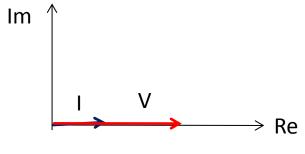
POTÊNCIA EM CORRENTE ALTERNADA

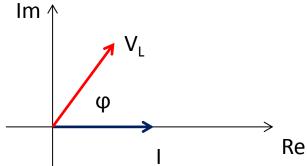
EXPERIÊNCIA 4

SUMARIO


- Introdução
- Fator de potência (FP)
- Fatores que influenciam no FP
- Desvantagens de FP de valor baixo
- Correção do fator de potência
- Métodos para a correção do FP

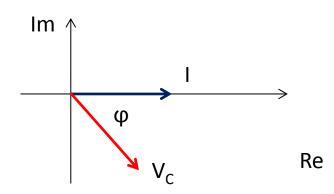
Introdução teórica

Carga resistiva:


$$\hat{V} = R\hat{I}$$

V e I em fase (I como referência)

Carga Indutiva


$$\hat{V} = Z_L \hat{I} \\
Z_L = R + j\omega L \longrightarrow \varphi = artan\left(\frac{\omega L}{R}\right) \longrightarrow$$

Carga capacitiva

$$\hat{V}_C = Z_C \hat{I} \longrightarrow \varphi = -\arctan\left(\frac{1}{\omega CR}\right) \longrightarrow$$

$$Z_C = R - j \frac{1}{\omega C}$$

Introdução

Potência Instantânea

$$v(t) = V_P \cos(\omega t), \quad i(t) = I_P \cos(\omega t - \varphi)$$

$$p(t) = V_{ef}I_{ef}\cos(\varphi) + V_{ef}I_{ef}\cos(2\omega t - \varphi)$$

$$p(t) = v(t)i(t) = V_{ef}I_{ef}\cos(\varphi)(1+\cos(2\omega t)) + V_{ef}I_{ef}sen(\varphi)sen(2\omega t)$$

Potência ativa

Potência reativa

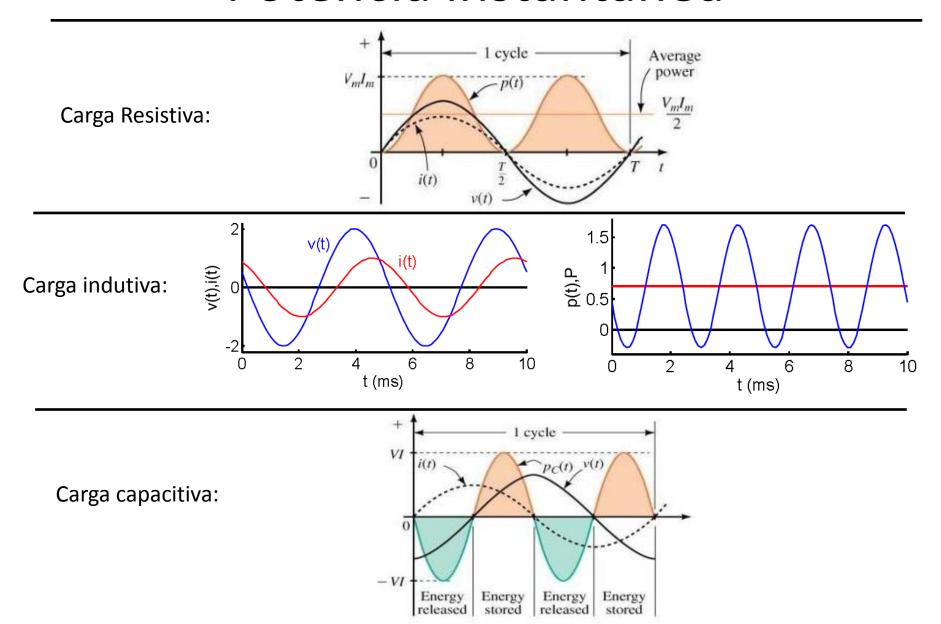
Valor médio da potência

$$P = \frac{1}{T} \int_{0}^{T} v(t)i(t)dt = V_{ef}I_{ef}\cos(\varphi)$$

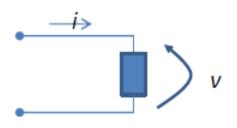
Potência aparente

$$P_{ap} = V_{ef}I_{ef}$$

Fator de Potência

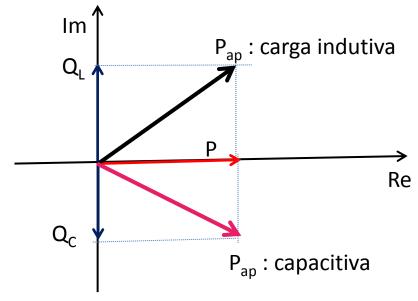

Sinais senoidais

$$FP = \cos(\varphi)$$


Definição mais genérica: sinais periódicos

$$FP = \frac{P}{P_{ap}}$$

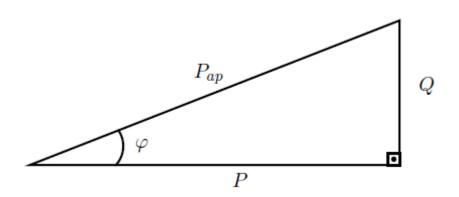
Potência instantânea



Potência ativa e reativa

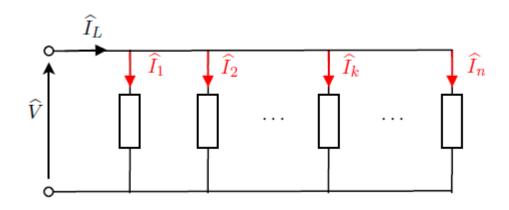
Potência ativa: $P = V_{ef}I_{ef}\cos(\varphi)$

<u>Potência reativa:</u> $Q = V_{ef}I_{ef}sen(\varphi)$


Potência aparente

$$P_{ap} = V_{ef}I_{ef}$$

$$\widehat{P}_{ap} = P + jQ$$


$$\hat{P}_{ap} = \hat{V}\hat{I}^*$$

$$P_{ap} = \sqrt{P^2 + Q^2}$$

Principio de superposição de potências ativas e reativas

Circuito monofásico

Corrente da linha:

$$\widehat{I}_L = \sum_{k=1}^n \widehat{I}_k$$

Potência aparente total:

$$P_{ap} = \widehat{V}\widehat{I}_L^* = \sum_{k=1}^n \widehat{V}\widehat{I}_k^* = \sum_{k=1}^n P_{ap_k}$$

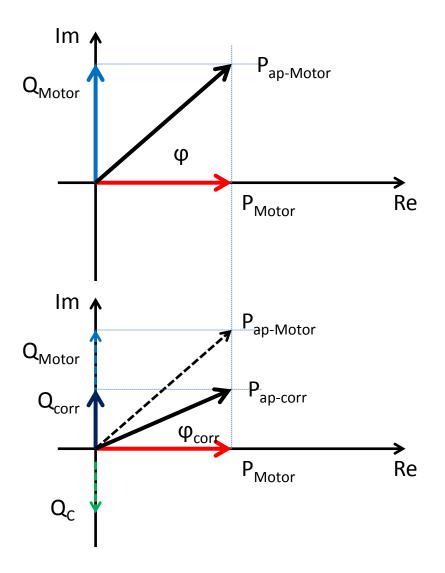
Potência aparente de cada carga

Potência aparente total:

$$P_{ap} = \widehat{V}\widehat{I}_L^* = \sum_{k=1}^n P_k + j \sum_{k=1}^n Q_k$$

Correção do fator de potência (FP)

Carga indutiva sem correção de FP(motor):


Carga indutiva com correção de FP(motor):

$$Q_{corr} = Q_{Motor} + Q_{C}$$

$$Q_C = -V_L^2 \omega C$$

Capacitância para correção de fase

$$C = \frac{Q_{Motor} - Q_{corr}}{V_L^2 2\pi f}$$

Fator de potência de cargas convencionais

S.No.	TYPE OF LOAD	POWER FACTOR
1.	Incandescent lamp	1.0
2.	Are lamp	0.3-0.7
3.	Neon lamp	0.4-0.5
4.	Fluorescent lamp	0.6-0.8
5.	Resistance heater	1.0
6.	Induction heater	0.85
7.	Arc furnace	0.85
8.	Induction furnace	0.6
9.	Arc welding	0.3-0.4
10.	Resistance welding	0.65
11.	Induction motor	0.8

Métodos de correção do FP

1.STATIC CAPACITOR

2.SYNCHRONOUS CONDENSER

3.PHASE ADVANCERSDENSER

