

Monitorização Terapêutica

Profa. TANIA MARCOURAKIS

Dosagem prescrita • adesão ao tratamento **Dosagem administrada** absorção • distribuição biotransformação • excreção **Concentração sérica** difusão passiva transporte ativo Concentração no sítio de ação associação medicamentosa Intensidade do efeito farmacológico

Falta de Resposta Terapêutica

Fármaco inadequado Dose inadequada Diagnóstico incorreto Falta de adesão ao tratamento

COMO AVALIAR A EFICÁCIA DE UM TRATAMENTO?

Avaliação direta da resposta clínica

 crises epilépticas (antiepilépticos), lesões cutâneas (corticoides)

✓ Avaliação do efeito farmacológico do fármaco

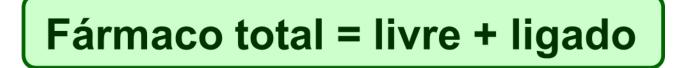
 glicemia (diabetes), tempo de protrombina (anticoagulantes), pressão arterial (hipertensão), escalas de avaliação (doenças psiquiátricas)

✓ Determinação da concentração do fármaco

Monitorização Terapêutica de Fármacos

Concentração nos sítios de ação muitas vezes são impossíveis

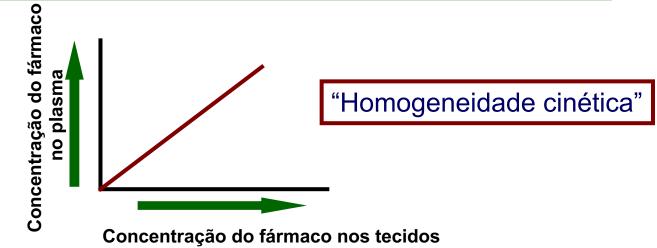
Ex. fenitoína no SNC, digoxina no coração

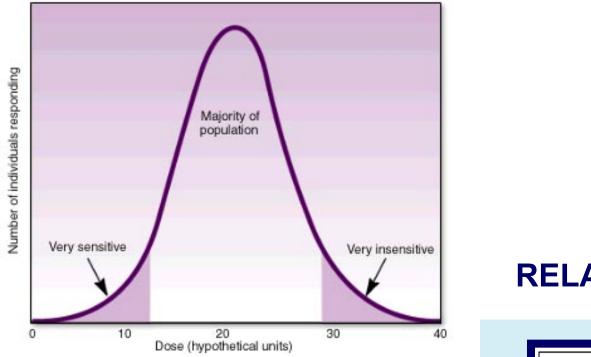

Concentrações plasmáticas tornam-se importantes

Monitorização Terapêutica Objetivos

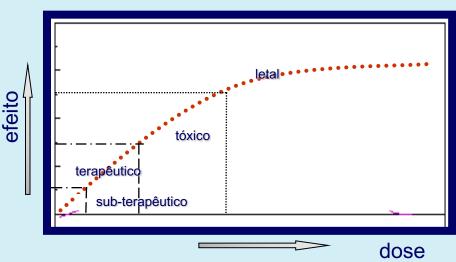
- Otimização do tratamento com tentativa de manter monoterapia
- dos efeitos adversos e evitar intoxicação aguda
- \clubsuit \downarrow dos custos do tratamento

Monitorização Terapêutica

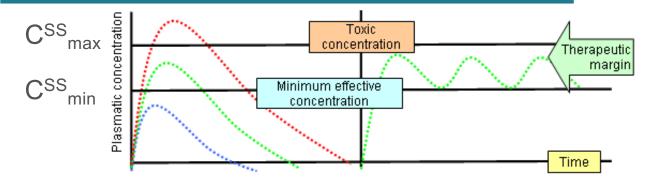

Medida das concentrações de um fármaco no sangue total, soro ou plasma com a finalidade de **individualização** da terapia farmacológica com o objetivo de maximizar a eficácia e minimizar os eventos adversos


Monitorização Terapêutica de Fármacos

Princípio importante na Monitorização Terapêutica


A concentração plasmática reflete a concentração no sítio de ação

RELAÇÃO DOSE X RESPOSTA



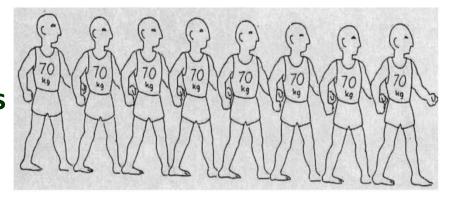
RELAÇÃO DOSE X EFEITO

FAIXA TERAPÊUTICA

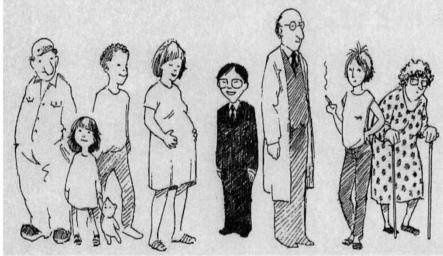
Faixa de concentração plasmática, sanguínea ou sérica do fármaco no estado de equilíbrio que se correlaciona com a curva de eficácia

Fármaco	Faixa terapêutica*	
Digoxina	0,9-2,0 ng/mL	
Fenitoína	10-20 mg/L	
Fenobarbital	15-40 mg/L	
Gentamicina	< 2 mg/L (vale) 5-10 mg/L (pico)	
Procainamida	4-8 mg/L	
Teofilina	10-20 mg/L	

* Goodman and Gilman, 12th, 2010.


FAIXA TERAPÊUTICA É PARA DETERMINADO EFEITO...

Clomipramina: uso na depressão, TP, TOC Doses diferentes: TP- subantidepressiva TOC- > que na depressão - Depressão – correlação – MT - TP e TOC - sem correlação estabelecida – não MT (Marcourakis et al., J. Psycopharmacol. 1999) (Marcourakis et al., Int Clin Psychopharmacol, 2015)


Carbamazepina: Faixa terapêutica para epilepsia: 4-10 mg/L Poucas evidências de aplicação desta faixa terapêutica na profilaxia da enxaqueca, transtornos do humor

Fatores que afetam a resposta a um fármaco

Idade
Polimorfismos genéticos
Estado fisiológico
Fatores ambientais
Hábitos (ingestão de ^{5-10 x l} bebidas alcoólicas, tabagismo)
Dieta, doenças

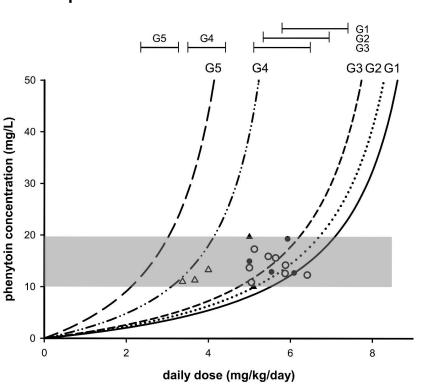
5-10 x PK-variability in Css given the same dose for the healthy, young, male, fire-fighters (i.e. volunteers)...

...but 50-100 x PK-variability in Css given the same dose among the "real" population (the naturalistic clinical setting)

QUANDO A MT É EFICIENTE?

Paciente entende a finalidade do tratamento e adere ao regime prescrito

Fármaco é selecionado apropriadamente e usado com o conhecimento farmacocinético e farmacodinâmico


Fármaco é monitorado regularmente e ajustado de acordo com a evolução clínica e intercorrências

Requisitos do fármaco para MT

- Boa correlação entre resposta farmacológica e concentração plasmática
- Alta variabilidade interindividual das concentrações plasmáticas após mesma dose: concentração plasmática imprevisível
- * Índice terapêutico estreito e bem definido
- Metabólitos ativos
 - ✓ Carbamazepina epóxido de carbamazepina
 - ✓ Clomipramina desmetilclomipramina
 - Amitriptilina nortriptilina
 - ✓ Procainamida N-acetilprocainamida

Dosage Recommendation of Phenytoin for Patients with Epilepsy with Different CYP2C9/CYP2C19 Polymorphisms

Chin-Chuan Hung, *† Chun-Jung Lin, † Chih-Chuan Chen, ‡ Chee-Jen Chang, § and Horng-Huei Liou*‡

Grupo (mg/kg/d)	Classificação	Vmax
G1 e G2	EM CYP2C9 e CYP2C19	
G3	PM CYP2C19 e EM CYP2C9	8,29% < G1
G4	PM CYP2C9 e EM CYP2C19	36,96 < G1
G5	PM CYP2C9 e CYP2C19	45,75% < G1

Vmax= taxa máxima de biotransformação

Dose recomendada		
G1: 5,5-7 mg/kg/dia		
G2: 5-7 mg/kg/dia		
G3: 5-6 mg/kg/dia		
G4: 3-4 mg/kg/dia		
G5: 2-3 mg/kg/dia		

169 pacientes

Em quais situações a MT é indicada?

- Tratamentos crônicos
- * Suspeita de intoxicação: simulação da doença
- Ausência de resposta terapêutica: adesão ao tratamento
- * Doença intercorrente: renal, hepática, cardíaca
- Pacientes idosos, obesos, gestantes, puberdade
- Alteração da posologia
- Interação medicamentosa

Em quais situações a MT é indicada?

- Tratamentos crônicos
- * Suspeita de intoxicação: simulação da doença
- Ausência de resposta terapêutica: adesão ao tratamento
- Doença intercorrente: renal, hepática, cardíaca
- Pacientes idosos, obesos, gestantes, puberdade
- Alteração da posologia
- Interação medicamentosa

Casos de simulação da doença

Náuseas e vômitos: intoxicação digitálica ou insuficiência cardíaca

Fenitoína: 1 das crises epilépticas

Insuficiência renal em pacientes com septicemia por agentes gram-negativos: doença ou efeito adverso da gentamicina

Em quais situações a MT é indicada?

- Tratamentos crônicos
- * Suspeita de intoxicação: simulação da doença
- Ausência de resposta terapêutica: adesão ao tratamento
- Doença intercorrente: renal, hepática, cardíaca
- Pacientes idosos, obesos, gestantes, puberdade
- Alteração da posologia
- Interação medicamentosa

ADESÃO AO TRATAMENTO

Adesão ao tratamento

20% dos pacientes não compram a medicação prescrita

Depende do entusiasmo do médico, da doença, compreensão do paciente em relação à importância da doença

Como lidar

Administração de dose única; formulação de liberação lenta

Orientar um parente para administrar o medicamento

Adequar a forma farmacêutica à faixa etária

Orientação paciente

Em quais situações a MT é indicada?

- Tratamentos crônicos
- * Suspeita de intoxicação: simulação da doença
- Ausência de resposta terapêutica: adesão ao tratamento
- Doença intercorrente: renal, hepática, cardíaca
- Pacientes idosos, obesos, gestantes, puberdade
- Alteração da posologia
- Interação medicamentosa

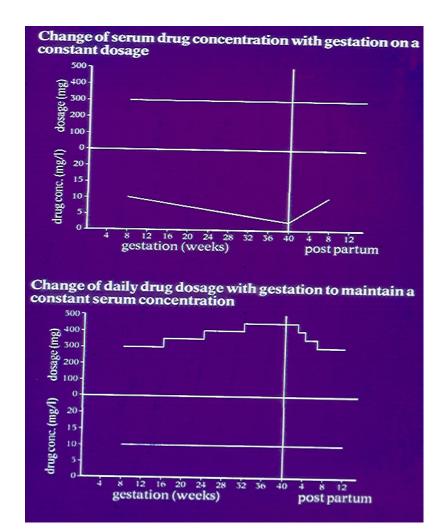
(*Ther Drug Monit* 2012;34:507–511) Therapeutic Drug Monitoring in Pregnancy

Doreen M. Matsui, MD, FRCP

↑ Volume de plasma em 50%

Alterações na farmacocinética:

✓Náuseas e vômitos: ↓ absorção


- ✓↑ de volume de líquido corpóreo
- ✓↑ fluxo hepático

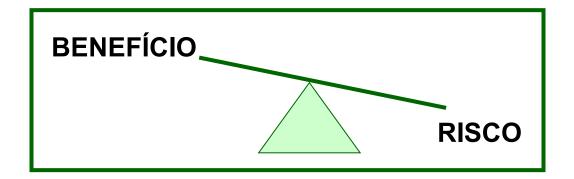
✓ Biotransformação na placenta

TABLE 2. Examples of Drugs for Which Therapeutic Drug

 Monitoring During Pregnancy Is Commonly Recommended

Drug	Pharmacokinetic Change	
Lamotrigine	Enhanced elimination by induction of glucuronidation	
Lithium	Increase in clearance secondary to increase in glomerular filtration rate	
	TDM may also be helpful in patients with hyperemesis gravidarum as dehydration may lead to elevated lithium levels	

Em quais situações a MT é indicada?


- Tratamentos crônicos
- Suspeita de intoxicação: simulação da doença
- Ausência de resposta terapêutica: adesão ao tratamento
- Doença intercorrente: renal, hepática, cardíaca
- Pacientes idosos, obesos, gestantes, puberdade
- Alteração da posologia
- Interação medicamentosa

Interação medicamentosa

* Podem ser:

✓ Benéficas

✓ Prejudiciais ou inúteis

Interações Medicamentosas Mecanismo de ação

Interações físico-químicas

- ✓ reações de óxido-redução, precipitação, adsorção:
- AAS/Tetraciclinas e metais (Fe / Ca / Mg / Al)
- Anfotericina B precipita quando misturada em solução fisiológica (mas não em dextrose 5%)

Interações farmacocinéticas: alteram a concentração no sítio de ação

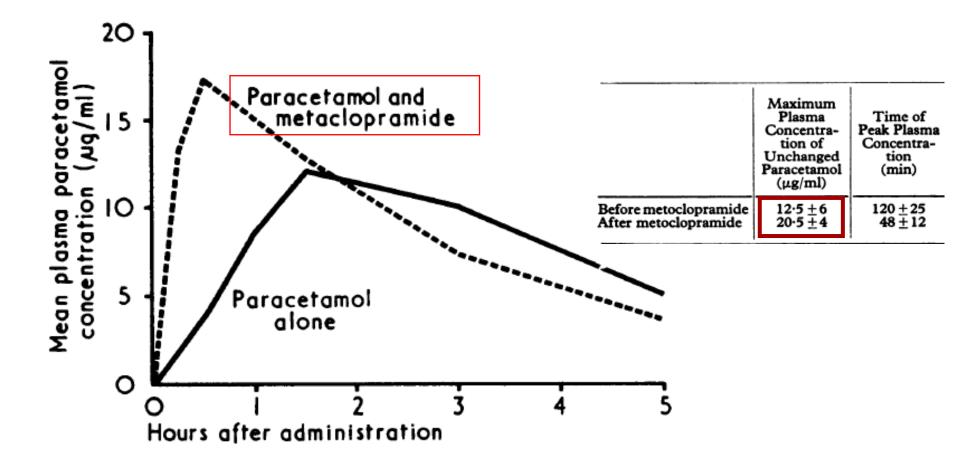
- ✓ absorção✓ distribuição
- ↑ resulta em ↑ do efeito
 ↓ resulta em ↓ do efeito
- ✓ biotransformáção

✓ excreção

- ↑ resulta em ↓ do efeito
- ↓ resulta em ↑ do efeito
- Interações farmacodinâmicas: resultam das ações farmacodinâmicas dos fármacos envolvidos
 - ✓ adição, sinergismo, potenciação, antagonismo → 1ª aula!!!

Interações Medicamentosas Farmacocinéticas - absorção

Velocidade de esvaziamento gástrico: estágio limitante na absorção

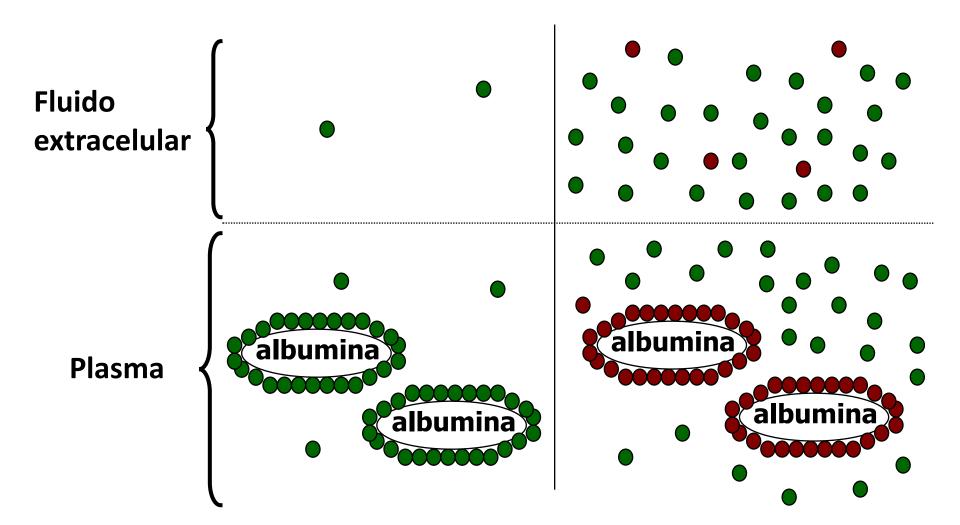

Inibem: anticolinérgicos, opiáceos, ADT o peristaltismo e a absorção substâncias permanecem no estômago

Aceleram:

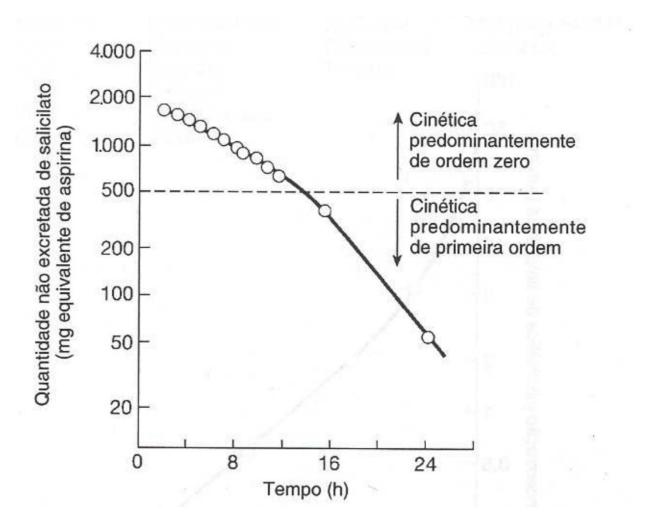
 metoclopramida: acelera o esvaziamento gástrico e a absorção de analgésicos – útil na crise aguda de enxaqueca

Interações Medicamentosas

Farmacocinéticas – absorção (esvaziamento gástrico)


Interações Medicamentosas Farmacocinéticas - distribuição

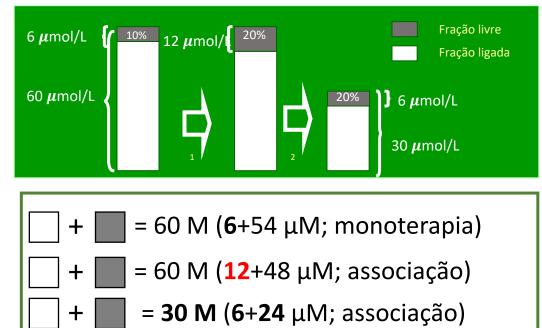
Ligação às proteínas plasmáticas:


- que sofrem deslocamento: varfarina, fenitoína
- que deslocam: sulfonamidas, salicilatos, ácido valproico

Fármaco	Proteína	% Ligação
Fenitoína	Albumina	89
Fenobarbital	Albumina	51
Fenilbutazona	Albumina	99
Indometacina	Albumina	97
Primidona	Albumina	19
Ácido valproico	Albumina	>90

Competição pelas proteínas plasmáticas

CINÉTICA DE ORDEM ZERO E 1^a ORDEM

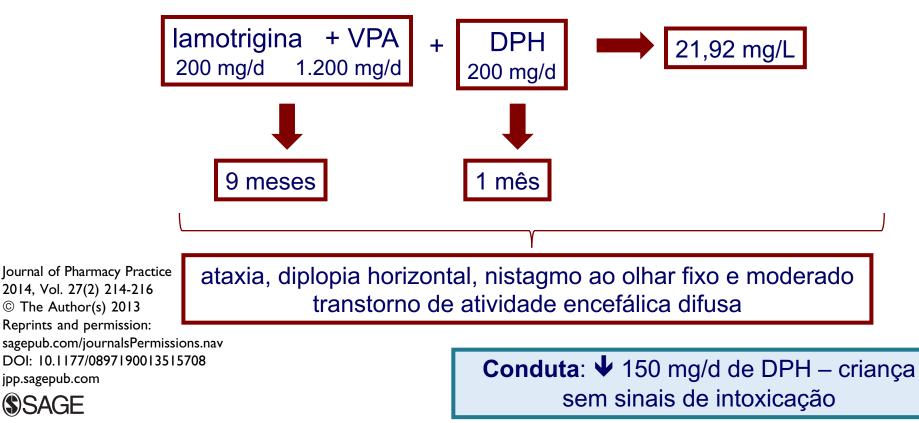

Fenitoína (10-20 µg/mL)

Deslocamento dos sítios de ligação às proteínas plasmáticas

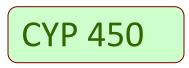
↑ da fração livre (cinética de ordem zero)

Sinais de intoxicação aguda

↑ da concentração plasmática total


Perigo: o médico solicita a concentração plasmática total, a considera inadequada e ↑ a dose intoxicação

Drug Interaction Between Phenytoin and Valproic Acid in a Child With Refractory Epilepsy: A Case Report


GE

Indira Valadê Carvalho, MSc¹, Renata Cavalcanti Carnevale, MSc¹, Marília Berlofa Visacri, MSc¹, Priscila Gava Mazzola, PhD¹, Rosiane de Fátima Lopes Ambrósio², Marcelo Conrado dos Reis, MD³, Rachel Alvarenga de Queiroz, MD³, and Patricia Moriel, PhD¹

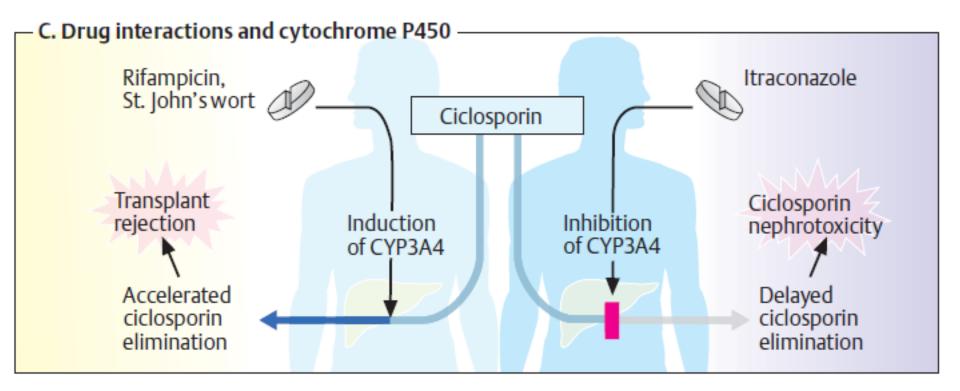
Caso: criança de 12 anos com epilepsia refratária

Interação Medicamentosa Farmacocinética - biotransformação

Indução enzimática: antiepilépticos (fenobarbital), nicotina, etanol (crônico)

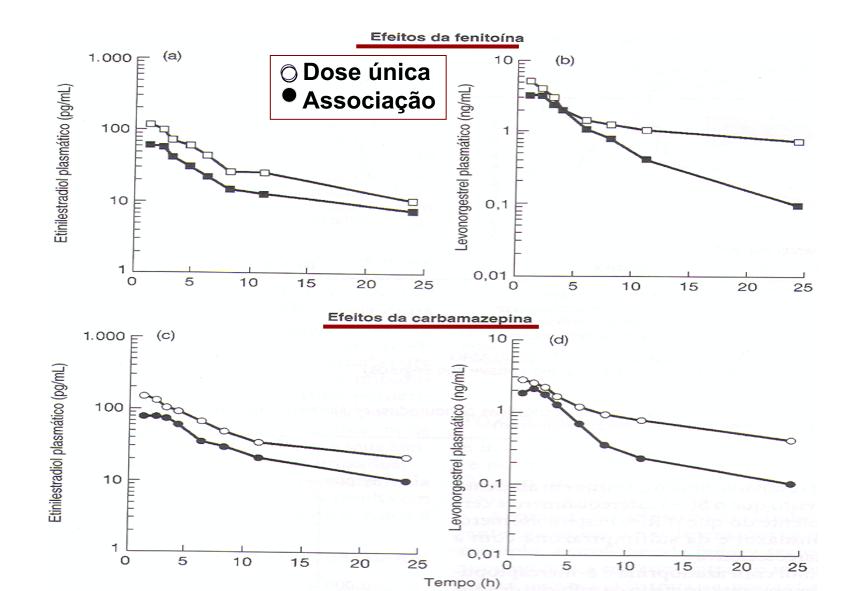
Inibição enzimática: dissulfiram, fenilbutazona, metronidazol, cloranfenicol, tetraciclina

Interação Medicamentosa Farmacocinética – biotransformação

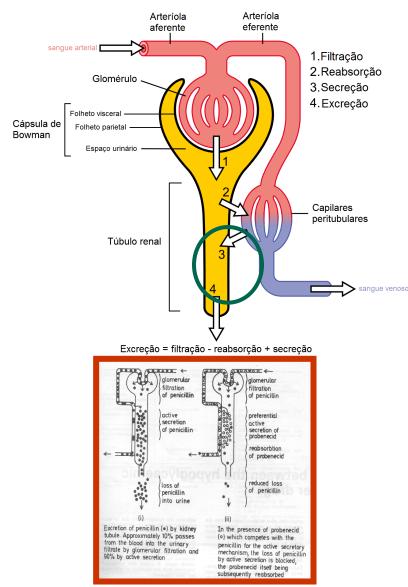

Verapamil e ciclosporina

 Verapamil: antiarrítmico - bloqueador de canal de cálcio – inibidor CYP 450

* Ciclosporina: imunossupressor


↓ da dose de ciclosporina e ↓ do custo do tratamento

Exemplos de outras interações com ciclosporina



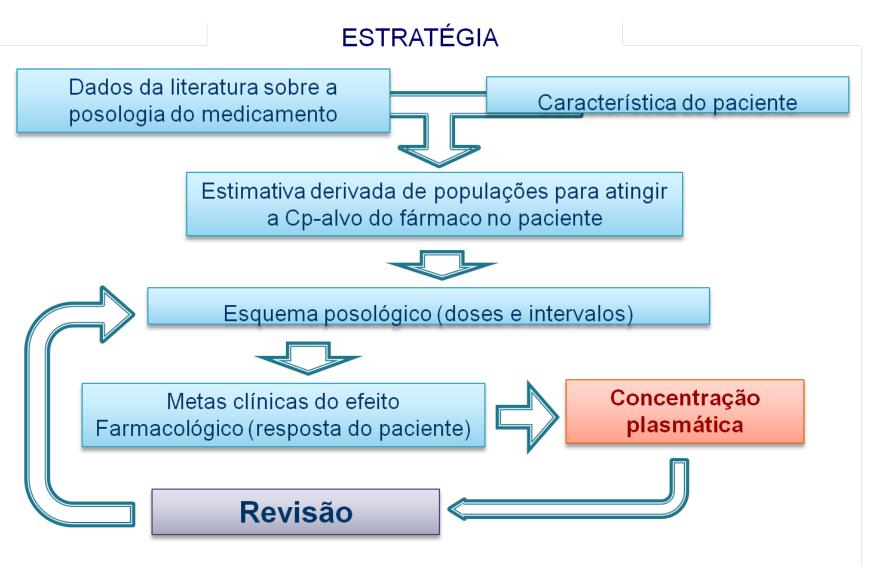
Lüllmann et al., Color Atlas of Pharmacology, 2005.

Interações Medicamentosas Farmacocinéticas – biotransformação

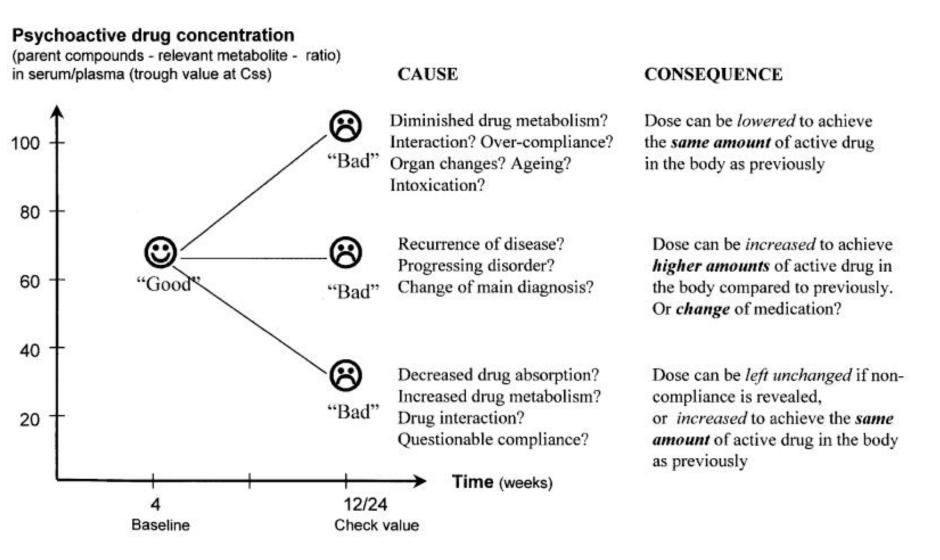
Interações Medicamentosas Farmacocinéticas - excreção Secreção ativa no túbulo proximal

Metotrexato + probenecida: mielossupressão

Cloroquina + probenecida: toxicidade ocular

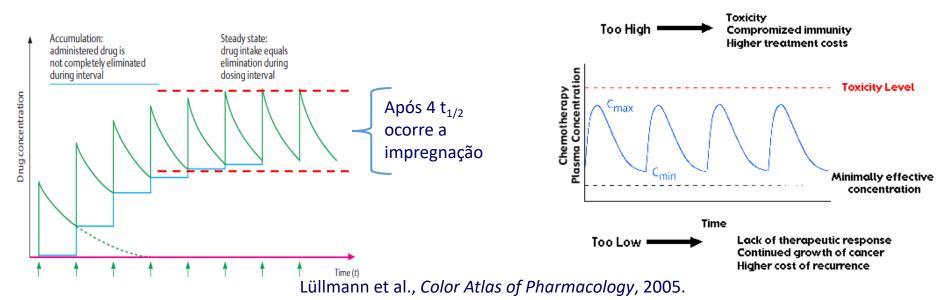

Penicilina + probenecida

 Quinidina + digoxina: dobra concentração plasmática de digoxina (intoxicação digitálica)


Fármaco que compete com a secreção tubular ativa

Cloroquina: antimalárico, lupus Quinidina: antiarrítmico

Monitorização terapêutica



Intra-individual reference for TDM-nouveau (TDM with the patients as longitudinal "self-control")

Cuidados na Monitorização Terapêutica

- * Escolha do material biológico apropriado
- Esperar o estabelecimento do estado de equilíbrio: normalmente de 4 a 5 T_{1/2}
- A determinação deve ser feita no pico baixo ou vale, normalmente, antes da administração da dose da manhã

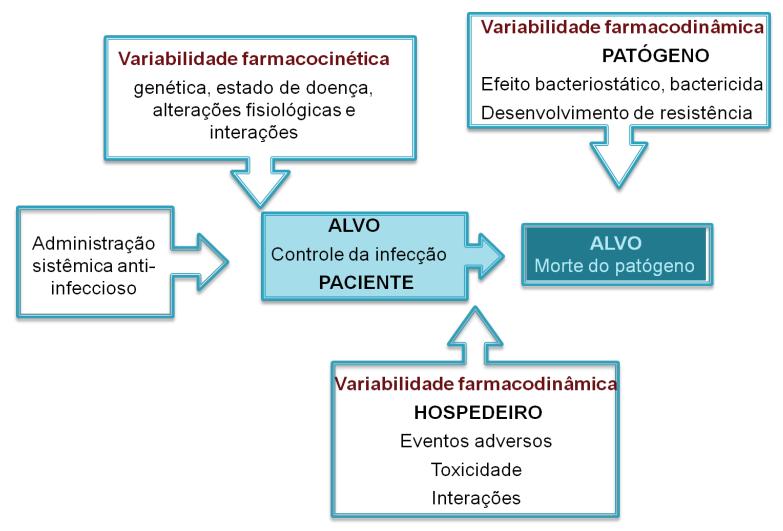
Tempo de coleta de amostras

 Table 1
 Table summarizing the time necessary to achieve steady-state and the recommended sampling time for the most commonly monitored drugs.

Drug	Time to steady-state	Sample timing	
		Trough concentration	Peak concentration
Drugs with short half-lives	-	Just before next dose (a window of 30 min)	When toxicity is suspected
Drugs with long half-lives			
Digoxin	5–7 days	8–12 h after dosing	When toxicity is suspected
Lithium	2–7 days	6–12 h after dosing	
TCA (once-daily regimen)	5–6 days	10–14 h after the last dose for once-daily dosing and 4–6 h after the last dose for divided daily dosing	
Antibiotics conventional regimen	-	30-90 min before next dose	30-60 min after dose
Aminoglycosides once-daily dosing	10–15 h	_	8-12 h after dosing
Anticonvulsants			
Carbamazepine	2-6 days	Just before next dose	When toxicity is suspected
Phenobarbital	17-24 days	except phenobarbital (any	
Phenytoin	4–8 days	time during dosage interval)	
Valproic acid	2-4 days		
Leviteracetam	2 days		
Oxcarbamazepine	2 days		
Theophylline	2-3 days	1-4 h after intravenous dose	When toxicity is suspected
Immunosuppressives			
Cyclosporine	2-6 days	Cyclosporine: 2 h after	_
Mycophenolic acid	2-4 days	dosing (window of 10 min)	
Everolimus	4–7 days	Tacrolimus: 4 and 6 h after	
Sirolimus	5–7 days	dosing (C4 or C6)	
Tacrolimus	3-5 days		
Antiretrovirals	48 h, except saquinavir (4 days)	At the end of dosing interval	When toxicity is suspected

Lítio

- Faixa terapêutica: 0,4-0,8 mmol/mL
- Toxicidade e efeitos a longo prazo: 1,0-1,5 mmol/mL, evitar concentrações acima de 1,5 mmol/mL
- Hora da coleta: 12 hs após a última dose
- * Motivos para MT
 - ✓ Nefrotóxico e excretado pelos rins provoca lesão renal, > retenção de Li⁺ e > toxicidade
 - ✓ Biodisponibilidade sistêmica varia de pessoa para pessoa e é alterada pela ocorrência de diarreia

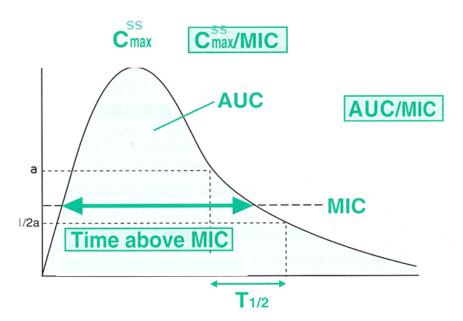

Ciclosporina

- Determinação no sangue total
- Risco de rejeição de transplante nos 1^{os.} 6 meses com baixas concentrações de ciclosporina
- Risco de nefro e hepatotoxicidade: 200-400 ng/mL
- * Hora da coleta: imediatamente antes da próxima dose

* MT

- ✓ Individualização da dose no início do tratamento
- ✓ Ajuste da dose nas interações medicamentosas
- ✓ Detecção da adesão ao tratamento
- Transplante renal: útil para distinguir entre rejeição do transplante e farmacoterapia inadequada como causas de deterioração da função renal

PK/PD – Tratamento de infecções



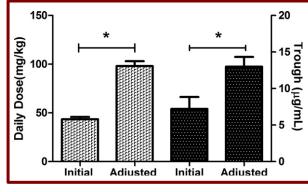
(Adaptado de Oga, Fundamentos de Toxicologia, 2014)


PK/PD

Parâmetros PK/PD

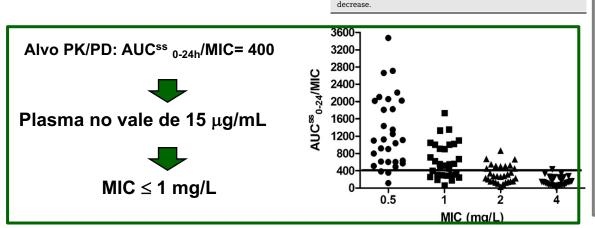
- $\%\Delta T > CMI tempo dependente$
- C^{ss}_{max}/CMI concentração dependente
- ASC^{ss}₀₋₂₄ tempo e concentração dependente

Agentes antimicrobianos e antifúngicos


Ex.1 mg/L

(Roberts et al, Br J. Clin Pharmacol, 73, 2011; Oga, 2013)

Individualised vancomycin doses for paediatric burn patients to achieve PK/PD targets


David S. Gorez^a, Edualdo V. Campos^a, Dodrigo P. de Azevedo^a João Manoel a filua (Charces C Ferreir^a, Gitta a arth: Grid CC Carlindo Vietra Suva Jr^b, Silvia R.C.J. Santos⁷

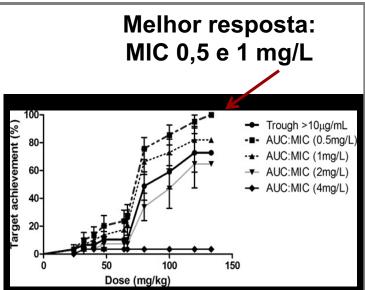

Dose inicial: 43 mg/kg Ajuste de dose: 98 mg/kg Alvo: 10-20 μg/mL

Table 2 – Burn Unit guidelines for dose adjustment of vancomycin based on trough vancomycin concentra-

tions.		
Trough (μg/mL)	Dose adjustment required	
<5	↑ 100%	
5–10	↑ 50%	
10–20	\leftrightarrow	
20–30	↓ 50%	
>30	↓ 75%	
Symbols: (<) below; (>) above; (\uparrow) increase;	(\leftrightarrow) unchanged; (\downarrow)	

alvo ___

Para MIC > 1 mg/L: dose diária deve ser aumentada Criança Queimada: 100% da dose Criança não queimada: 66% da dose

Interpretação dos Resultados Subterapia

- Má colaboração do paciente: 75% dos resultados
- Paciente fazendo uso de fármaco por tempo insuficiente: esperar de 4-5 T_{1/2}
- Medicamento não é administrado em intervalo de tempo correto: T_{1/2} curta
- Dose insuficiente: mg/kg/dia
- Má absorção do fármaco: distúrbios GI
- Associação medicamentosa: ativação da biotransformação
- Metabolismo rápido: comportamento individual

Interpretação dos Resultados Concentração acima da faixa terapêutica

- Má colaboração do paciente, intervalo incorreto de administração, dose diária incoerente, associação medicamentosa
- Puberdade
- •Hepatopatia e/ou nefropatia
- Metabolismo lento

Interpretação dos Resultados Concentração na faixa terapêutica e sinais de intoxicação

Fenitoína x ácido valproico

Interpretação dos Resultados Concentração na faixa terapêutica e ausência de resposta terapêutica

- •Coleta de sangue em horário inadequado
- Comportamento individual

Vantagens da MT

- Identificação de variações individuais no padrão de biotransformação dos fármacos
- Adequação da dose a pacientes portadores de doenças hepáticas e renais
- Compensar alterações produzidas por estados fisiológicos como: gravidez, puberdade, envelhecimento
- Identificação de pacientes que não fazem uso da medicação de forma adequada

Importante

Tratar o paciente e não a concentração plasmática

"We treat patients, not levels" (Vajda, 2007)

MT e farmacogenética

- * Avaliação farmacogenética:
- Estabelecimento do perfil metabólico do paciente que sofrem influência genética
- CYP2D6 (deficiência afeta 9% dos caucasianos)
 - ✓ Recomendações para nortriptilina
 - ML (50%)
 - MR heterozigotos (100%)
 - MR homozigotos (120%)
 - MUR (até 230%)
- Azatioprina (imunossupressor) é metabolizada pela tiopurina metiltransferase (TPMT)
 - ✓ 10% dos brancos têm deficiência da TPMT
 - ✓ Farmacogenética identifica estes indivíduos antes do tratamento