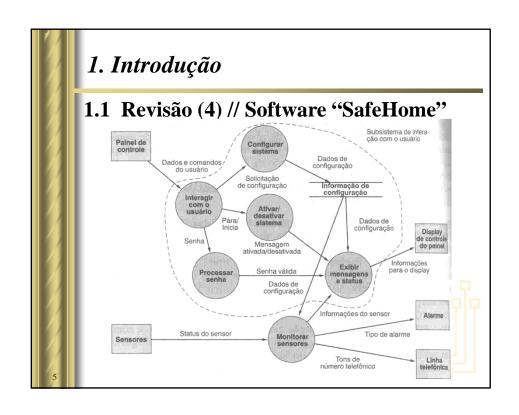
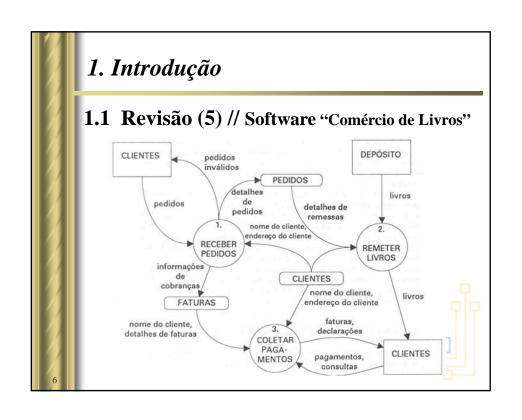


1. Introdução

1.1 **Revisão** (2)


- A abordagem de projeto orientado ao Fluxo de Dados é baseada nos seguintes agentes:
 - Diagrama de Fluxo de Dados (DFD).
 - Dicionário de Dados (DD).
 - Especificação de Processos (EP).
 - Diagramas Entidade Relacionamento (DER).


3

1. Introdução

1.1 Revisão (3)

- O Diagrama de Fluxo de Dados (DFD):
 - É um modelo que permite representar o sistema como uma rede de processos:
 - Salienta as funções que precisam ser implementadas e os fluxos de dados manipulados por estas funções.
 - Técnica de análise gráfica que procura representar o fluxo de informação:
 - Ressalta as sucessivas transformações que sofrem ao longo dos diferentes processos do sistema.
 - Ferramenta gráfica que transcreve a lógica dos procedimentos do sistema em estudo:
 - Descreve o sistema com o nível de detalhe que se deseja.

2.1 Definições

- É a segunda ferramenta importante para o projeto de software.
- É uma listagem única e organizada de todos os elementos de dados pertinentes ao sistema.
- Possui definições precisas e rigorosas para que o usuário e o engenheiro de software possam conhecer as estruturas de entradas e saídas, envolvendo:
 - Depósitos de Dados.
 - Fluxo de Dados.
 - Entidades e Relacionamentos com Atributos.

4,

2. Dicionário de Dados

2.2 Dicionário de Dados Deve Descrever:

- O significado dos fluxos e depósitos mostrados nos diagramas de fluxo de dados.
- A composição de pacotes agregados que se movimentam pelos fluxos.
 - -Ex: Endereço_Cliente (Rua, Número, Cidade, Etc).
- A composição dos registros de dados que constitui o depósito de dados.
- Tipos e unidades dos dados (variáveis) que compõem os fluxos e depósitos de dados.
- Os detalhes dos relacionamentos entre os depósitos de dados realçados no Diagrama de Entidades-Relacionamentos.

2.3 Organização e Simbologia:

- Na definição dos dados são utilizados os seguintes símbolos:
 - = → é composto de
 - + → e
 - () → opcional (pode estar presente ou ausente)
 - [] → escolha uma das alternativas
 - separador de alternativas em []
 - # > identificador (chave) de um arquivo
 - * * > delimitador de comentário

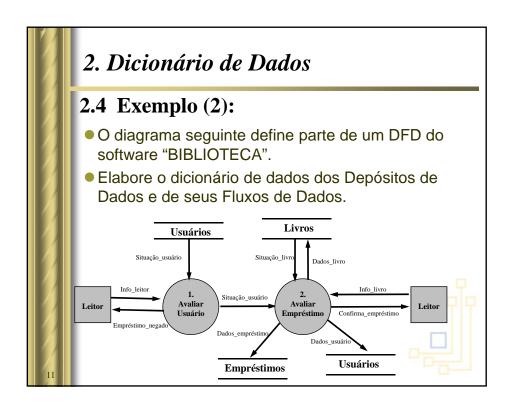
n{ }m → delimitador de quantidade n ⇒ quantidade mínima m ⇒ quantidade máxima

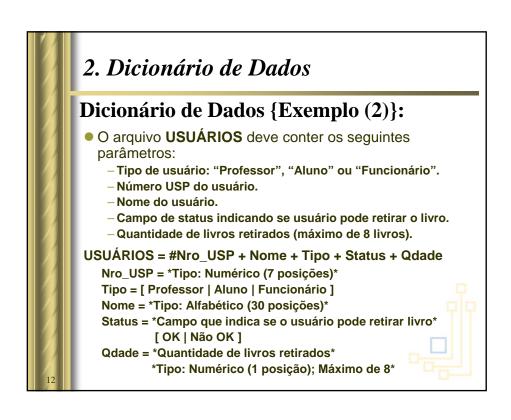
2. Dicionário de Dados

2.4 Exemplo (1):

- Seja um depósito de dados (arquivo), denominado "Alunos", contendo registros sobre os mesmos.
- Cada registro é composto por: nome do aluno, sexo, número USP, endereço e telefone.
- Definir o item do Dicionário de Dados que corresponderá a este arquivo.

ALUNOS = #Nro_USP + Nome + Sexo + Endereço


Nome = *Nome do Aluno*


Tipo: Alfabético (30 posições)

Sexo = [M | F]

Endereço = *Endereço Residencial do Aluno*

Tipo: Alfanumérico (60 posições)

Dicionário de Dados {Exemplo (2)}:

- O arquivo **LIVROS** deve conter os seguintes parâmetros:
 - Código do livro.
 - Título do livro.
 - Campo indicando se o livro está disponível.
 - Local (prateleira) em que se encontra o livro (Opcional).

LIVROS = #Código + Título + Disponibilidade + (Local)

Cód_Livro = *Tipo: Numérico (8 posições)*

Título = *Tipo: Alfanumérico (30 posições)*

Disponibilidade = *Indica se o livro está disponível ou não* [Sim | Não]

13

2. Dicionário de Dados

Dicionário de Dados {Exemplo (2)}:

- O arquivo EMPRÉSTIMOS deve conter os seguintes parâmetros:
 - Identificação do Empréstimo
 - Número USP do usuário
 - Código do livro
 - Data de saída do livro.
 - Data de devolução do livro.
 - Cada empréstimo pode conter no máximo dois livros.

EMPRÉSTIMOS = #Identificador + Nro_USP + 1{Reg_Livros}2

Identificação = *Tipo: Numérico (8 posições)*

Nro_USP = *Tipo: Numérico (7 posições)*

Reg_Livros = Cod_livro + Data_Saída + Data_Devolução

Cod_Livro = *Numérico (8 posições)*

Data_Saída = *Formato data: dd/mm/aa*

Data_Devolução = *Formato data: dd/mm/aa*

Dicionário de Dados {Exemplo (2)}:

Descrição dos FLUXOS DE DADOS (1):

Info_leitor = *Dados de leitor*
 Nro_USP = *Tipo: Numérico (7 posições)*

Empréstimo_negado = *Rejeição do empréstimo*
"Usuário em débito ou já retirou 8 livros"

Situação_usuário = *Descreve se usuário pode retirar livro* Status = [OK | Não OK]

Info_livro = *Informação de livro a ser emprestado*

Cod_livro = *Tipo: Alfabético (30 posições)*

Situação_livro = *Informa se livro está disponível* Disponibilidade = [Sim | Não]

15

2. Dicionário de Dados

Dicionário de Dados {Exemplo (2)}:

Descrição dos FLUXOS DE DADOS (2):

Dados_livro = *Dados para atualização de disponibilidade*

Disponibilidade = [Sim | Não]

Dados_empréstimo = *Dados para inclusão de empréstimo*

Identificação = *Tipo: Numérico (8 posições)*

Nro_USP = *Tipo: Numérico (7 posições)*

Cod_Livro = *Numérico (8 posições)*

Data_Saída = *Formato data: dd/mm/aa*
Data_Devolução = *Formato data: dd/mm/aa*

Dados_usuário = *Dados para atualização de quantidade*

Qdade = *Tipo: Numérico (1 posição)*

Confirma_empréstimo = *Faz confirmação do empréstimo*

["Emite recibo" | "Comunica indisponibilidade"]

3. Especificação de Processos

3.1 Definições

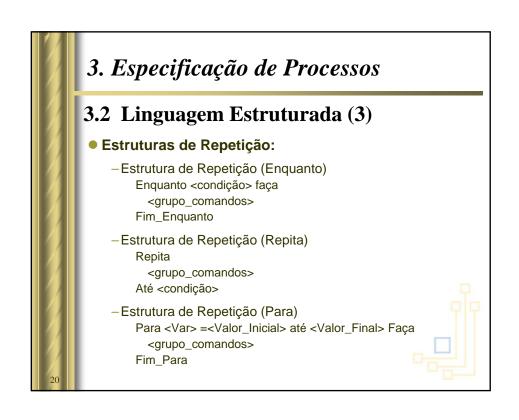
- É a terceira ferramenta importante para o projeto de software.
- Todos os processos devem ser especificados.
- Encarrega de definir o que deve ser feito dentro de um processo para transformar entradas em saídas.
- Deve ser detalhado o suficiente para ser transformada em um procedimento computacional.
- Pode ser confeccionada de várias formas:
 - -Linguagem Estruturada (Pseudocódigo).
 - -Tabelas de Decisão.
 - -Fluxograma
 - -Condições pré/pós, etc.

17

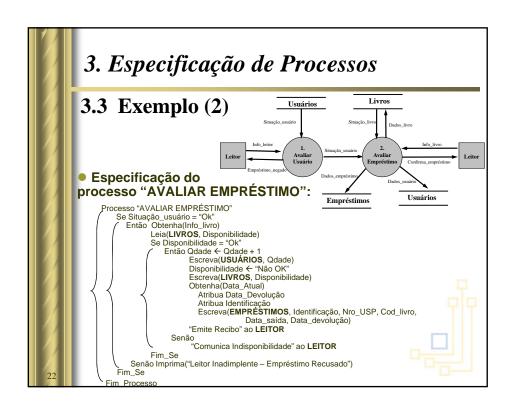
3. Especificação de Processos

3.2 Linguagem Estruturada (1)

- Descrição detalhada dos passos que definem a lógica associada com um procedimento (processo).
- Independe da linguagem de programação que será adotada na codificação.
- Estruturas de Comparação:
 - Estrutura de Comparação (1a. Forma)


Se <condição> Então <Grupo_instrução_1> Fim_Se

- Estrutura de Comparação (2a. Forma)


Se <condição> Então <Grupo_instrução_1> Senão <Grupo_instrução_2> Fim_Se

3. Especificação de Processos 3.2 Linguagem Estruturada (2) • Estruturas de Comparação: - Estrutura de Comparação (3a. Forma) Escolha <opção> 1: <grupo_comandos_1> 2: <grupo_comandos_2> (...) n: <grupo_comandos_n> Fim_Escolha • Estruturas de Entrada/Saída: - Estrutura de Entrada Obtenha(<lista_variáveis>) ou Leia(<lista_variáveis>) - Estrutura de Saída Escreva(<lista_variáveis>) ou Imprima(<lista_variáveis>)

