06:98 . Time:11:52 LOP8M. V8.B. Page 01:01
Codes: 6595 Signs: 5662 . Length: 56 pic 0 pts, 236 mm

�� mq denotes the number of strings in the sample
(including repetitions) which pass through q, and for a string
s, mq(s) denotes the number of strings in the sample which
pass through q and continue with s. More formally,

mq(s)=|[t: t # S, t=t1 st2 , where {(q0 , t1)=q]multi |.

v For a state q̂ # Q� d , W(q̂), mq̂ , mq̂(s), and PM@ (q̂) are
defined similarly. For a node v in a graph Gi constructed by
the learning algorithm, W(v) is defined analogously. (Note
that mv and mv(s) were already defined in Section 4.)

v For a state q # Qd and a node v in G i , we say that v
corresponds to q, if W(v)�W(q).

5.1. Motivating Discussion

In order to prove Theorem 1, we first need to define the
notion of a good sample with respect to a given target
(leveled) APFA, M. We prove that with high probability a
sample generated by M is good. We then show that if a
sample is good then our algorithm constructs a hypoth-
esis APFA which has the properties stated in the theorem.
An important ingredient of the proof is the definition of a
good sample, which is somewhat complex. We therefore
provide below some intuition into what led us to this defini-
tion.

The heart of our algorithm is the folding operation and
the similarity test that precedes it. We want to show that, on
one hand, the algorithm does not fold pairs of nodes which
correspond to two different states and, on the other hand, it
does fold most pairs of nodes that correspond to the same
state. By the latter we essentially mean the following. First,
every pair of nodes u and v which correspond to the same
state and for which mu�m0 and mv�m0 , are folded
together. Second, in the final directed graph, which is used
to construct our hypothesis, the total fraction of sample
strings which pass through nodes u for which mu<m0 is
small. This ensures that for each state q in M for which
PM(q) is non-negligible, there exists a single state q̂ in M@ ,
such that:

1. A large fraction of the strings (among all possibly
generated strings) that pass through q indeed pass through q̂;

2. #(q, }) is very ``close'' to #̂(q̂, }).

It will then follow that M@ is a good hypothesis with respect
to M.

Consider now the similarity test. Whenever the algorithm
tests whether two nodes, u and v, are similar, it compares
the statistical properties of the corresponding multisets of
strings Sgen(u) and Sgen(v), which ``originate'' from the two
nodes, respectively. Thus, we would like to ensure that
if both multisets are of substantial size, then each will be
typical to the state it was generated from (assuming there

exists one such single state for each node). Namely, we ask
that the relative weight of any prefix of a string in each of the
multisets will not deviate much from the probability
assigned to the prefix when starting from the corresponding
state. It will then follow (based on the +-distinguishability of
pairs of states) that for every such pair of nodes, the two
nodes will be folded if and only if they correspond to the
same state. In addition, we need to ensure that most of
the multisets Sgen(u) are large enough, namely, that the
size of most of the multisets is larger than the threshold
m0 . The question is how to characterize these multisets
of strings so that we can apply a probabilistic argument
to prove that they are typical (and large) with high prob-
ability.

To gain more intuition concerning the difficulty of this
task and to obtain some insight into our solution, consider
a particular state q in a given level d of the target automaton
and denote by Sgen(q) the multiset of suffixes of sample
strings which were generated from q. Let Gid

be the first
graph in which the algorithm starts folding nodes in level d.
Assume that each pair of nodes which were folded
previously correspond to the same state (where the notion
of correspondence was defined above). Let v1 , ..., vk be
the nodes in Gid

which correspond to q. These nodes induce
a partition of Sgen(q) into the multisets Sgen(v1), ..., Sgen(vk).
It is clear that if Sgen(q) is large enough, then, since the
strings were generated independently from q, we can apply
Chernoff bounds to get that with high probability Sgen(q) is
a typical sample of strings originating from q. As noted pre-
viously, by ``typical'' we mean that the relative counts of
strings in Sgen(q) are close to their expectations. However,
we want to know that each of the Sgen(vi)'s is a typical sam-
ple of q so that we will not make mistakes when merging
nodes in that level. The problem is that the partition of
Sgen(q) into the Sgen(vi)'s depends on previous folding steps
of the algorithm, and it is clearly not true that every parti-
tion of Sgen(q) preserves the statistical properties of q.
However, the graphs constructed by the algorithm via the
folding operation do not induce arbitrary partitions.
Furthermore, we are able to characterize the possible
partitions in terms of a class of automata which we call M 's
reference class and which we denote by M.

The reference class, M, is a class of automata which are
all equivalent to M, in the sense that they define exactly the
same probability distribution over strings. However, these
automata have different underlying graphs and can be
viewed as redundant forms of M. In particular, every state
of M may have several copies in an automaton M$ # M.
The idea is that the nodes in level d of Gid

(i.e., before the
algorithm folds nodes in level d) correspond (via a one-to-
one mapping) to states in level d of some automaton M$
M. Given that there exists such a mapping, let us assume
that with high probability for every M$ # M and for every
state q$ of M$ (which is a copy of a state q of M), a sample

140 RON, SINGER, AND TISHBY

File: 571J 155509 . By:XX . Date:29:05:98 . Time:08:12 LOP8M. V8.B. Page 01:01
Codes: 5710 Signs: 4769 . Length: 56 pic 0 pts, 236 mm

generated by M is typical of q$. Then, this implies that for
every state q of M, the multisets [Sgen(vi)] are typical
of q, as desired. In our definition, we actually relax the
requirement and ask that the sample be typical only for the
copies q$ of q which are reached in M$ with non-negligible
probability. These copies, which we refer to as dominant
copies, correspond to nodes v in Gid

for which mv is above
the threshold m0 and which the algorithm considers for
merging. Analogously, the non-dominant copies correspond
to nodes whose counts are below the threshold. In our
analysis, we show that in the automata corresponding to the
graphs generated by the algorithm, the total weight of the
non-dominant copies of every state q is small.

In addition to the distinction between dominant and
non-dominant copies, we make a distinction between
major copies and minor copies. Major copies can be either
dominant or non-dominant, while minor copies are always
non-dominant. This distinction corresponds to the
difference between nodes in the algorithm's graphs whose
immediate ancestors (in the previous level) were merged
(i.e., had counts above threshold and hence corresponded to
dominant copies) and nodes whose immediate ancestors
already had counts below threshold. Intuitively, major
copies ``have the potential'' to be dominant, while minor
copies are non-dominant by definition. Furthermore, the
choice of the dominant copies among the major copies is
what defines an automaton in the reference class. We note
that one of the important features of the automata in the
reference class is that every level in an automaton M$ # M

is devised to correspond to the same level in a graph con-
structed by the algorithm before any merges were performed
in that level, but after all merges were performed in the
previous level. Thus, these automata do not look exactly
like any one of the graphs constructed by the algorithm.
However, all dominant major copies of a particular state q
have edges going to the same major copies in the next level
(thus, in a way they behave like a single merged state), while
all non-dominant copies (both major and minor) are roots
of (disjoint) |7|-ary trees. See Fig. 2 for an illustration of the
different types of copies of states.

FIG. 2. Left: Part of the original automaton, M, that corresponds to the copies on the right part of the figure. Right: The different types of copies
of M's states: the state u has only major copies, u1 and u2 , that are both dominant and have each an edge labeled by * going to the major copy of q,
(q, u, *), and an edge labeled by � going to the major copy of q, (q, u, �). State r has three major copies, r1 , r2 , and r3 , and one minor copy, r4 . States
r1 and r2 are dominant while state r3 is non-dominant. States r1 and r2 have edges going to a major copy of q and to a major copy of t. States r3 and
r4 each have edges going to different minor copies of q and t.

5.2. A Good Sample��Formal Definitions

Given a target APFA M, let M=[M$ | M$=(Q$, q$0 ,
[q$f], 7, {$, #$, `)] be the set of APFAs which satisfy the
following conditions:

1. For each state q in M there exist several copies of q in
M$, each uniquely labeled. q$0 is the only copy of q0 , and we
allow there to be a set of final states [q$f], all copies of qf . If
q$ is a copy of q then for every _ # 7 _ [`],

(a) #$(q$, _)=#(q, _);

(b) if {(q, _)=t, then {$(q$, _)=t$, where t$ is a copy
of t.

Note that the above restrictions on #$ and {$ ensure that the
probability distributions generated by M and M$, respec-
tively, are the same. That is, \s # 7*`, PM$(s)=PM(s).

2. A copy of a state q may be either dominant or non-
dominant. Non-dominant copies are either major or minor,
and dominant copies are always major.

3. For each state q, and for every symbol _ and state r
such that {(r, _)=q, there exists a unique major copy of q
labeled by (q, r, _) (where this copy may be either dominant
or non-dominant). There are no other major copies of q.
Each minor copy of q is labeled by (q, r$, _), where r$ is a
non-dominant (either major or minor) copy of r (and as
before {(r, _)=q). A state may have no minor copies, and
its major copies may be all dominant or all non-dominant.

4. For each dominant copy q$ of q and for every
_ # 7 _ [`], if {(q, _)=t, then {$(q$, _)=(t, q, _). Thus, for
each symbol _, all _ transitions from the dominant copies of
q are to the same major copy of t. The starting state q$0 is
always dominant.

5. For each non-dominant (either major or minor) copy
q$ of q, and for every symbol _, if {(q, _)=t then
{$(q$, _)=(t, q$, _), where, as defined in item (2) above,
(t, q$, _) is a minor copy of t. Thus, each non-dominant
major copy of q is the root of a |7|-ary tree, and all its
descendants are (non-dominant) minor copies.

141ACYCLIC PROBABILISTIC FINITE AUTOMATA

File: DISTL2 155510 . By:CV . Date:03:06:98 . Time:11:52 LOP8M. V8.B. Page 01:01
Codes: 6029 Signs: 4682 . Length: 56 pic 0 pts, 236 mm

An illustrative example of the types of copies of states is
depicted in Fig. 2.

By the definition above, each APFA in M is fully charac-
terized by the choices of the sets of dominant copies among
the major copies of each state. Namely, given such a choice,
it is determined that for each state q, all non-dominant
major copies are roots of complete |7|-ary trees (of minor
states), and for each symbol _, all dominant copies of q have
edges labeled by _ going to the major copy (r, q, _) of r,
where r={(q, _). Since the number of major copies of a
state q is exactly equal to the number of transitions going
into q in M, and is thus bounded by n |7|, there are at most
2n |7| such possible choices for every state. There are at most
n states in each level, and hence the size of M is bounded by
((2 |7| n)n)D=2 |7| n2D. As we show in Lemma 5.2, if the sam-
ple is good, then there exists a correspondence between
some APFA in M and the graphs our algorithm constructs.
We use this correspondence to prove Theorem 1.

Definition 5.1. A sample S of size m is (=0 , =1 , $)-good
with respect to M if for every M$ # M and for every state
q$ # Q$:

1. if PM$(q$)�2=0 , then mq$�m0 , where

m0=
|7| n2D2+2D ln(8(|7|+1))+ln 1�$

=2
1

;

2. if mq$�m0 , then for every string s,

|mq$, s�mq$&PM$
q$ (s)|�=1 .

Note that the second item in the above definition is
relevant not only to states q$, for which PM$(q$)�2=0 (i.e.,
the condition in the first item holds), but also to states for
which this condition does not hold, but nonetheless, their
corresponding count, mq$, is above the threshold m0 .

Lemma 5.1. With probability at least 1&$, a sample of
size

m�max \ |7| n2D+ln(2D�(=0$))
2=2

0

,
m0

=0 +
is (=0 , =1 , $)-good with respect to M.

The proof of Lemma 5.1 is derived by several simple
probabilistic arguments and is provided in the Appendix.

Lemma 5.2. If the sample is (=0 , =1 , $)-good, for =1<
+�4, then there exists an APFA M$ # M, M$=(Q$, q$0 , [q$f],
7, {$, #$, `), for which the following holds. Let Gid

denote the
first graph in which we consider folding nodes in level d. Then,
for every level d, there exists a one-to one mapping 8d from
the nodes in the dth level of Gid

, into Q$d , such that for every

v in the dth level of Gid
, W(v)=W(8d (v)). Furthermore,

q$ # Q$ is a dominant major copy iff mq$�m0 .

The complete proof of the lemma is given in the
Appendix. Below we provide a sketch.

Proof Sketch. The correctness of Lemma 5.2 is proved
by induction on d. The automaton M$ is constructed in the
course of the induction, by choosing for each level d and for
each state q # Qd , the dominant copies of q among its major
copies. Recall that such a choice uniquely determines each
automaton in M. For the base case of d=1, we only need
to observe that Gi1

=G0 is the sample tree, in which we have
at most |7| nodes in level 1. For each symbol _, we map the
node which is reached from the starting node by an edge
labeled _ to the unique major state (q, q0 , _), where
q={(q0 , _). We then choose the dominant copies to match
the requirement of the lemma. Namely, the dominant copies
are exactly those which are mapped via the reverse mapping
8&1

d to nodes v for which mv�m0 .
In the induction step, we consider separately the case in

which node v is a result of merges of nodes in level d&1 and
the case in which it is not. It is not hard to verify that in both
cases, based on the folding operation, there is only a single
edge (labeled by a single symbol _) entering v. Consider
first the case in which v had immediate ancestors which
were merged. Since the nodes that were merged had counts
above threshold, by the induction hypothesis they must be
mapped to dominant copies of some state r in level d&1.
Thus, v is mapped to the corresponding major copy (q, r, _)
(where q={(r, _)), and this copy is chosen to be dominant
only if mv�m0 . In case v is not a result of any merges in
level d&1, let u be the node in level d&1 from which there
is an edge labeled _ going into v. The subcase in which
mu�m0 is similar to the case treated above (where v is the
result of merges in level d&1). In the subcase mu<m0 , by
the induction hypothesis, u is mapped to a non-dominant
copy r$ of r, which implies that v should be mapped to the
non-dominant (minor) copy (q, r$, _). K

5.3. Proof of Theorem 1

The proof of Theorem 1 is based on the following lemma,
in which we show that for every state q in M there exists a
representative state q̂ in M@ that has significant weight and
for which #̂(q̂, })r#(q, }).

Lemma 5.3. If the sample is (=0 , =1 , $)-good for

=1<min(+�4, =2�8(|7|+1)),

then for any =3�1�(2D), and for any =2�2n |7| =0 �=3 , we
have the following. For every level d and for every state
q # Qd , if PM(q)�=2 then there exists a state q̂ # Q� d such
that:

142 RON, SINGER, AND TISHBY

File: DISTL2 155511 . By:CV . Date:03:06:98 . Time:11:52 LOP8M. V8.B. Page 01:01
Codes: 6154 Signs: 2978 . Length: 56 pic 0 pts, 236 mm

1. PM(W(q) & W(q̂))�(1&d=3) PM(q),

2. for every symbol _, #(q, _)�#̂(q̂, _)�1+=�2.

The complete proof of the lemma is given in the
Appendix. Here we only note that for both claims we rely on
the relation that is shown in Lemma 5.2 between the graphs
constructed by the algorithm and some APFA M$ in M. We
show that the total weight in M$ of the dominant copies of
every state q # Qd for which PM(q)�=2 is at least 1&d=3 of
the weight of q. This is shown by induction on d. Claim (1)
directly follows, and for proving Claim (2) we apply the
goodness of the sample.

Proof of Theorem 1. We prove the theorem based on
Lemma 5.3. For brevity of the following computation, we
assume that M and M@ generate strings of length exactly D.
This can be assumed without loss of generality, since we can
require that both APFAs ``pad'' each shorter string they
generate, with a sequence of ` 's, with no change to the
KL-divergence between the APFAs.

DKL(PM & PM@)

= :
_1 } } } _D

PM(_1 } } } _D) log
PM(_1 } } } _D)

PM@(_1 } } } _D)

=:
_1

:
_2 } } } _D

PM(_1) PM(_2 } } } _D | _1)

__log
PM(_1)

PM@ (_1)
+log

PM(_2 } } } _D | _1)

PM@ (_2 } } } _D | _1)&
=:

_1

PM(_1) log
PM(_1)

PM@ (_1)
+:

_1

PM(_1)

_DKL(PM(_2 } } } _D | _1) & PM@(_2 } } } _D | _1))

=:
_1

PM(_1) log
PM(_1)

PM@ (_1)

+:
_1

PM(_1) :
_2

PM(_2 | _1) log
PM(_2 | _1)

PM@ (_2 | _1)

+ } } }

+ :
_1 } } } _d

PM(_1+ } } } _d) :
_d+1

PM(_d+1 | _1 } } } _d)

_log
PM(_d+1 | _1 } } } _d)

PM@(_d+1 | _1 } } } _d)

+ } } }

+ :
_1 } } } _D&1

PM(_1 } } } _D&1) :
_D

PM(_D | _1 } } } _D&1)

_log
PM(_D | _1 } } } _D&1)

PM@ (_D | _1 } } } _D&1)

= :
D&1

d=0

:
q # Qd

:
q̂ # Q� d

PM(W(q) & W(q̂))

_:
_

PM
q (_) log

PM
q (_)

Pq̂
M@ (_)

= :
D&1

d=0

:
q # Qd

PM(q) :
q̂ # Q� d

PM(W(q) & W(q̂))�PM(q)

_:
_

PM
q (_) log

PM
q (_)

Pq̂
M@ (_)

� :
D&1

d=0

:
q # Qd , PM(q)<=2

PM(q) log(1�#min)

+ :
D&1

d=0

:
q # Qd , PM(q)�=2

PM(q)

_[(1&d=3) log(1+=�2)+d=3 log(1�#min)]

�(nD=2+D2=3) log(1�#min)+=�2.

If we choose =2 and =3 so that =2�=�(4n D log(1�#min)) and
=3�=�(4D2 log(1�#min)), then the expression above is
bounded by =, as required. Adding the requirements on =2

and =3 from Lemma 5.3, we get the following requirement
on =0 :

=0�=2�(32n2 |7| D3 log2(4(|7|+1)�=)).

Applying Lemma 5.1, together with the above bound on =0 ,
while using the definition of m0 provided in Definition 5.1
and the requirement on =1 given in Lemma 5.3, we get that
a sufficient sample size is

m=O(n4D4 |7|2 =&2 ln(nD |7| =&1$&1)

_max(+&2, |7| =&4, n2 |7| 2 D3=&2)).

The running time of the algorithm when completed success-
fully can be bounded by n2 |7| 2 Dm0 as follows. Whenever
the algorithm checks whether two nodes are similar, and
whenever two nodes are folded, the corresponding proce-
dures consider at most every node in the graph that can be
reached from one of the two nodes which are compared�
folded. Thus, in every comparing�folding operation, the
total number of nodes considered is O(Dm0). For each level
d, if for every state in M, all nodes corresponding to M in
level d whose counts are above threshold are merged, then
in the next level we have at most |7| n nodes whose counts
are above threshold. Since we compare�fold at most every
pair of such nodes and there are D levels, we compare�fold
at most n2D2 |7| pairs of nodes. K

143ACYCLIC PROBABILISTIC FINITE AUTOMATA

File: DISTL2 155512 . By:CV . Date:03:06:98 . Time:11:52 LOP8M. V8.B. Page 01:01
Codes: 7103 Signs: 5803 . Length: 56 pic 0 pts, 236 mm

6. AN ON-LINE VERSION OF THE ALGORITHM

In this section we describe an on-line version of our learn-
ing algorithm. We start by defining our notion of on-line
learning in the context of learning distributions on strings.

6.1. An On-line Learning Model

In the on-line setting, the algorithm is presented with an
infinite sequence of trials. At each time step, t, the algorithm
receives a trial string st=s1 } } } sl&1 ` generated by the
target APFA M, and it should output the probability
assigned by its current hypothesis, Ht , to st. The algorithm
then transforms Ht into Ht+1 . The hypothesis at each trial
need not be an APFA, but may be any data structure which
can be used in order to define a probability distribution on
strings. In the transformation from Ht into Ht+1 , the
algorithm uses only Ht itself and the new string st. The
algorithm should be efficient in the sense that the time for
computing the probability assigned to st by Ht and the time
for transforming Ht to Ht+1 should be bounded by a poly-
nomial in 1�+, n, D, |7|, and log(1�2) (where 2 is defined
shortly). Let the error of the algorithm on st, denoted by
errt(st), be defined as log(PM(st)�PHt(st)). We shall be inter-
ested in the average error Errt =

def
1�t �t$�t errt$(st$).

We allow the algorithm to make an unrecoverable error
at any stage t, with total probability that is bounded by 2.6

We ask that there exist functions $(t, +, n, D, |7|, 2)
and =(t, +, n, D, |7|, 2), such that the following hold: The
function $(t, +, n, D, |7|, 2) is of the form ;1(+, n, D,
|7|, 2) 2t &:1, where ;1 is a polynomial in 1�+, n, D, |7|, and
log(1�2), and 0<:1<1; and =(t) is of the form ;2(+, n, D,
|7|, 2) t&:2, where ;2 is a polynomial in 1�+, n, D, |7|, and
log(1�2), and 0<:2<1. Since we are mainly interested in
the dependence of these functions on t, let them be denoted
for short by $(t), and =(t). For every trial t, if the algorithm
has not made an unrecoverable error prior to that trial, then
with probability at least 1&$(t), the average error is small,
namely Errt�=(t). We thus require that as the algorithm
gets more trial strings, it makes better predictions with high
probability. (Note though that we allow that algorithm an
initial ``period of grace'' in which it does not have to perform
well at all.) Furthermore, we require that the size of the
hypothesis Ht be a sublinear function of t. This last require-
ment implies that an algorithm which simply remembers all
trial strings, and each time constructs a new hypothesis
``from scratch,'' is not considered an on-line algorithm.

6.2. An On-line Learning Algorithm

We now describe how to modify the batch algorithm
Learn-Acyclic-PFA, presented in Section 4, to make it an
on-line algorithm. The pseudo-code for the algorithm
follows this description. At each time t, our hypothesis is a
graph G(t), which has the same form as the graphs used by
the batch algorithm. G(1), the initial hypothesis, consists of
a single root node v0 where for every _ # 7 _ [`], mv0

(_)=0
(and hence, by definition, mv0

=0). Given a new trial string
st, the algorithm checks whether there exists a path corre-
sponding to st in G(t). If there are missing nodes and edges
on the path, then they are added. The counts corresponding
to the new edges and nodes are all set to 0. The algorithm
then outputs the probability that a PFA defined based on
G(t) would have assigned to st. More precisely, let st=
s1 } } } sl , and let v0 } } } vl be the nodes on the path corre-
sponding to st. Then the algorithm outputs the product

PHt(st)= `
l&1

i=0 _
mvi

(si+1)

mvi

(1&(|7|+1) #min(t))+#min(t)& ,

where #min(t) is a decreasing function of t (whose form is
discussed subsequently).

The algorithm increases by one the counts associated
with the edges on the path corresponding to st in the
updated G(t). If for some node v on the path, mv�m0 , then
we execute stage (2) in the batch algorithm, starting from
G0=G(t), and letting d(0) be the depth of v, and D be the
depth of G(t). We let G(t+1) be the final graph constructed
by stage (2) of the batch algorithm.

Theorem 2. Algorithm On-Line-Learn-Acyclic-PFA is
an efficient on-line learning algorithm for APFAs.

Proof Idea. The proof of the theorem essentially follows
the same arguments used in the proof of Theorem 1 and we
therefore present the main new ideas. The first key observa-
tion is the following. Consider some trial t. Assume that up
until trial t the following was true: for every pair of nodes u
and v such that mu�m0 and mv�m0 , u and v are folded
into a single node if and only if they correspond to the same
state in M. Assume also that the same would be true had we
run the batch algorithm on a sample consisting of the first
t trial strings (which is essentially a prerequisite for the
successful completion of the batch algorithm). Then, G(t) is
the same as the graph we would have obtained had we run
the batch algorithm on the set of trial strings observed up
until trial t. This can easily be verified by induction on the
levels of the graph. We thus define a bad event to be an event
in which the on-line algorithm calls the function Similar on
two nodes (whose counts are at least m0) and either the
function returns similar while the two nodes correspond to
different states or the function returns non-similar while the

144 RON, SINGER, AND TISHBY

6 Allowing the algorithm to make such an unrecoverable error is due to
an artifact of our algorithm that we were not able to overcome. As we shall
see in the description of the algorithm, a decision to fold two nodes in a
graph G(t), which do not correspond to the same state in M, is an
unrecoverable error. Since the algorithm does not backtrack and ``unfold''
nodes, the algorithm has no way of recovering from such a decision, and
the probability assigned to strings passing through the folded nodes may
be erroneous from that point on.

File: 571J 155513 . By:XX . Date:29:05:98 . Time:08:14 LOP8M. V8.B. Page 01:01
Codes: 4677 Signs: 4040 . Length: 56 pic 0 pts, 236 mm

nodes correspond to the same state. Note that the first type
of bad event corresponds to an unrecoverable error.

Based on the observation above, if a bad event does not
occur until trial t, we can use the result we have for the batch
algorithm to get bounds on =(t) and $(t). In the analysis of
the batch algorithm, for every given = and $ we get a lower
bound on m (whose role is taken by t) that ensures error =
with confidence 1&$. Since this bound was polynomial in
1�= and log(1�$), we can define a pair of functions =(t) and
$(t), which decrease with t as required. To be more precise,
=(t) is defined to be a bound on the average error Errt .
However, Errt is an average of random variables [errt],
where the expectation of errt is the KL-divergence between
M and Ht . Since these random variables are independent
(as the strings st are chosen independently), with proba-
bility exponential in t, Errt will not deviate by more than
O(- log(1�t)�t) from �t$�t DKL(PM & PHt$). Finally, by our
analysis of Theorem 1, we know that if a bad event does
not occur, then for some constants :1 and :2 , the
KL-divergence between M and Ht is O(t&:2) with proba-
bility at least 1&O(2t :1) (where the O(}) notation takes into
account the dependence on all other parameters of the
problem).

The intuition behind this behavior of the algorithm is
the following. If no bad event occurs, we expect that as t
increases, we will encounter nodes that correspond to states
with decreasing weights, and our predictions become more
reliable in the sense that mv(_)�mv gets closer to its expecta-
tion (and the probability of a large error decreases). The
parameter #min(t) is defined to have the same functional
form with =(t) as #min has with = in the batch algorithm.

We thus need to show that for an appropriate m0 , the
probability that a bad event occurs at any point in time is
at most 2. In the on-line algorithm, as opposed to the batch
algorithm, the folding operation does not proceed level by

level. It follows that the graphs constructed cannot be
mapped to automata in the reference class M as defined in
the batch algorithm. However, we can slightly modify the
definition of M to cope with this problem. We now allow a
subset of the dominant major copies of each state to be
merged into a single super dominant major copy. Recall that
automata in the batch algorithm's reference class had the
property that their states (copies of states) in level d corre-
sponded to nodes in level d of the algorithm's graph right
after all merges were done in level d&1 but before any were
done in level d. This worked well since we did not perform
any foldings in level d after proceeding to level d+1.
However, in the on-line algorithm, when executing step (2)
of the batch algorithm following the receipt of a new trial
string, we need to account for nodes (in level d) that are the
result of merges (in the same level) which were performed in
previous executions of step (2). Namely, we might consider
merging nodes u and v, where u is the outcome of a merging
of nodes u1 and u2 in level d (in a previous execution of step
(2)). In such a case we map u to a super major copy in an
automaton M$. It is easy to verify that by definition of our
algorithm, there cannot be more than one such node corre-
sponding to each state q.

Thus, we let each state q have at most one super domi-
nant major copy which is labeled by a subset [(q, r, _)],
where r and _ are such that {(r, _)=q. The non-super major
copies are labeled as before by triples (q, r, _) (that do not
belong to the subset labeling the super copy). The edges
going out of this super copy are defined in the same way as
for dominant major copies. Edges that previously entered
major copies that belong to a super copy now enter the
super copy. Thus, each automaton is now defined not only
by the choice of dominant copies among the major copies of
each state but also by the choice of a subset of the dominant
major copies which defines the super copy. The size of this

145ACYCLIC PROBABILISTIC FINITE AUTOMATA

File: 571J 155514 . By:XX . Date:29:05:98 . Time:08:16 LOP8M. V8.B. Page 01:01
Codes: 5695 Signs: 4685 . Length: 56 pic 0 pts, 236 mm

new M is therefore bounded by the square of the size of M

as defined for the batch algorithm and is at most 22 |7| n2D.
Note that M is the automaton in M in which each state has
a super copy labeled by the set of all major copies and no
other copies.

In order to bound the probability that a bad event occurs,
we need to show that with probability at least 1&2, at any
time t, for every M$ # M, and for every state q$ # Q$, if mq$�m0 ,
then for every string s, |mq$, s �mq$&PM$

q$ (s)|�+�4. Let

m0=
32(|7| n2D2+D ln(16(|7|+1))+ln(16�(2+2)))

+2 .

Then similarly to the proof of Lemma 5.1, for a given q$, if
mq$=m0+x for some integer x�0, then the probability
that for some s, |mq$, s �mq$&PM$

q$ (s)|>+�4 is at most

2&(x+2�16) }
2

8(|7|+1)D 22 |7| n2D(16�+2)
.

Let us say in this case that q$ is bad (otherwise it is good).
After a new trial string is added to the current hypothesis,
either mq$ does not change or it increases by 1. If mq$ does
not change and prior to the receipt of the new string, q$ was
good, then it remains good. Otherwise, we upper bound the
probability that it turned bad by the expression above.
Hence, every time mq$ increases by 16�+2, the probability
that q$ turned bad given that it was good before the new
(16�+2) trial strings were added decreases by a factor of 1�2.
If we sum these probabilities over an infinite sequence
of trials to bound the probability that q$ turns bad fol-
lowing any trial, we get that this probability is at most
2�(4(|7|+1)D 22|7| n2D). Multiplying by the number of
states in each automaton and the number of automata in M

as done in Lemma 5.1, we get the desired bound.
We now bound the size of the hypotheses constructed by

the algorithm and the running time of the algorithm (per
trial). Let a node v be called reliable if mv�m0 . As claimed
above, with probability 1&2 we fold all reliable nodes
which correspond to the same state. Thus, the number of
reliable nodes is never larger than Dn. From every reliable
node there are edges going to at most |7| unreliable nodes.
Each unreliable node is a root of a tree in which there are at
most Dm0 additional unreliable nodes. We thus get a bound
of O(D2nm0) on the number of nodes in G(t) which is
independent of t. Since for every v and _ in G(t), mv(_)�t,

FIG. 3. Synthetic cursive letters created by random walks on the 26 letter APFAs.

the counts on the edges contribute a factor of log t to the
total size of the hypothesis. It remains to show that the
algorithm is efficient. When transforming a hypothesis Ht to
the next hypothesis Ht+1, in the worst case we consider
folding all pairs of nodes from each level. Thus, if each
operation on two rational numbers takes a single time step,
then the bound on the size of the hypotheses gives us a
polynomial bound on the time for computing each new
hypothesis. The time for computing the probability assigned
to each new trial node is O(|7| D) since we need only
consider nodes on the path corresponding to the trial string
and their successors. K

7. APPLICATIONS

A slightly modified version of our learning algorithm was
applied and tested on various problems involving modeling
and analysis of spoken and written natural language.
This modified version of the algorithm allows folding
states from different levels, and hence the resulting hypoth-
esis is more compact. One more small modification is that
the algorithm folds nodes with small counts into the graph
itself (instead of adding the extra nodes, small(d)). Here
we give a brief overview of the usage of APFAs and their
learning scheme for the following applications: (a) a part
of a complete cursive handwriting recognition system;
(b) pronunciation models for spoken words.

7.1. Building Stochastic Models for Cursive Handwriting

In [17], a dynamic encoding scheme for cursive hand-
writing based on an oscillatory model of handwriting was
proposed and analyzed. The process described in [17]
performs mapping from continuous pen trajectories to
strings over a discrete set of symbols which efficiently
encode cursive letters. These symbols are named motor
control commands. There are 36 different motor control
commands representing different characteristics of pen
trajectories during the writing process. One of the symbols
represents zero pen movement and it is used to denote
``pen-ups'' and end-of writing activity. This symbol serves as
the final symbol (`) for building the APFAs for cursive
letters as described subsequently.

Different Roman letters map to different sequences over
these symbols. Moreover, since there are different writing
styles and due to the existence of noise in the human motor
system, the same cursive letter can be written in many

146 RON, SINGER, AND TISHBY

File: 571J 155515 . By:XX . Date:29:05:98 . Time:08:16 LOP8M. V8.B. Page 01:01
Codes: 6154 Signs: 5430 . Length: 56 pic 0 pts, 236 mm

FIG. 4. Synthetic cursive letters created by random walks using the APFA that represents the letter k.

different ways. This results in different symbol sequences
that represent the same letter. The first step in our cursive
handwriting recognition system that is based on the above
encoding is to construct stochastic models which
approximate the distributions on sequences for each cursive
letter. Given hundreds of examples of segmented cursive
letters we applied the modified version of our algorithm to
train 26 APFAs, one for each lower-case cursive English
letter. In order to verify that the resulting APFAs have
indeed learned the distributions on strings that represent the
cursive letters, we performed a simple sanity check. Random
walks on each of the 26 APFAs were used to synthesize
motor control commands. An inverse oscillatory model
was then used to translate these synthetic strings into pen
trajectories. This process, known as analysis-by-synthesis,
is widely used for testing the quality of speech models. A
typical result of such random walks on the corresponding
APFAs is given in Fig. 3. All the synthesized letters are
clearly intelligible. The distortions are partly due to the
compact representation of the dynamic model and not a
failure of the learning algorithm.

We also performed a synthesis test which consisted
of several different random walks using the same APFA.
Typical results are shown in Fig. 4, where several synthetic
letters, created using the APFA that represents the cursive
letter k (which has a rather complex spatial structure), are
depicted. The random walks created varying drawings
which are all intelligible. Moreover, the letters start and end
in several different ways. This indicates that the APFAs also
capture effects of neighboring letters��a phenomenon
similar to the coarticulation effects between phonemes in
speech.

It is also interesting to look at the intermediate graphs
built along the run of the APFA learning algorithm. Several
of the intermediate graphs that represent the cursive letter
l, and that were built when the algorithm was trained on
segmented data, are shown in Fig. 5. The number of training
sequences in this example is 195, and the initial graph has
209 nodes. The symbol labeling each edge in the figure is one
of the possible motor control commands. The number on
each edge is the count associated with the edge, that is, the
number of times the edge was traversed in the training data.
The top left graph in the figure is the initial sample tree,
where all of its leaves are connected to a final node with an
edge labeled by the final symbol. The intermediate graphs
are drawn at every 10th iteration, left to right and top to
bottom. The final graph, which is the result of 41 merging

iterations, is drawn at the bottom part of the figure. The
intermediate graphs at the start of the merging process are
very ``bushy,'' with no apparent structure. After 20 itera-
tions, when more merges have been performed, a compact
structure starts to appear. Finally, the resulting automaton
has only 12 states with an interesting structure. All the out-
going edges from state 4 and the incoming edges into state
5 are labeled by symbols of the form 5_x, x # [0, 1, 2, 3, 4,
5]. Since all the paths from the start state to the final state
must pass through either state 4 or state 5, it implies that a
symbol of the form 5_x must be generated by any random
walk using one of the existing paths in the automaton. This
symbol corresponds to a high vertical modulation value
(the top part of the letter l). Therefore, states 4 and 5
``encode'' the fact that the letter l is characterized by a high
vertical modulation value.

Given the set of 26 APFAs, representing the different
cursive English letters, we can perform tasks such as
segmentation of cursive words and recognition of unlabeled
words. Here we briefly demonstrate how a new word can be
broken into its different letter constituents. Recognition of
completely unlabeled data is more involved, but can be
performed efficiently using a higher-level language model
(see [14] for an example of such a model). A complete
description of the cursive handwriting recognition system is
given in [16].

When a transcription of a cursively written word (i.e., the
letters that constitute the word) is given, we find the most
likely segmentation7 of that word as follows. We first
calculate the probability of each subsequence to be
generated by each of the APFAs representing the letters
appearing in the transcription. Then, using dynamic
programming we efficiently find the most likely indices
where the switches from one APFA to the next occur. An
example of the result of a segmentation is depicted in Fig. 6,
where the cursive word impossible, reconstructed from
the motor control commands, is shown with its most likely
segmentation. Note that the segmentation is temporal and
hence letters are sometimes cut in the ``middle'' though the
segmentation is correct.

The above segmentation procedure can be incorporated
into an on-line learning setting as follows. We start with an
initial stage where a relatively reliable set of APFAs for the
cursive letters is constructed from segmented data. We then

147ACYCLIC PROBABILISTIC FINITE AUTOMATA

7 The segmentation partitions the motor control commands into non-
overlapping segments, where each segment corresponds to a different letter.

File: 571J 155516 . By:XX . Date:29:05:98 . Time:08:16 LOP8M. V8.B. Page 01:01
Codes: 566 Signs: 116 . Length: 56 pic 0 pts, 236 mm

FIG. 5. Several of the intermediate graphs built along the run of the APFA learning algorithm.

148 RON, SINGER, AND TISHBY

File: 571J 155517 . By:XX . Date:29:05:98 . Time:08:18 LOP8M. V8.B. Page 01:01
Codes: 5805 Signs: 4619 . Length: 56 pic 0 pts, 236 mm

FIG. 6. Temporal segmentation of the word impossible. The
segmentation is performed by evaluating the probabilities of the APFAs
which correspond to the letter constituents of the word. These probabilities
are evaluated for each possible subsequence of the motor control com-
mands. The most likely segmentation is then found using dynamic
programming.

continue with an on-line setting in which we employ the
probabilities assigned by the automata to segment new
unsegmented words and ``feed'' the segmented subsequences
back as inputs to the corresponding APFAs.

7.2. Building Pronunciation Models for Spoken Words

In natural speech, a word might be pronounced
differently by different speakers. For example, the phoneme
t in often is often omitted, and the phoneme d in the word
muddy can be pronounced in a few different ways. One
possible approach to model such pronunciation variations
is to construct stochastic models that capture the distribu-
tions of the possible pronunciations for words in a given
database. The models should reflect not only the alternative
pronunciations but also the a priori probability of a given
phonetic transcription of the word. This probability
depends on the distribution of the different speakers that
uttered the words in the training set. Such models can be
used as a component in a speech recognition system. The
same problem was studied by Stolcke and Omohundro
[18]. Here, we briefly discuss how our algorithm for learn-
ing APFAs can be used to efficiently build probabilistic
pronunciation models for words.

We used the TIMIT (Texas Instruments�MIT) database.
This database contains the acoustic waveforms of con-
tinuous speech with phone labels from an alphabet of
62 phones that constitute a temporally aligned phonetic
transcription to the uttered words. For the purpose of build-
ing pronunciation models, the acoustic data were ignored
and we partitioned the phonetic labels according to the
words that appeared in the data. We then built an APFA for
each word in the data set. Examples of the resulting APFAs
for the words have, had, and often are shown in Fig. 7.
The symbol labeling each edge is one of the possible 62
phones or the final symbol, `, represented in the figure by
the string End. The number on each edge is the count
associated with the edge, i.e., the number of times the edge
was traversed in the training data. The figure shows that the
resulting models indeed capture the different pronunciation
styles. For instance, all the possible pronunciations of the
word often contain the phone f and there are paths that

FIG. 7. An example of pronunciation models based on APFAs for the
words have, had, and often trained from the TIMIT database.

share the optional t (the phones tcl t) and paths that
omit it. Similar phenomena are captured by the models for
the words have and had (the optional semivowels hh and
hv and the different pronunciations for d in had and for v
in have).

In order to quantitatively check the performance of the
models, we filtered and partitioned the data in the same way
as in [18]. That is, words occurring between 20 and 100
times in the data set were used for training and evaluation
according to the following partition. Seventy-five percent of
the occurrences of each word were used as training data for
the learning algorithm and the remaining 250 were used
for evaluation. The models were evaluated by calculating
the log probability (likelihood) of the respective model on
the phonetic transcription for each word in the test set. The
results are summarized in Table 1. The performance of the
resulting APFAs is surprisingly good, compared to the per-
formance of the hidden Markov model reported by Stolcke
and Omohundro [18]. To be cautious, we note that it is not
certain whether the better performance (in the sense that the
likelihood of the APFAs on the test data is higher) indeed
indicates better performance in terms of recognition error
rate. Yet, the much smaller time needed for the learning
suggests that our algorithm might be the tool of choice for
this problem when large amounts of training data are
presented.

TABLE 1

The Performance of APFAs compared to Hidden Markov Models (HMM)
as Reported in [18] by Stolcke and Omohundro.

Model Log-likelihood Perplexity States Transitions Training time

APFA &2142.8 1.563 1398 2197 23 sec
HMM [18] &2343.0 1.849 1204 1542 29: 49 min

Note: Log-likelihood is the logarithm of the probability induced by the
two classes of models on the test data. Perplexity is the average number of
phones that can follow in any given context within a word.

149ACYCLIC PROBABILISTIC FINITE AUTOMATA

File: DISTL2 155518 . By:CV . Date:03:06:98 . Time:11:52 LOP8M. V8.B. Page 01:01
Codes: 6247 Signs: 4644 . Length: 56 pic 0 pts, 236 mm

8. DIRECTIONS FOR FURTHER RESEARCH

As mention in Section 7, in our implementation of the
learning algorithm we allow the algorithm to merge nodes
from different levels, and thus the resulting hypothesis is
more compact than a leveled APFA. We believe that the
learning algorithm remains correct with this modification,
but were not able to come up with a proof. Furthermore, we
believe that the same idea of merging states which are
statistically similar should work for PFAs which have cycles
in them (but are +-distinguishable for non-negligible +).
Allowing cycles, and in particular self-loops, seems to be
important in applications for speech analysis.

Another interesting generalization of our result is to give
an algorithm which is a good learning algorithm in an
agnostic setting. Namely, when the sample is generated
according to a source which is not an APFA (or not even a
PFA), does there exist a learning algorithm that finds
a hypothesis which is close to the APFA which best
approximates the target source?

APPENDIX: PROOFS OF TECHNICAL LEMMAS

Proof of Lemma 5.1. In order to prove that the sample
has the first property with probability at least 1&$�2, we
show that for every M$ # M, and for every state q$ # Q$,
mq$ �m�PM$(q$)&=0 . In particular, it follows that for every
state q$ in any given APFA M$, if PM$(q$)�2=0 , then
mq$ �m�=0 , and thus mq$�=0m�m0 . For a given M$ # M,
and a state q$ # Q$, if PM$(q$)�=0 , then necessarily mq$ �m�
PM$(q$)&=0 . There are at most 1�=0 states in each of the D
levels for which PM$(q$)�=0 , and hence, using Hoeffding's
inequality [7] and the fact that m�1�(2=2

0) ln((2D�(=0 $)) }
2 |7| n2D), with probability at least 1&($�2) 2&(|7| n2D), for
each such q$, mq$�m�PM$(q$)&=0 . Since the size of M is
bounded by 2 |7| n2D, the above holds with probability at
least 1&$�2 for every M$.

And now for the second property, we first observe that by
definition of m0 ,

m0=
|7| n2D+2D ln(8(|7|+1))+ln(1�$)

=2
1

(3)

>
1
=2

1

ln
8(|7|+1)2D 2 |7| n2D

$
. (4)

We next observe that for any automaton M$ and any state
q$ in M$, the number of strings that can be generated start-
ing from q$ is less than 2(|7|+1)D. Therefore, for a given
M$ and a given q$, if mq$�m0 , then using Hoeffding's
inequality with probability larger than

1&
$

4(|7|+1)D 2 |7| n2D
,

|mq$, s�mq$&PM$
q$ (s)|�=1 , for every s. Since there are at most

2(|7|+1)D states in M$ (a general bound on the size of the
full tree of degree |7+1|), and using our bound on |M|, the
second property holds with probability at least 1&$�2, as
well. K

Proof of Lemma 5.2. We prove the claim by induction
on d. M$ is constructed in the course of the induction, where
for each d we choose the dominant copies among the major
copies of the states in Qd , and define the transition function,
{$, accordingly.

For d=1, Gi1
is G0 (which is the sample tree, TS). Based

on the definition of M, for every M$ # M, for every q # Q1 ,
and for every _ such that {(q0 , _)=q, there exists a copy of
q, (q, q0 , _) in Q$1 . Thus, for every v in the first level of G0 ,
there is a single edge labeled by some symbol _ entering v,
and we let 81(v)=(q, q0 , _), where q={(q0 , _). Clearly, no
two vertices are mapped to the same state in M$. Since all
states in Q$1 are major copies by definition, we can choose
the dominant copies of each state q # Q1 to be all copies q$
for which there exists a node v such that 81(v)=q$, and
mv(=m81(v))�m0 .

Assume the claim is true for d $ such that 1�d $<d; we
prove it for d. Though M$ is only partially defined, we allow
ourselves to use the notation W(q$) for states q$ which
belong to the levels of M$ that have already been con-
structed. Let q # Qd&1 , let [q$i]/Q$d&1 be its copies, and for
each i such that 8&1

d&1(q$i) is defined, let ui=8&1
d&1(q$i). Based

on the goodness of the sample and our requirement on =1 ,
for each ui such that mui

�m0 , and for every string s, the
difference between PM$

q$i
(s)(=PM

q (s)) and mui
(s)�mui

is less
than +�4. Hence, if a pair of nodes, ui and uj , mapped to q$i
and q$j , respectively, are tested for similarity by the
algorithm, then the procedure Similar returns similar, and
they are folded into one node v. It follows that for every s,

mv(s)�mv =
mui

(s)+muj
(s)

mui
+muj

(5)

�
(PM

q (s)++�4) } mui
+(PM

q (s)++�4) } muj

mui
+muj

(6)

=PM
q (s)++�4. (7)

Similarly, mv(s)�mv�PM
q (s)&+�4. Therefore,

|mv(s)�mv&PM
q (s)|<+�4, (8)

and the same is true for any possible node that is the result
of folding some subset of the ui 's that satisfy mui

�m0 . Since
the target automaton is +-distinguishable, none of these
nodes is folded with any node w such that 8d&1(w) � [q$i].
Note that by the induction hypothesis, for every ui such that
mq$i

=mui
�m0 , q$i is a dominant copy of q.

150 RON, SINGER, AND TISHBY

File: DISTL2 155519 . By:CV . Date:03:06:98 . Time:11:52 LOP8M. V8.B. Page 01:01
Codes: 6221 Signs: 4629 . Length: 56 pic 0 pts, 236 mm

Let v be a node in the d th level of Gid
. We first consider

the case where v is a result of folding nodes in level d&1 of
Gid&1

. Let these nodes be [u1 , ..., ul]. Since these nodes were
folded, necessarily, muj

�m0 for every j # [1, ..., l]. By the
induction hypothesis these are mapped to states in Q$d&1

which are all dominant major copies of some state r # Qd&1 .
Note that by the definition of the folding operation, at any
point prior to the folding of v itself with other nodes in its
level, there is only a single edge (labeled by a single symbol)
entering v and this situation can change only when we fold
v with another node u. This is the case since whenever we
fold two nodes, they are roots of trees which are subgraphs
of the current graph constructed by the algorithm, and after
their folding the new merged node is still a root of a tree
(however, the merged node now might have several incom-
ing edges labeled by different symbols). Thus, let _ be the
label of the edge entering v. Then

W(v)= .
l

j=1

W(uj) b _ (9)

= .
l

j=1

W(8d&1(uj)) b _ (10)

=W((q, r, _)), (11)

where q={(r, _). We thus set 8d (v)=q$, where q$=(q, r, _)
is a major copy of q in Q$d . If mv�m0 , we choose q$ to be a
dominant copy of q. Otherwise, it is non-dominant. In either
case, in accordance with the definition of automata in M,
we have for every uj that {$(8d&1(uj), _)=q$ (=(q, r, _)). If
v is not a result of any such merging in the previous level,
then let u # Gid

be such that u w�_ v. We have,

W(v)=W(u) b _=W(8d&1(u)) b _. (12)

If mu�m0 , then 8d&1(u) is a (single) dominant major copy
of some state r # Qd&1 . This case is very similar to the pre-
vious case (in which there are several dominant major
copies of r), and we let 8d (v)=(q, r, _) be a major copy of
q, where q={(r, _). If mv�m0 , we choose (q, r, _) to be a
dominant copy of q (and otherwise, it is non-dominant). In
any case, we set {(8d&1(u), _)=(q, r, _). Since 8d&1(u) is a
single dominant copy of r, then W(8d (v))=W(8d&1)) b _,
which by Eq. (12) equals W(v). If mu<m0 , then 8d&1(u) is
a non-dominant copy of some r in Qd&1 . In such a case we
set 8d (v)=(q, 8d&1(u), _) (where as before q={(r, _)). By
definition, 8d (v) is a minor copy, but since the only edge
entering v goes out of u, mv�mu<m0 , which is consistent
with the lemma statement. Finally, since there is only a
single edge (which is labeled _) entering 8d (v) (going out of
8d&1(u)), we have that W(8d (v))=W8d&1(u)) b _, which
by Eq. (12) equals W(v). K

Proof of Lemma 5.3. In order to prove Claim (1) we
show (using an inductive argument) that the total weight in
M$ of the dominant copies of every state q # Qd for which
PM(q)�=2 is at least 1&d=3 of the weight of q.

For d=1: The number of copies of each state in Q1 is at
most |7|. By the goodness of the sample, for each copy q$
whose weight is greater than 2=0 , mq$�m0 , and thus by
Lemma 5.2, q$ is dominant. Hence the total weight of the
dominant copies is at least =2&2 |7| =0 . Based on our
choice of =2 and =3 , the total weight is therefore at least
(1&=3) =2 .

For d>1: By the induction hypothesis, the total weight
of the dominant major copies of a state r in Qd&1 is at least
(1&(d&1) =3) PM(r). For q # Qd , the total weight of the
major copies of q is thus at least

:
r, _: r �_ q

(1&(d&1) =3) PM(r) } #(r, _)

=(1&(d&1) =3) PM(q). (13)

There are at most n |7| major copies of q, and hence the
total weight of the non-dominant ones is at most 2n |7| =0

<=3=2 and the claim follows.

We next prove Claim (2). We break the analysis into two
cases. If #(q, _)�#min+=1 , then since #̂(q̂, _)�#min by
definition, and =1�=2�(8(|7|+1)), if we choose #min=
=�(4(|7|+1)), then #(q, _)�(#̂(q̂, _)�1+=�2, as required.

If #(q, _)>#min+=1 , then let x =
def #(q, _)&#min&=1>0.

Based on our choice of =2 and =3 , for every d�D, =2(1&d=3)
�2=0 . By the goodness of the sample, and the definition of
#̂(} , }), we have that

#̂(q̂, _)�(#(q, _)&$1)(1&(|7|+1) #min)+#min (14)

=(x+#min)(1&=�4)+#min (15)

�
x+#min(1+=�2)

1+=�2
�

#(q, _)
1+=�2

. (16)

K

ACKNOWLEDGMENTS

We thank an anonymous COLT'95 committee member for her�his care-
ful reading and very helpful comments. Special thanks to Andreas Stolcke
for helpful comments and for pointing us to Ref. [4]. We also thank Ilan
Kremer, Yoav Freund, Mike Kearns, Ronitt Rubinfeld, and Rob Schapire
for helpful discussions. This research has been supported in part by the
Israeli Ministry of Sciences and Arts and by the Bruno Goldberg endow-
ment fund. Dana Ron thanks the Eshkol fellowship and the National
Science Foundation for their support. Yoram Singer acknowledges the
Clore Foundation for its support. Most of this research was done while
Dana Ron and Yoram Singer were at the Hebrew University.

151ACYCLIC PROBABILISTIC FINITE AUTOMATA

File: DISTL2 155520 . By:AK . Date:04:06:98 . Time:09:35 LOP8M. V8.B. Page 01:01
Codes: 9344 Signs: 3321 . Length: 56 pic 0 pts, 236 mm

REFERENCES

1. N. Abe and M. Warmuth, On the computational complexity of
approximating distributions by probabilistic automata, Mach. Learn-
ing 9 (1992), 205�260.

2. L. E. Baum and T. Petrie, Statistical inference for probabilistic func-
tions of finite state Markov chains, Ann. Math. Statist. 37 (1966).

3. A. Blum, M. Furst, M. J. Kearns, and R. J. Lipton, Cryptographic
primitives based on hard learning problems, in ``Pre-Proceedings of
CRYPTO '93,'' pp. 24.1�24.10, 1993.

4. R. C. Carrasco and J. Oncina, Learning stochastic regular grammars
by means of a state merging method, in ``The 2nd International Collo-
quium on Grammatical Inference and Applications,'' pp. 139�152,
1994.

5. F. R. Chen, Identification of contextual factors for pronounciation
networks, in ``Proceedings of IEEE Conference on Acoustics, Speech
and Signal Processing,'' pp. 753�756, 1990.

6. Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R. E. Schapire, and
L. Sellie, Efficient learning of typical finite automata from walks, in
``Proceedings of the 24th Annual ACM Symposium on Theory of
Computing,'' pp. 315�324, 1993.

7. W. Hoeffding, Probability inequalities for sums of bounded random
variables, Amer. Statist. Assoc. J. 58 (1963), 13�30.

8. M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and
L. Sellie, On the learnability of discrete distributions, in ``The 25th
Annual ACM Symposium on Theory of Computing,'' 1994.

9. M. J. Kearns, Efficient noise-tolerant learning from statistical queries,
in ``Proceedings of the Twenty-Fifth Annual ACM Symposium on the
Theory of Computing,'' pp. 392�401, 1993.

10. R. Plamondon, C. Y. Suen, and M. L. Simner, Eds., ``Computer

Recognition and Human Production of Handwriting,'' World Scien-
tific, Singapore, 1989.

11. L. R. Rabiner, A tutorial on hidden Markov models and selected
applications in speech recognition, Proc. IEEE (1989).

12. L. R. Rabiner and B. H. Juang, An introduction to hidden Markov
models, IEEE ASSP Mag. 3 (1986), 4�16.

13. M. D. Riley, A statistical model for generating pronounciation
networks, in ``Proceedings of IEEE Conference on Acoustics, Speech
and Signal Processing,'' pp. 737�740, 1991.

14. D. Ron, Y. Singer, and N. Tishby, Learning probabilistic automata
with variable memory length, in ``Proceedings of the Seventh Annual
Workshop on Computational Learning Theory,'' 1994; Mach. Learn-
ing, to appear.

15. D. Sankoff and J. B. Krusbal, ``Time Warps, String Edits and Macro-
molecules: The Theory and Practice of Sequence Comparison,''
Addison�Wesley, Reading, MA, 1983.

16. Y. Singer, ``What Has Been Will Be Again: Machine Learning
Approach to the Analysis of Natural Language,'' Ph.D. thesis, The
Hebrew University of Jerusalem, 1995.

17. Y. Singer and N. Tishby, Dynamical encoding of cursive handwriting,
Biol. Cybern. 71 (1994), 227�237.

18. A. Stolcke and S. Omohundro, Hidden Markov model induction
by Bayesian model merging, in ``Advances in Neural Information
Processing Systems,'' Vol. 5, Morgan Kaufmann, San Mateo, CA,
1992.

19. C. C. Tappert, C. Y. Suen, and T. Wakahara, The state of art in on-line
handwriting recognition, IEEE Trans. Pattern Annal. Mach. Int. 12
(1990), 787�808.

20. B. A. Trakhtenbrot and Ya. M. Brazdin', ``Finite Automata: Behavior
and Synthesis,'' North-Holland, Amsterdam, 1973.

� � � � � � � � � � � � � � � � � � � �

152 RON, SINGER, AND TISHBY

