Sistemas "Inteligentes" de Transportes (ITS) [Intelligent Transport Systems] Parte A – Revisão de Modelos Macroscópicos

Como aplicar simulações à decisões sobre ITS?

- Representar o sistema de transportes em um modelo computacional (vias de transporte urbano e interurbano, redes de trem, metrô etc)
- Verificar se essa representação é precisa o suficiente
- Introduzir mudanças (ITS) que considera serem benéficas no modelo computacional
- Simular o modelo com as mudanças feitas e coletar resultados (índices significativos)
- Comparar as diferentes soluções através de cenários
- Adotar a solução mais eficaz (a que reduza mais o congestionamento, a mais barata, a mais rápida ou, ainda, a que combine melhor esses benefícios na quantidade desejada)

"Três" abordagens em simulação

- Para a simulação de tráfego e transporte público podem-se contemplar <u>"três"</u> tipos de abordagem, de acordo com o nível de detalhamento e abrangência da simulação (Poyares, 2000; TRB, 2000):
 - Macroscópica,
 - Mesoscópica e
 - Microscópica

POYARES, C. N. Critérios para Análise dos Efeitos de Políticas de Restrição ao Uso de Automóveis em Áreas Centrais. Tese de Mestrado, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil. 2000

TRB. Transit Capacity and Quality of Service Manual (TCQSM), 3ª Edição. Disponível em http://www.trb.org/Main/Blurbs/169437.aspx

Modelos Computacionais de Simulação de

Tráfego

MODELOS	APLICAÇÃO		
Macroscópico	Planejamento de intervenções estratégicas		
	Simulação de médias/grandes áreas		
	Implementação de novas vias		
	Duplicação de vias		
Mesoscópicos	Análises de intervenções táticas		
	Simulação de médias/grandes áreas		
	Implementação de novas vias		
	Duplicação de vias		
	Definição de rotas de veículos		
	Verificação das mudanças de rotas de veículos segundo		
	estímulos		
Microscópico	Análises de intervenções operacionais		
	Simulação de pequenas/médias áreas		
	Análises de esquemas alternativos de controle de tráfego		
	Alteração na operação semafórica		
	Entrada e saída - acessos "agulhas"		
	Definição de rotas de veículos		
	Análise de esquemas de operação de tráfego em área		
	Verificação das mudanças de rotas de veículos segundo estímulos		

Fonte: Peron (2015), adaptado de Maia (1978) e Medeiros (2012)

Planejamento de Transportes (*)

- Nível Estratégico
 - Garantir que a oferta de transportes esteja em um nível de serviço adequado para um período de longo prazo
 - Necessita de dados que caracterizem a região
 - população
 - fatores econômicos e
 - pesquisas de origem e destino (O/D)
 - Adequar a oferta de transporte à demanda da população
- Neste nível também se encontram os modelos macroscópicos de tráfego
 - Permitem simular as políticas e estratégias que os gestores pretendem implantar, avaliando seus resultados e julgando sua viabilidade

Modelos macroscópicos de tráfego

- Principais tipos de aplicações:
 - implementação de novas vias de tráfego [Lab ITS12]
 - duplicação de vias e
 - implantação de corredores exclusivos de transporte público (AQUINO, 2013)
- Softwares de Macromelos mais conhecidos:
 - TransCAD
 - AIMSUN
 - EMME e
 - VISUM

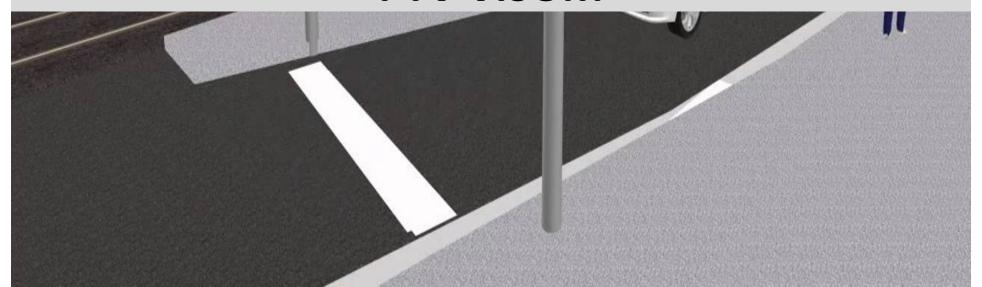
Modelos de Simulação de Tráfego: Macromodelos

- O fluxo é tratado como fluído e o modelo segue a base das leis da hidrodinâmica e as equações usadas descrevem o fenômeno das ondas de choque do tráfego
- O fluxo é tratado de modo indivisível
- São utilizados nos estudos de planejamento de longo prazo e em grandes redes

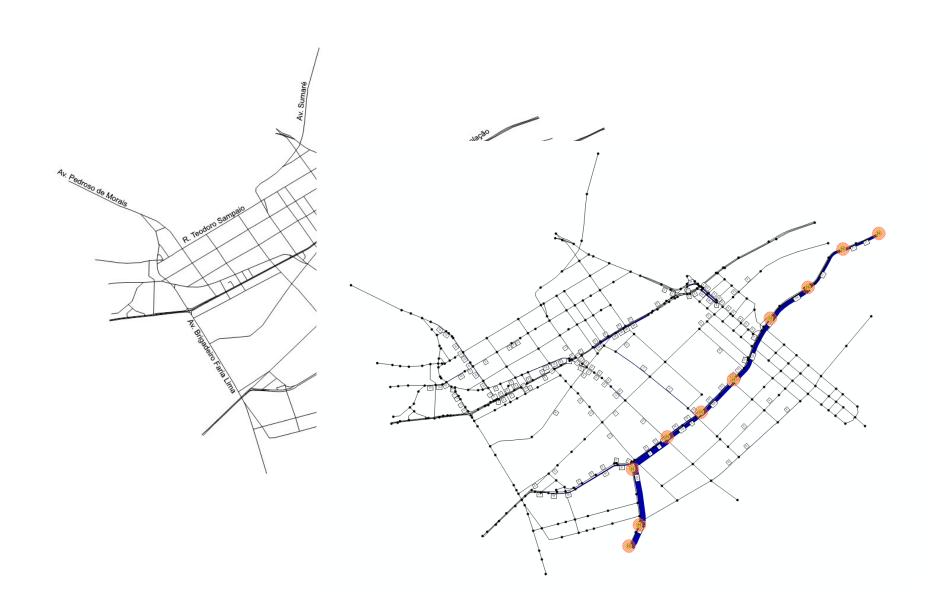
Modelos macroscópicos de tráfego

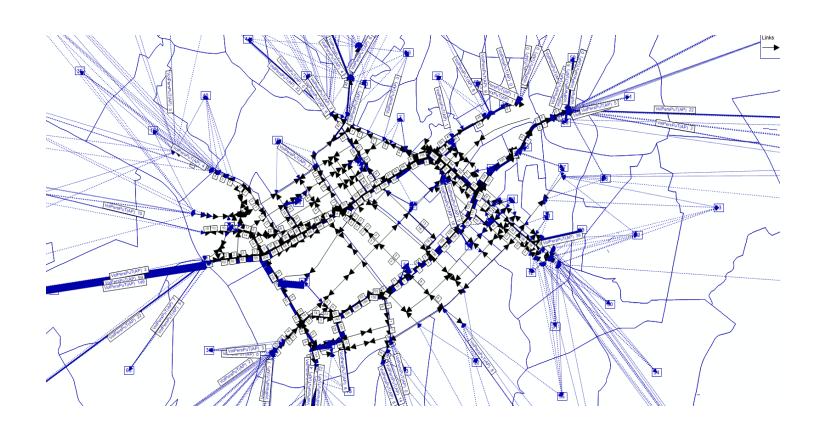
- Sua lógica consiste em definir áreas de interesse num mapa e indicar as vias desejadas para se analisar o tráfego de veículos
- Pode-se observar
 - o fluxo total desejado entre as áreas de interesse
 - o tempo necessário para chegar a qualquer região do mapa
 - partindo de um ponto pré-definido
- De forma específica (*):
 - é possível medir velocidades, densidades e fluxos de forma agregada e relativa aos valores médios dos vários arcos / links (considerados constantes ao longo do mesmo), chegando a uma representação estática da rede
 - um único estado da rede ("foto") // Macrossimulação x MacroModelo
 - avaliado a partir de determinadas condições específicas
 - que geralmente dizem respeito as características topológicas e viárias da rede

(*): AQUINO, 2013; ARIOTTI et al., 2004; MAIA, 2007



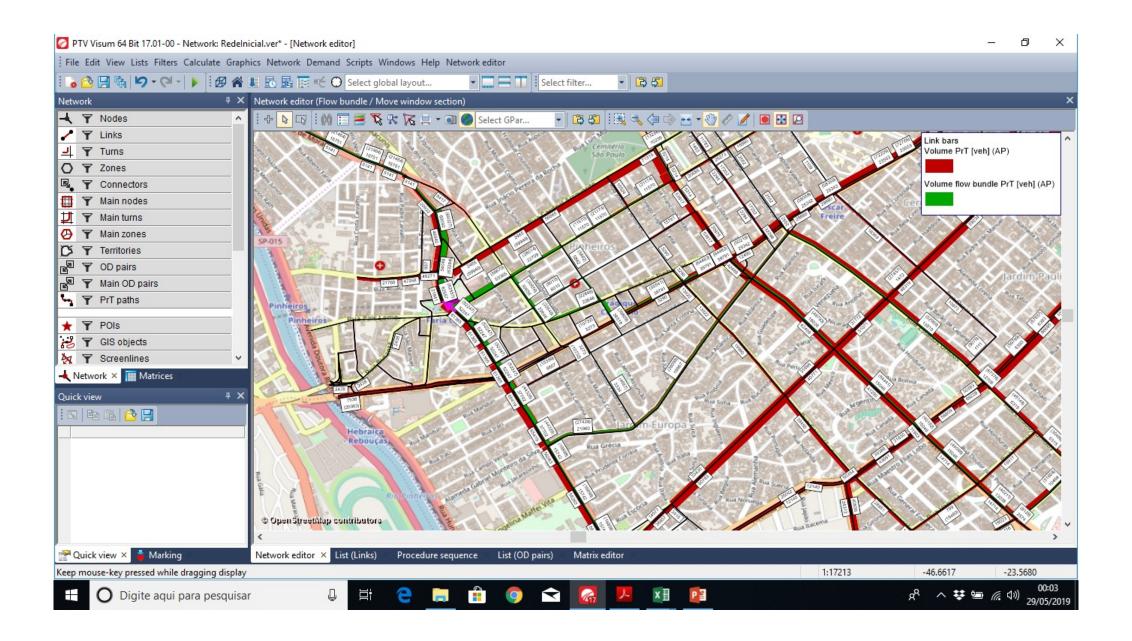
Macro simulation with

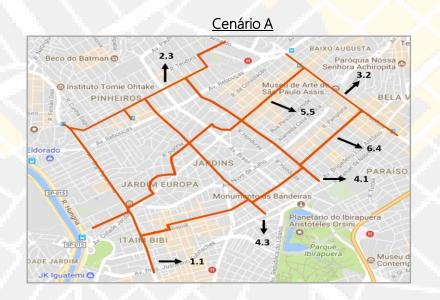

PTV VISUM



Corredor de ônibus Santo Amaro - Nove de Julho

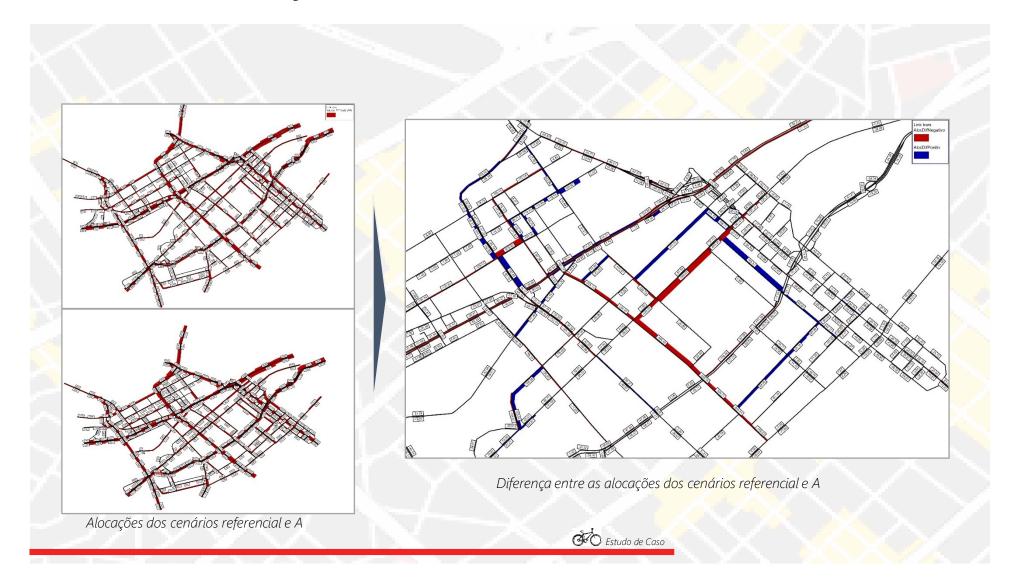
Corredor	Quantidade de PMV's	Exibe Mensagem de Previsão		
Pirituba/Lapa/Centro	60	SIM		
Campo Limpo/Rebouças/Centro	16	SIM		
Parelheiros/Rio Bonito/Santo Amaro	7	NÃO		
Santo Amaro/9 de Julho/Centro	58	SIM		
Expresso Tiradentes	8	SIM		
TOTAL	149			

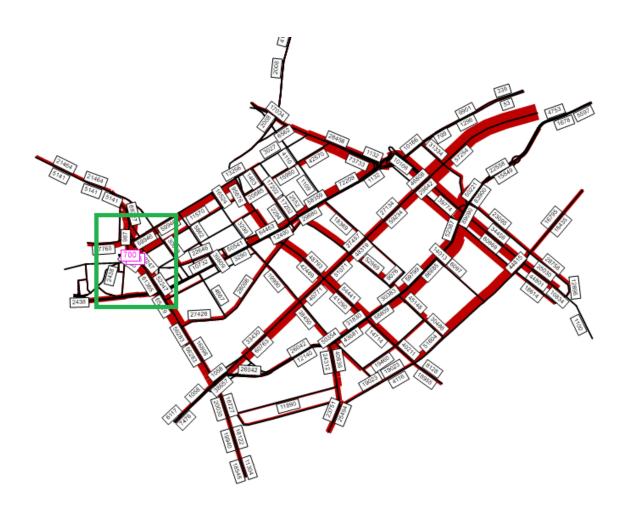

Fonte: Informe SPTrans, 2009



Development of metodological segment choice depending on his adequability to the cicloviary system

Resultados e configuração da rede ótima

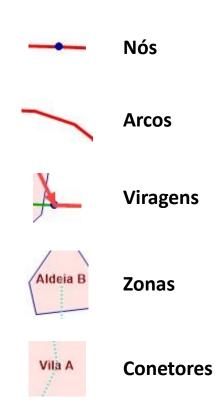

Classificação	Trecho 1	Trecho 2	Trecho 3	Trecho 4	Trecho 5	Trecho 6
1º	1.1	2.3	3.2	4.1	5.5	6.4
2 º	1.4	2.1	3.1	4.2	5.2	6.3
3º	1.2	2.2	3.5	4.3	5.1	6.2
4 °	1.3	2.4	3.4		5.3	6.1
5°			3.3		5.4	

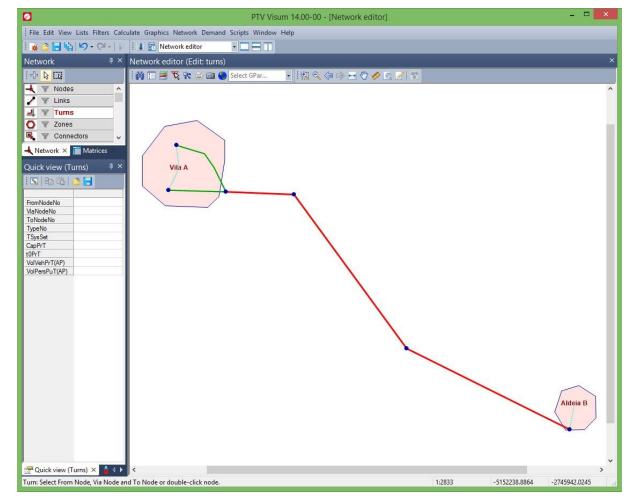


Macrossimulação dos resultados

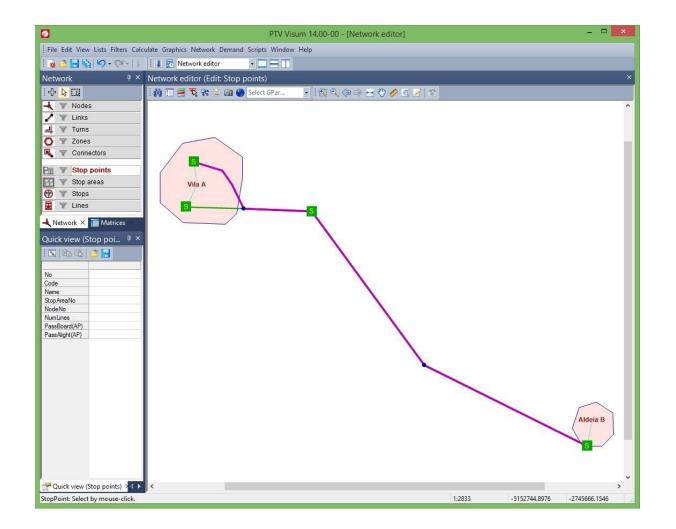
Parte B – Construção da Rede no Macromodelo

- Para começar a simular uma rede, assim como no software VISSIM, primeiro é necessário construí-la
- Os elementos de rede são "parecidos" com os do VISSIM, no entanto, existem alguns a mais
- 1º) Sobre uma imagem de "background" ou "imagem de fundo", importada de serviços de mapas como o Open Street Maps, usam-se três elementos: links, nós, e turns
- 2º) Criam-se zonas, polígonos responsáveis por representar grandes regiões da área de simulação
 - Para efeitos de simulação, a zona é representada com todas as suas propriedades por um elemento pontual chamado centróide
 - Todo o tráfego oriundo e entrante, numa zona, é carregado em seu centróide
 - Conecta-se, através do objeto "conectores", o centróide aos nós que representam adequadamente a origem do tráfego em cada uma das zonas

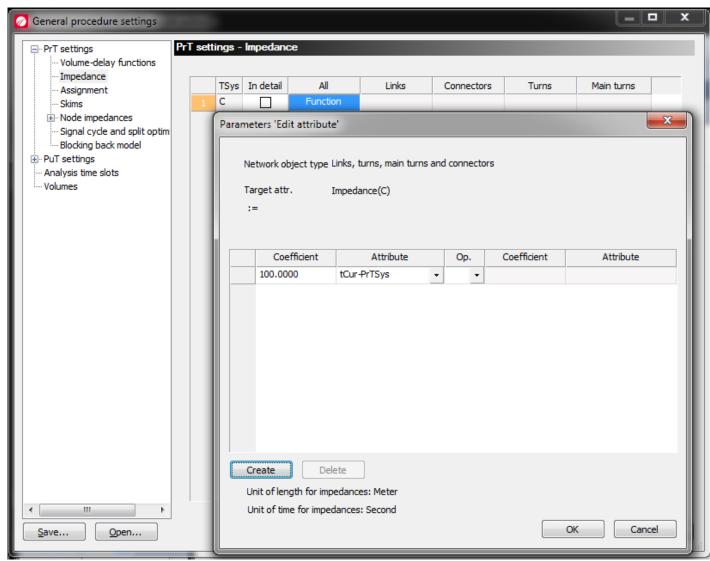

- A construção de redes em macromodelos envolve geralmente três elementos: *links*, nós, e *turns*.
- Os links representam as vias:
 - Suas características devem ser inseridas pelo usuário, de modo que o software considere essas informações no momento da simulação
 - O usuário deve informar os sentidos de direção, o número de faixas, a capacidade e uma velocidade de referência, que pode ser a velocidade de fluxo livre (Engenharia de Tráfego)
 - Após a construção deste elemento no modelo, o programa calcula seu comprimento, que será importante para a determinação das velocidades médias nas vias e dos tempos de viagens


- Os nós e as turns são recursos desenvolvidos para a construção de redes
 - eles não representam diretamente algo presente no mundo real
- Os nós determinam o início e o término dos links
 - Primeiro se posicionam os nós e, a partir deles constroem-se os links, indo de um nó a outro
 - Servem para marcar as localidades importantes da rede, tais como as interseções viárias
- As turns são elementos que determinam os movimentos permitidos em intersecções
 - E quais os tipos de veículos que podem realizá-los

• Objetos de rede elementares



Objetos elementares da rede TP



- Função de impedância (ou custo generalizado)
 - indica a "dificuldade" de um veículo passar em cada via da rede
 - Simula as condições atrativas ou repulsivas de fluxo de tráfego
 - Exemplos:
 - uma boa pavimentação, iluminação e velocidade permitida elevada podem ser consideradas condições atrativas da via e que, portanto, reduzem a impedância
 - em contraste, imediações inseguras, má pavimentação e má iluminação são condições que desencorajam veículos a trafegar na via e, portanto, aumentam sua impedância

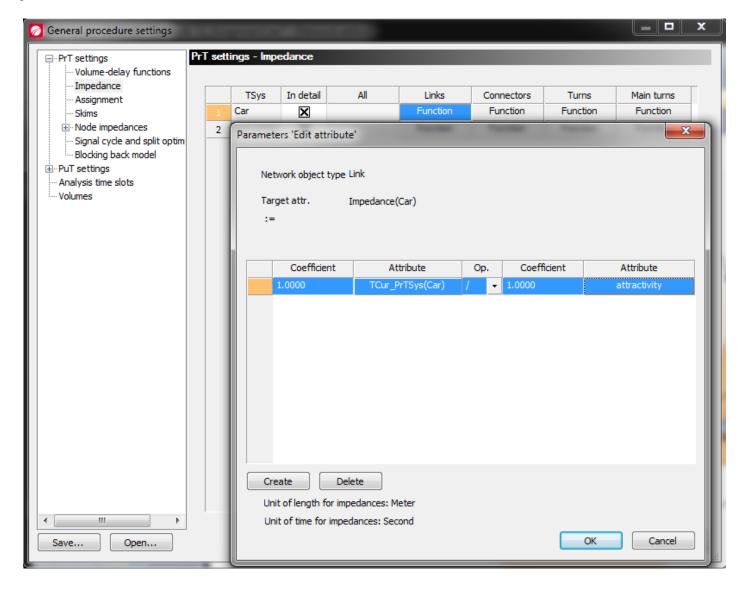
Função de Impedância

A pesquisa de caminhos mais curtos é sempre a base da impedância, e pode resultar de vários atributos do modelo de rede.

Sem alterar os parâmetros de ajuste das funções de impedância, esta corresponde à soma da impedância de todos os elementos de rede.

Como os valores da impedância são dados em valor inteiro, o valor do tcur é multiplicado por um fator de 100.

Função de Impedância

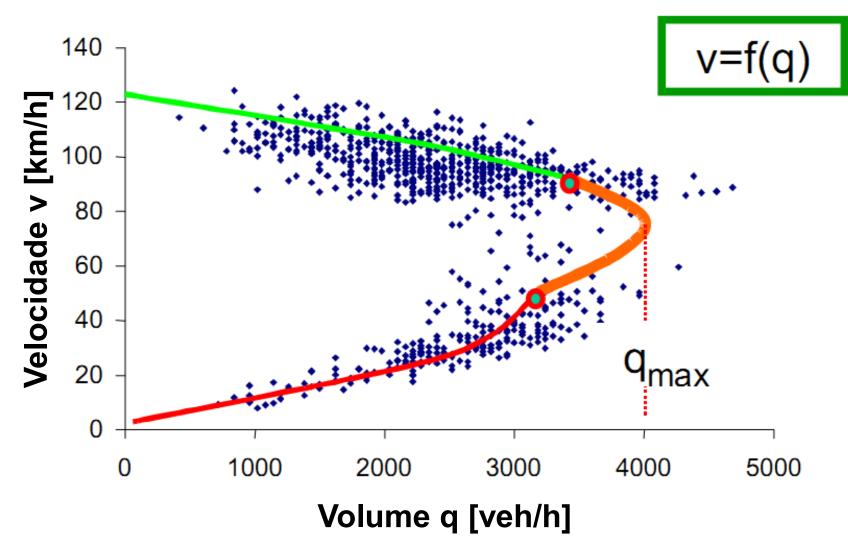

Esta função pode também ser mais detalhada.
Basta ativar a opção "In detail".

Podemos utilizar atributos definidos pelo utilizador (user defined attribute - UDA) como a atratividade dos arcos na formula da impedância.

Esta possibilidade pode ser importante para a calibração da alocação.

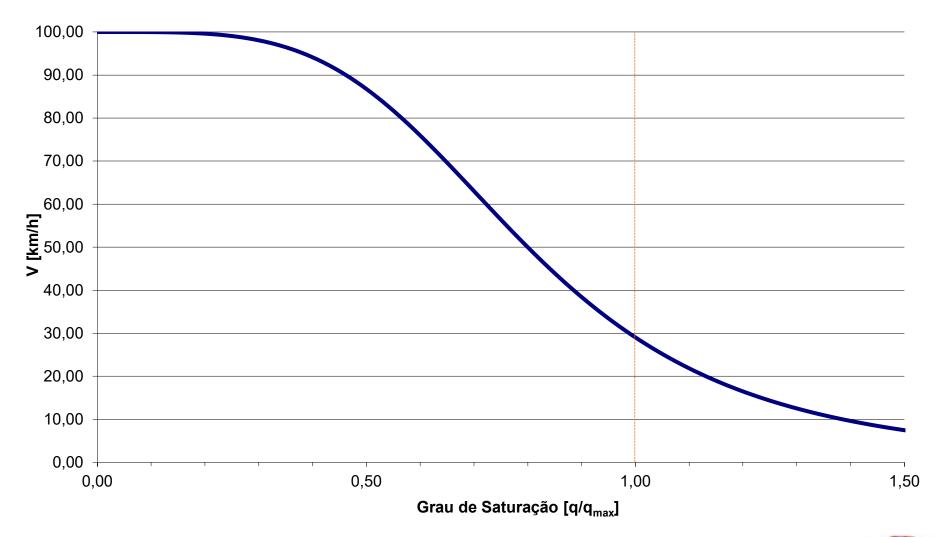
Por exemplo, aumentando o UDA do arco e, desta forma, reduzindo a sua impedância, isso irá atrair mais tráfego durante a alocação.

Neste exemplo, o UDA tem um valor "default" de 1 para todos os arcos, o que quer dizer que não terá nenhum efeito no resultado da alocação.



- Função de degradação de velocidade
 - Rege como os veículos aceleram e desaceleram com base em interrupções de movimento (semáforos, conversões de sentido) e congestionamentos
 - Volume Delay Functions (VDF)
 - CET/SP: Bureau of Public Roads (BPR)

Diagrama volume-velocidade – relação fundamental

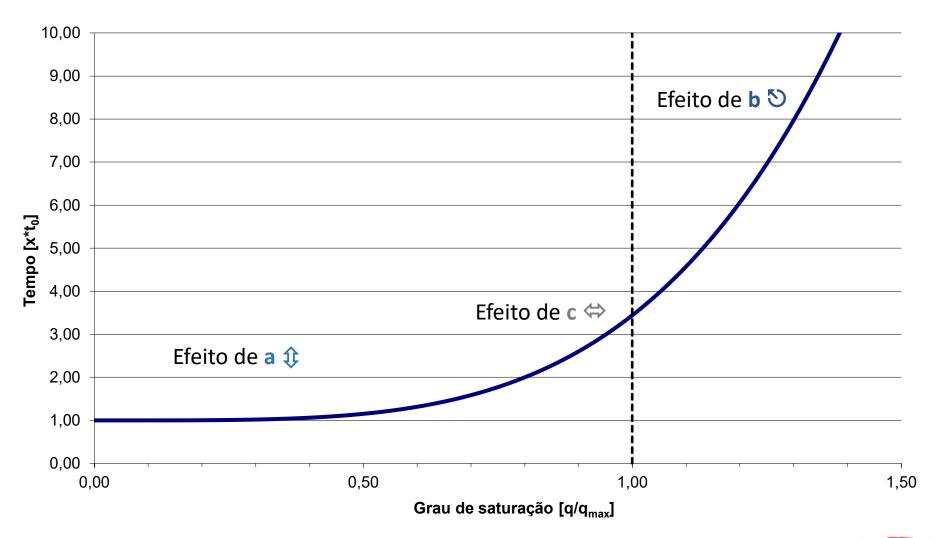

Diagrama volume-velocidade

- É a base para a definição da função de degradação de velocidade
- Pretendemos compreender o comportamento do tráfego, isto é, as escolhas de caminho feitas pelos utilizadores a partir do conhecimento da situação do tráfego geral na rede, em especial quando esta está perto do limite (qmax)
- A partir destes diagramas é possível notar que não haja uma única função ao longo de toda a curva – pelo contrário, diferentes curvas de regressão podem ser assumidas para diferentes condições de tráfego.

Diagrama velocidade-saturação

Função de degradação de velocidade (VDF): BPR (Bureau of Public Roads)

- A base para os procedimentos de alocação do transporte privado é a seleção da função de degradação da velocidade (VDF), as quais podem ser definidas para cada elemento da rede.
- As VDF podem ser definidas para:
 - Arcos
 - Nós
 - Viragens
 - Conectores
- A descrição matemática da primeira função é :


```
tcur = t0 * \{1 + a * [q/(c * qmax)] ** b\}
```

• Esta função é chamada BPR (Bureau of Public Roads) e foi a primeira curva de regressão publicada no HCM (Highway Capacity Manual) de 1964.

Função de degradação de velocidade (VDF): BPR (Bureau of Public Roads)

