
Applied Computing and Informatics xxx (2018) xxx–xxx
Contents lists available at ScienceDirect

Applied Computing and Informatics

journal homepage: www.sciencedirect .com
Classification assessment methods
https://doi.org/10.1016/j.aci.2018.08.003
2210-8327/� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

E-mail address: aothman@fb2.fra-uas.de

Please cite this article in press as: A. Tharwat, Applied Computing and Informatics (2018), https://doi.org/10.1016/j.aci.2018.08.003
Alaa Tharwat
Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, 60318 Frankfurt am Main, Germany
a r t i c l e i n f o

Article history:
Received 4 May 2018
Revised 7 August 2018
Accepted 17 August 2018
Available online xxxx

Keywords:
Receiver operating characteristics (ROC)
Confusion matrix
Precision-Recall (PR) curve
Classification
Assessment methods
a b s t r a c t

Classification techniques have been applied to many applications in various fields of sciences. There are
several ways of evaluating classification algorithms. The analysis of such metrics and its significance
must be interpreted correctly for evaluating different learning algorithms. Most of these measures are
scalar metrics and some of them are graphical methods. This paper introduces a detailed overview of
the classification assessment measures with the aim of providing the basics of these measures and to
show how it works to serve as a comprehensive source for researchers who are interested in this field.
This overview starts by highlighting the definition of the confusion matrix in binary and multi-class clas-
sification problems. Many classification measures are also explained in details, and the influence of bal-
anced and imbalanced data on each metric is presented. An illustrative example is introduced to show (1)
how to calculate these measures in binary and multi-class classification problems, and (2) the robustness
of some measures against balanced and imbalanced data. Moreover, some graphical measures such as
Receiver operating characteristics (ROC), Precision-Recall, and Detection error trade-off (DET) curves
are presented with details. Additionally, in a step-by-step approach, different numerical examples are
demonstrated to explain the preprocessing steps of plotting ROC, PR, and DET curves.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Classification techniques have been applied to many applica-
tions in various fields of sciences. In classification models, the
training data are used for building a classification model to predict
the class label for a new sample. The outputs of classification mod-
els can be discrete as in the decision tree classifier or continuous as
the Naive Bayes classifier [7]. However, the outputs of learning
algorithms need to be assessed and analyzed carefully and this
analysis must be interpreted correctly, so as to evaluate different
learning algorithms.

The classification performance is represented by scalar values
as in different metrics such as accuracy, sensitivity, and specificity.
Comparing different classifiers using these measures is easy, but it
has many problems such as the sensitivity to imbalanced data and
ignoring the performance of some classes. Graphical assessment
methods such as Receiver operating characteristics (ROC) and
Precision-Recall curves give different interpretations of the classi-
fication performance.

Some of the measures which are derived from the confusion
matrix for evaluating a diagnostic test are reported in [19]. In that
paper, only eight measures were introduced. Powers introduced an
excellent discussion of the precision, Recall, F-score, ROC,
Informedness, Markedness and Correlation assessment methods
with details explanations [16]. Sokolova et al. reported some met-
rics which are used in medical diagnosis [20]. Moreover, a good
investigation of some measures and the robustness of these mea-
sures against different changes in the confusion matrix are intro-
duced in [21]. Tom Fawcett presented a detailed introduction to
the ROC curve including (1) good explanations of the basics of
the ROC curve, (2) clear example for generating the ROC curve,
(3) comprehensive discussions, and (4) good explanations of the
Area under curve (AUC) metric [8]. Jesse Davis and Mark Goadrich
reported the relationship between the ROC and Precision-Recall
curves [5]. Our paper introduces a detailed overview of the classi-
fication assessment methods with the goal of providing the basic
principles of these measures and to show how it works to serve
as a comprehensive source for researchers who are interested in
this field. This paper has details of most of the well-known classi-
fication assessment methods. Moreover, this paper introduces (1)
the relations between different assessment methods, (2) numerical
examples to show how to calculate these assessment methods, (3)
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Fig. 1. An illustrative example of the 2� 2 confusion matrix. There are two true
classes P and N. The output of the predicted class is true or false.

Fig. 2. An illustrative example of the confusion matrix for a multi-class classifica-
tion test.
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the robustness of each method against imbalanced data which is
one of the most important problems in real-time applications,
and (4) explanations of different curves in a step-by-step approach.

This paper is divided into eight sections. Section 2 gives an over-
view of the classification assessment methods. This section begins
by explaining the confusion matrix for binary and multi-class clas-
sification problems. Based on the data that can be extracted from
the confusion matrix, many classification metrics can be calcu-
lated. Moreover, the influence of balanced and imbalanced data
on each assessment method is introduced. Additionally, an illustra-
tive numerical example is presented to show (1) how to calculate
these measures in both binary and multi-class classification prob-
lems, and (2) the robustness of some measures against balanced
and imbalanced data. Section 3 introduces the basics of the ROC
curve, which are required for understanding how to plot and inter-
pret it. This section also presents visualized steps with an illustra-
tive example for plotting the ROC curve. The AUC measure is
presented in Section 4. In this section, the AUC algorithm with
detailed steps is explained. Section 5 presents the basics of the
Precision-Recall curve and how to interpret it. Further, in a step-
by-step approach, different numerical examples are demonstrated
to explain the preprocessing steps of plotting ROC and PR curves in
Sections 3 and 5. Classification assessment methods for biometric
models including steps of plotting the DET curve are presented in
Section 6. In Section 7, results in terms of different assessment
methods of a simple experiment are presented. Finally, concluding
remarks will be given in Section 8.
1 More details about these two metrics are in Sections 2.2 and 2.5.
2. Classification performance

The assessment method is a key factor in evaluating the classi-
fication performance and guiding the classifier modeling. There are
three main phases of the classification process, namely, training
phase, validation phase, and testing phase. The model is trained
using input patterns and this phase is called the training phase.
These input patterns are called training data which are used for
training the model. During this phase, the parameters of a classifi-
cation model are adjusted. The training error measures how well
the trained model fits the training data. However, the training error
always smaller than the testing error and the validation error
because the trained model fits the same data which are used in
the training phase. The goal of a learning algorithm is to learn from
the training data to predict class labels for unseen data; this is in
the testing phase. However, the testing error or out-of-sample
error cannot be estimated because the class labels or outputs of
testing samples are unknown. This is the reason why the validation
phase is used for evaluating the performance of the trained model.
In the validation phase, the validation data provide an unbiased
evaluation of the trained model while tuning the model’s
hyperparameters.

According to the number of classes, there are two types of clas-
sification problems, namely, binary classification where there are
only two classes, and multi-class classification where the number
of classes is higher than two. Assume we have two classes, i.e., bin-
ary classification, P for positive class and N for negative class. An
unknown sample is classified to P or N. The classification model
that was trained in the training phase is used to predict the true
classes of unknown samples. This classification model produces
continuous or discrete outputs. The discrete output that is gener-
ated from a classification model represents the predicted discrete
class label of the unknown/test sample, while continuous output
represents the estimation of the sample’s class membership
probability.

Fig. 1 shows that there are four possible outputs which repre-
sent the elements of a 2� 2 confusion matrix or a contingency table.
Please cite this article in press as: A. Tharwat, Applied Computing and Inform
The green diagonal represents correct predictions and the pink
diagonal indicates the incorrect predictions. If the sample is posi-
tive and it is classified as positive, i.e., correctly classified positive
sample, it is counted as a true positive (TP); if it is classified as neg-
ative, it is considered as a false negative (FN) or Type II error. If the
sample is negative and it is classified as negative it is considered as
true negative (TN); if it is classified as positive, it is counted as false
positive (FP), false alarm or Type I error. As we will present in the
next sections, the confusion matrix is used to calculate many com-
mon classification metrics.

Fig. 2 shows the confusion matrix for a multi-class classification
problem with three classes (A, B, and C). As shown, TPA is the num-
ber of true positive samples in class A, i.e., the number of samples
that are correctly classified from class A, and EAB is the samples
from class A that were incorrectly classified as class B, i.e., misclas-
sified samples. Thus, the false negative in the A class (FNA) is the
sum of EAB and EAC (FNA ¼ EAB þ EAC) which indicates the sum of
all class A samples that were incorrectly classified as class B or C.
Simply, FN of any class which is located in a column can be calcu-
lated by adding the errors in that class/column. Whereas the false
positive for any predicted class which is located in a row repre-
sents the sum of all errors in that row. For example, the false pos-
itive in class A (FPA) is calculated as follows, FPA ¼ EBA þ ECA. With
m�m confusion matrix there are m correct classifications and
m2 �m possible errors [22].
2.1. Classification metrics with imbalanced data

Different assessment methods are sensitive to the imbalanced
data when the samples of one class in a dataset outnumber the
samples of the other class(es) [25]. To explain this is so, consider
the confusion matrix in Fig. 1. The class distribution is the ratio
between the positive and negative samples (PN) represents the rela-
tionship between the left column to the right column. Any assess-
ment metric that uses values from both columns will be sensitive
to the imbalanced data as reported in [8]. For example, some met-
rics such as accuracy and precision1 use values from both columns
atics (2018), https://doi.org/10.1016/j.aci.2018.08.003
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Fig. 3. Visualization of different metrics and the relations between these metrics. Given two classes, red class and blue class. The black circle represents a classifier that
classifies the sample inside the circle as red samples (belong to the red class) and the samples outside the circle as blue samples (belong to the blue class). Green regions
indicate the correctly classified regions and the red regions indicate the misclassified regions. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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of the confusion matrix; thus, as data distributions change, these
metrics will change as well, even if the classifier performance does
not. Therefore, such these metrics cannot distinguish between the
numbers of corrected labels from different classes [11]. This fact is
partially true because there are some metrics such as Geometric
Mean (GM) and Youden’s index (YI)2 use values from both columns
and these metrics can be used with balanced and imbalanced data.
This can be interpreted as that the metrics which use values from
one column cancel the changes in the class distribution. However,
some metrics which use values from both columns are not sensitive
to the imbalanced data because the changes in the class distribution
cancel each other. For example, the accuracy is defined as follows,
Acc ¼ TPþTN

TPþTNþFPþFN and the GM is defined as follows,

GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPR� TNR
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP

TPþFN � TN
TNþFP

q
; thus, both metrics use values

from both columns of the confusion matrix. Changing the class dis-
tribution can be obtained by increasing/decreasing the number of
samples of negative/positive class. With the same classification per-
formance, assume that the negative class samples are increased by a
times; thus, the TN and FP values will be aTN and aFP, respectively;
thus, the accuracy will be, Acc ¼ TPþaTN

TPþaTNþaFPþFN – TPþTN
TPþTNþFPþFN. This

means that the accuracy is affected by the changes in the class dis-
tribution. On the other hand, the GM metric will be,

GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP

TPþFN � aTN
aTNþaFP

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP

TPþFN � TN
TNþFP

q
and hence the changes in the

negative class cancel each other. This is the reason why the GM met-
ric is suitable for the imbalanced data. Similarly, any metric can be
checked to know if it is sensitive to the imbalanced data or not.
2 More details about these two metrics are in Section 2.8.
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2.2. Accuracy and error rate

Accuracy (Acc) is one of the most commonly used measures for
the classification performance, and it is defined as a ratio between
the correctly classified samples to the total number of samples as
follows [20]:

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

ð1Þ

where P and N indicate the number of positive and negative sam-
ples, respectively.

The complement of the accuracy metric is the Error rate (ERR) or
misclassification rate. This metric represents the number of misclas-
sified samples from both positive and negative classes, and it is cal-
culated as follows, EER ¼ 1� Acc ¼ ðFP þ FNÞ=ðTP þ TN þ FP þ FNÞ
[4]. Both accuracy and error rate metrics are sensitive to the imbal-
anced data. Another problem with the accuracy is that two classi-
fiers can yield the same accuracy but perform differently with
respect to the types of correct and incorrect decisions they provide
[9]. However, Takaya Saito and Marc Rehmsmeier reported that the
accuracy is suitable with imbalanced data because they found that
the accuracy values of the balanced and imbalanced data in their
example were identical [17]. The reason why the accuracy values
were identical in their example is that the sum of TP and TN in
the balanced and imbalanced data was the same.

2.3. Sensitivity and specificity

Sensitivity, True positive rate (TPR), hit rate, or recall, of a classifier
represents the positive correctly classified samples to the total
tics (2018), https://doi.org/10.1016/j.aci.2018.08.003
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number of positive samples, and it is estimated according to Eq. (2)
[20]. Whereas specificity, True negative rate (TNR), or inverse recall is
expressed as the ratio of the correctly classified negative samples to
the total number of negative samples as in Eq. (2) [20]. Thus, the
specificity represents the proportion of the negative samples that
were correctly classified, and the sensitivity is the proportion of
the positive samples that were correctly classified. Generally, we
can consider sensitivity and specificity as two kinds of accuracy,
where the first for actual positive samples and the second for actual
negative samples. Sensitivity depends on TP and FNwhich are in the
same column of the confusion matrix, and similarly, the specificity
metric depends on TN and FPwhich are in the same column; hence,
both sensitivity and specificity can be used for evaluating the clas-
sification performance with imbalanced data [9].

TPR ¼ TP
TP þ FN

¼ TP
P
; TNR ¼ TN

FP þ TN
¼ TN

N
ð2Þ

The accuracy can also be defined in terms of sensitivity and
specificity as follows [20]:

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

¼TPR� P
P þ N

þ TNR� N
P þ N

¼ TP
TP þ FN

P
P þ N

þ TN
TN þ FP

N
P þ N

¼ TP
P þ N

þ TN
P þ N

¼ TP þ TN
TP þ TN þ FP þ FN

ð3Þ
2.4. False positive and false negative rates

False positive rate (FPR) is also called false alarm rate (FAR), or
Fallout, and it represents the ratio between the incorrectly classi-
fied negative samples to the total number of negative samples
[16]. In other words, it is the proportion of the negative samples
that were incorrectly classified. Hence, it complements the speci-
ficity as in Eq. (4) [21]. The False negative rate (FNR) or miss rate
is the proportion of positive samples that were incorrectly classi-
fied. Thus, it complements the sensitivity measure and it is defined
in Eq. (5). Both FPR and FNR are not sensitive to changes in data
distributions and hence both metrics can be used with imbalanced
data [9].

FPR ¼ 1� TNR ¼ FP
FP þ TN

¼ FP
N

ð4Þ

FNR ¼ 1� TPR ¼ FN
FN þ TP

¼ FN
P

ð5Þ
2.5. Predictive values

Predictive values (positive and negative) reflect the performance
of the prediction. Positive prediction value (PPV) or precision repre-
sents the proportion of positive samples that were correctly classi-
fied to the total number of positive predicted samples as indicated
in Eq. (6) [20]. On the contrary, Negative predictive value (NPV),
inverse precision, or true negative accuracy (TNA)measures the pro-
portionof negative samples thatwere correctly classified to the total
number of negative predicted samples as indicated in Eq. (7) [16].
These two measures are sensitive to the imbalanced data [21,9].
False discovery rate (FDR) and False omission rate (FOR) measures
complements the PPV and NPV, respectively (see Eq. (6) and (7)).

PPV ¼ Precision ¼ TP
FP þ TP

¼ 1� FDR ð6Þ
Please cite this article in press as: A. Tharwat, Applied Computing and Inform
NPV ¼ TN
FN þ TN

¼ 1� FOR ð7Þ

The accuracy can also be defined in terms of precision and
inverse precision as follows [16]:

Acc ¼ TP þ FP
P þ N

� PPV þ TN þ FN
P þ N

� NPV

¼ TP þ FP
P þ N

� TP
TP þ FP

þ TN þ FN
P þ N

� TN
TN þ FN

¼ TP þ TN
TP þ TN þ FP þ FN

ð8Þ
2.6. Likelihood ratio

The likelihood ratio combines both sensitivity and specificity,
and it is used in diagnostic tests. In that tests, not all positive
results are true positives and also the same for negative results;
hence, the positive and negative results change the probability/
likelihood of diseases. Likelihood ratio measures the influence of
a result on the probability. Positive likelihood (LRþ) measures
how much the odds of the disease increases when a diagnostic
test is positive, and it is calculated as in Eq. (9) [20]. Similarly,
Negative likelihood (LR�) measures how much the odds of the
disease decreases when a diagnostic test is negative, and it is
calculated as in Eq. (9). Both measures depend on the sensitivity
and specificity measures; thus, they are suitable for balanced and
imbalanced data [6].

LRþ ¼ TPR
1� TNR

¼ TPR
FPR

; LR� ¼ 1� TPR
TNR

ð9Þ

Both LRþ and LR� are combined into one measure which sum-
marizes the performance of the test, this measure is called Diagnos-
tic odds ratio (DOR). The DOR metric represents the ratio between
the positive likelihood ratio to the negative likelihood ratio as in
Eq. (10). This measure is utilized for estimating the discriminative
ability of the test and also for comparing between two diagnostic
tests. From Eq. (10) it can be remarked that the value of DOR
increases when (1) the TP and TN are high and (2) the FP and FN
are low [18].

DOR ¼ LRþ
LR� ¼

TPR
1� TNR

� TNR
1� TPR

¼ TP � TN
FP � FN

ð10Þ
2.7. Youden’s index

Youden’s index (YI) or Bookmaker Informedness (BM) metric is
one of the well-known diagnostic tests. It evaluates the discrimina-
tive power of the test. The formula of Youden’s index combines the
sensitivity and specificity as in the DOR metric, and it is defined as
follows, YI ¼ TPRþ TNR� 1 [20]. The YI metric is ranged from zero
when the test is poor to one which represents a perfect diagnostic
test. It is also suitable with imbalanced data. One of the major dis-
advantages of this test is that it does not change concerning the
differences between the sensitivity and specificity of the test. For
example, given two tests, the sensitivity values for the first and
second tests are 0.7 and 0.9, respectively, and the specificity values
for the first and second tests are 0.8 and 0.6, respectively; the YI
value for both tests is 0.5.

2.8. Another metrics

There are many different metrics that can be calculated from
the previous metrics. Some details about each measure are as
follow:
atics (2018), https://doi.org/10.1016/j.aci.2018.08.003
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� Matthews correlation coefficient (MCC): this metric was intro-
duced by Brian W. Matthews in 1975 [14], and it represents
the correlation between the observed and predicted classifica-
tions, and it is calculated directly from the confusion matrix
as in Eq. (11). A coefficient of þ1 indicates a perfect prediction,
�1 represents total disagreement between prediction and true
values and zero means that no better than random prediction
[16,3]. This metric is sensitive to imbalanced data.
MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp
¼

TP
N � TPR� PPVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PPV � TPRð1� TPRÞð1� PPVÞp ð11Þ

� Discriminant power (DP): this measure depends on the sensitiv-
ity and specificity and it is defined as follows, DP ¼ffiffi
3
p
p ðlogð TPR

1�TNRÞ þ logð TNR
1�TPRÞÞ [20]. This metric evaluates how well

the classification model distinguishes between positive and
negative samples. Since this metric depends on the sensitivity
and specificity metrics; it can be used with imbalanced data.
� F-measure: this is also called F1-score, and it represents the har-
monic mean of precision and recall as in Eq. (12) [20]. The value
of F-measure is ranged from zero to one, and high values of F-
measure indicate high classification performance. This measure
has another variant which is called Fb-measure. This variant
represents the weighted harmonic mean between precision
and recall as in Eq. (13). This metric is sensitive to changes in
data distributions. Assume that the negative class samples are
increased by a times; thus, the F �measure is calculated as fol-
lows, F �measure ¼ 2TP

2TPþaFPþaFN and hence this metric is affected
by the changes in the class distribution.
Fig. 4. Results of a multi-class classification test (our example).
F �measure ¼2PPV � TPR
PPV þ TPR

¼ 2TP
2TP þ FP þ FN

ð12Þ

Fb �measure ¼ð1þ b2Þ PPV :TPR

b2PPV þ TPR

¼ ð1þ b2ÞTP
ð1þ b2ÞTP þ b2FN þ FP

ð13Þ

Adjusted F-measure (AGF) was introduced in [13]. The F-
measures used only three of the four elements of the confusion
matrix and hence two classifiers with different TNR values may
have the same F-score. Therefore, the AGF metric is introduced
to use all elements of the confusion matrix and provide more
weights to samples which are correctly classified in the minority
class. This metric is defined as follows:

AGF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2:InvF0:5

p
ð14Þ

where F2 is the F-measure where b ¼ 2 and InvF0:5 is calculated
by building a new confusion matrix where the class label of each
sample is switched (i.e. positive samples become negative and
vice versa).
� Markedness (MK): this is defined based on PPV and NPV metrics
as follows, MK ¼ PPV þ NPV � 1 [16]. This metric sensitive to
data changes and hence it is not suitable for imbalanced data.
This is because the Markedness metric depends on PPV and
NPV metrics and both PPV and NPV are sensitive to changes
in data distributions.
Please cite this article in press as: A. Tharwat, Applied Computing and Informa
� Balanced classification rate or balanced accuracy (BCR): this met-
ric combines the sensitivity and specificity metrics and it is cal-
culated as follows, BCR ¼ 1

2 ðTPRþ TNRÞ ¼ 1
2 ð TP

TPþFN þ TN
TNþFPÞ. Also,

Balance error rate (BER) or Half total error rate (HTER) represents
1� BCR. Both BCR and BERmetrics can be used with imbalanced
datasets.
� Geometric Mean (GM): The main goal of all classifiers is to
improve the sensitivity, without sacrificing the specificity. How-
ever, the aims of sensitivity and specificity are often conflicting,
which may not work well, especially when the dataset is imbal-
anced. Hence, the Geometric Mean (GM) metric aggregates both
sensitivity and specificity measures according to Eq. (15) [3].
Adjusted Geometric Mean (AGM) is proposed to obtain as much
information as possible about each class [11]. The AGM metric
is defined according to Eq. (16).
GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPR� TNR
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TP þ FN

� TN
TN þ FP

r
ð15Þ

AGM ¼
GMþTNRðFPþTNÞ

1þFPþTN if TPR > 0
0 if TPR ¼ 0

(
ð16Þ

GM metric can be used with imbalanced datasets. Lopez et al.
reported that the AGM metric is suitable with the imbalanced
data [12]. However, changing the distribution of negative class
has a small influence on the AGM metric and hence it is not suit-
able with the imbalanced data. This is can be proved simply by
assuming that the negative class samples are increased by a
times. Thus, the AGM metric is calculated as follows,
AGM ¼ GMþTNRðaFPþaTNÞ

1þaFPþaTN ; as a consequence, the AGM metric is
slightly affected by the changes in the class distribution.
� Optimization precision (OP): This metric is defined as follows:
OP ¼ Acc � jTPR� TNRj
TPRþ TNR

ð17Þ

where the second term jTPR�TNRj
TPRþTNR computes how balanced both

class accuracies are and this metric represents the difference
between the global accuracy and that term [9]. High OP value
indicates high accuracy and well-balanced class accuracies.
Since the OP metric depends on the accuracy metric, it is not
suitable for imbalanced data.
� Jaccard: This metric is also called Tanimoto similarity coeffi-
cient. Jaccard metric explicitly ignores the correct classification
of negative samples as follows, Jaccard ¼ TP

TPþFPþFN. Jaccard metric
is sensitive to changes in data distributions.

Fig. 4 shows the relations between different classification
assessment methods. As shown, all assessment methods can be
calculated from the confusion matrix. As shown, there are two
classes; red class and blue class. After applying a classifier, the clas-
sifier is represented by a black circle and the samples which are
inside the circle are classified as red class samples and the samples
tics (2018), https://doi.org/10.1016/j.aci.2018.08.003
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outside the circle are classified as blue class samples. Additionally,
from the figure, it is clear that many assessment methods depend
on the TPR and TNR metrics, and all assessment methods can be
estimated from the confusion matrix.
2.9. Illustrative example

In this section, two examples are introduced. These examples
explain how to calculate classification metrics using two classes
or multiple classes.
2.9.1. Binary classification example
In this example, assume we have two classes (A and B), i.e., bin-

ary classification, and each class has 100 samples. The A class rep-
resents the positive class while the B class represents the negative
class. The number of correctly classified samples in class A and B
are 70 and 80, respectively. Hence, the values of TP; TN; FP, and
FN are 70, 80, 20, and 30, respectively. The values of different
classification metrics are as follows, Acc ¼ 70þ80

70þ80þ20þ30 ¼
0:75; TPR ¼ 70

70þ30 ¼ 0:7; TNR ¼ 80
80þ20 ¼ 0:8; PPV ¼ 70

70þ20 � 0:78;

NPV ¼ 80
80þ30 � 0:73; Err ¼ 1� Acc ¼ 0:25; BCR ¼ 1

2 ð0:7þ 0:8Þ ¼ 0:75;

FPR¼1�0:8¼0:2; FNR¼1�0:7¼0:3; F�measure¼ 2�70
ð2�70þ20þ30Þ¼0:74;

OP ¼ Acc� jTPR�TNRjTPRþTNR ¼ 0:75� j0:7�0:8j0:7þ0:8 � 0:683; LRþ ¼ 0:7
1�0:8 ¼ 3:5; LR� ¼

1�0:7
0:8 ¼ 0:375; DOR ¼ 3:5

0:375 � 9:33; YI ¼ 0:7þ 0:8� 1 ¼ 0:5, and
Jaccard ¼ 70

70þ20þ30 � 0:583.
We increased the number of samples of the B class to 1000 to

show how the classification metrics are changed when using
imbalanced data, and there are 800 samples from class B were cor-
rectly classified. As a consequence, the values of TP; TN; FP, and FN
are 70, 800, 200, and 30, respectively. Consequently, only the
values of accuracy, precision/PPV, NPV, error rate, Optimization
precision, F-measure, and Jaccard are changed as follows,
Acc ¼ 70þ800

70þ800þ200þ30 � 0:79; PPV ¼ 70
70þ200� 0:26; NPV ¼ 800

800þ30�0:96;

Err ¼ 1 � Acc ¼ 0:21; OP ¼ 0:79 � j0:7�0:8j0:7þ0:8 � 0:723; F �measure ¼
2�70

ð2�70þ200þ30Þ ¼ 0:378, and Jaccard ¼ 70
70þ200þ30 � 0:233. This example

reflects that the accuracy, precision, NPV, F-measure, and Jaccard
metrics are sensitive to imbalanced data.
Fig. 5. A basic ROC curve showing important points, and the optimistic, pessimistic
and expected ROC segments for equally scored samples.
2.9.2. Multi-classification example
In this example, there are three classes A, B, and C, the results of

a classification test are shown in Fig. 4. From the figure, the values
of TPA; TPB, and TBC are 80, 70, and 90, respectively, which repre-
sent the diagonal in Fig. 4. The values of false negative for each
class (true class) are calculated as mentioned before by adding
all errors in the column of that class. For example,
FNA ¼ EAB þ EAC ¼ 15þ 5 ¼ 20, and similarly FNB ¼ EBA þ EBC ¼
15þ 15 ¼ 30 and FNC ¼ ECA þ ECB ¼ 0þ 10 ¼ 10. The values of false
positive for each class (predicted class) are calculated as men-
tioned before by adding all errors in the row of that class. For
example, FPA ¼ EBA þ ECA ¼ 15þ 0 ¼ 15, and similarly
FPB ¼ EAB þ ECB ¼ 15þ 10 ¼ 25 and FPC ¼ EAC þ EBC ¼ 5þ 15 ¼ 20.
The value of true negative for the class A (TNA) can be calculated
by adding all columns and rows excluding the row and column
of class A; this is similar to the TN in the 2� 2 confusion matrix.
Hence, the value of TNA is calculated as follows,
TNA ¼ 70þ 90þ 10þ 15 ¼ 185, and similarly TNB ¼ 80þ 0þ
5þ 90 ¼ 175 and TNC ¼ 80þ 70þ 15þ 15 ¼ 180. Using
TP; TN; FP, and FN we can calculate all classification measures. For
example, the accuracy is 80þ70þ90

100þ100þ100 ¼ 0:8. The sensitivity and speci-
ficity are calculated for each class. For example, the sensitivity of A
is TPA

TPAþFNA
¼ 80

80þ15þ5 ¼ 0:8, and similarly the sensitivity of B and C

classes are 70
70þ15þ15 ¼ 0:7 and 90

90þ0þ10 ¼ 0:9, respectively, and the
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specificity values of A, B, and C are 185
185þ15 � 0:93; 175

ð175þ25Þ ¼ 0:875,

and 180
ð180þ20Þ ¼ 0:9, respectively.
3. Receiver operating characteristics (ROC)

The receiver operating characteristics (ROC) curve is a two-
dimensional graph in which the TPR represents the y-axis and
FPR is the x-axis. The ROC curve has been used to evaluate many
systems such as diagnostic systems, medical decision-making sys-
tems, and machine learning systems [26]. It is used to make a bal-
ance between the benefits, i.e., true positives, and costs, i.e., false
positives. Any classifier that has discrete outputs such as decision
trees is designed to produce only a class decision, i.e., a decision
for each testing sample, and hence it generates only one confusion
matrix which in turn corresponds to one point into the ROC space.
However, there are many methods that were introduced for gener-
ating full ROC curve from a classifier instead of only a single point
such as using class proportions [26] or using some combinations of
scoring and voting [8]. On the other hand, in continuous output
classifiers such as the Naive Bayes classifier, the output is repre-
sented by a numeric value, i.e., score, which represents the degree
to which a sample belongs to a specific class. The ROC curve is gen-
erated by changing the threshold on the confidence score; hence,
each threshold generates only one point in the ROC curve [8].

Fig. 5 shows an example of the ROC curve. As shown, there are
four important points in the ROC curve. The point A, in the lower
left corner ð0;0Þ represents a classifier where there is no positive
classification, while all negative samples are correctly classified
and hence TPR ¼ 0 and FPR ¼ 0. The point C, in the top right corner
(1,1), represents a classifier where all positive samples are cor-
rectly classified, while the negative samples are misclassified.
The point D in the lower right corner ð1;0Þ represents a classifier
where all positive and negative samples are misclassified. The
point B in the upper left corner ð0;1Þ represents a classifier where
all positive and negative samples are correctly classified; thus, this
point represents the perfect classification or the Ideal operating
point. Fig. 5 shows the perfect classification performance. It is the
green curve which rises vertically from (0,0) to (0,1) and then hor-
izontally to (1,1). This curve reflects that the classifier perfectly
ranked the positive samples relative to the negative samples.

A point in the ROC space is better than all other points that are
in the southeast, i.e., the points that have lower TPR, higher FPR, or
atics (2018), https://doi.org/10.1016/j.aci.2018.08.003
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Fig. 7. An illustrative example of the ROC curve. The values of TPR and FPR of each
point/threshold are calculated in Table 1.
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both (see Fig. 5). Therefore, any classifier appears in the lower right
triangle performs worse than the classifier appears in the upper
left triangle.

Fig. 6 shows an example of the ROC curve. In this example, a test
set consists of 20 samples from two classes; each class has ten
samples, i.e., ten positive and ten negative samples. As shown in
the table in Fig. 6, the initial step to plot the ROC curve is to sort
the samples according to their scores. Next, the threshold value
is changed from maximum to minimum to plot the ROC curve.
To scan all samples, the threshold is ranged from 1 to �1. The
samples are classified into the positive class if their scores are
higher than or equal the threshold; otherwise, it is estimated as
negative [8]. Figs. 7 and 8 shows how changing the threshold value
changes the TPR and FPR. As shown in Fig. 6, the threshold value is
set at maximum (t1 ¼ 1); hence, all samples are classified as neg-
ative samples and the values of FPR and TPR are zeros and the posi-
tion of t1 is in the lower left corner (the point (0,0)). The threshold
value is decreased to 0:82, and the first sample is classified cor-
rectly as a positive sample (see Figs. 6–8(a)). The TPR increased
to 0:1, while the FPR remains zero. As the threshold is further
reduced to be 0:8, the TPR is increased to 0:2 and the FPR remains
zero. As shown in Fig. 7, increasing the TPR moves the ROC curve
up while increasing the FPR moves the ROC curve to the right as
in t4. The ROC curve must pass through the point (0,0) where the
threshold value is 1 (in which all samples are classified as nega-
tive samples) and the point (1,1) where the threshold is �1 (in
which all samples are classified as positive samples).

Fig. 8 shows graphically the performance of the classification
model with different threshold values. From this figure, the follow-
ing remarks can be drawn.

� t1: The value of this threshold was 1 as shown in Fig. 8a) and
hence all samples are classified as negative samples. This means
that (1) all positive samples are incorrectly classified; hence, the
value of TP is zero, (2) all negative samples are correctly classi-
fied and hence there is no FP (see also Fig. 6).
� t3: The threshold value decreased as shown in Fig. 8b) and as
shown there are two positive samples are correctly classified.
Therefore, according to the positive class, only the positive sam-
ples which have scores more than or equal this threshold (t3)
will be correctly classified, i.e., TP, while the other positive sam-
ples are incorrectly classified, i.e., FN. In this threshold, also all
negative samples are correctly classified; thus, the value of FP
is still zero.
Fig. 6. An illustrative example to calculate the TPR
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� t8: As the threshold further decreased to be 0:54, the threshold
line moves to the left. This means that more positive samples
have the chance to be correctly classified; on the other hand,
some negative samples are misclassified. As a consequence,
the values of TP and FP are increased as shown in Fig. 8(c),
and the values of TN and FN decreased.
� t11: This is an important threshold value where the numbers of
errors from both positive and negative classes are equal (see
Fig. 8(d)) TP ¼ TN ¼ 6 and FP ¼ FN ¼ 4).
� t14: Reducing the value of the threshold to 0:37 results more
correctly classified positive samples and this increases TP and
reduces FN as shown in Fig. 8(e). On the contrary, more negative
samples are misclassified and this increases FP and reduces TN.
� t20: As shown in Fig. 8(f), decreasing the threshold value hides
the FN area. This is because all positive samples are correctly
classified. Also, from the figure, it is clear that the FP area is
much larger than the area of TN. This is because 90% of the neg-
ative samples are incorrectly classified, and only 10% of negative
samples are correctly classified.

From Fig. 7 it is clear that the ROC curve is a step function. This is
because we only used 20 samples (a finite set of samples) in our
example and a true curve can be obtained when the number of
and FPR when the threshold value is changed.

tics (2018), https://doi.org/10.1016/j.aci.2018.08.003

https://doi.org/10.1016/j.aci.2018.08.003


Fig. 8. A visualization of how changing the threshold changes the TP; TN; FP, and FN values.
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samples increased. The figure also shows that the best accuracy
(70%) (see Table 1) is obtained at (0.1,0.5) when the threshold value
wasP 0:6, rather than atP 0:5 as wemight expect with a balanced
data. This means that the given learning model identifies positive
samples better than negative samples. Since the ROC curve depends
mainly on changing the threshold value, comparing classifiers with
different score ranges will bemeaningless. For example, assumewe
have two classifiers, the first generates scores in the range [0,1] and
the other generates scores in the range [-1,+1] and hence we cannot
compare these classifiers using the ROC curve.

The steps of generating ROC curve are summarized in Algorithm
1. The algorithm requires OðnlognÞ for sorting samples, and OðnÞ for
scanning them; resulting in OðnlognÞ total complexity, where n is
the number of samples. As shown, the two main steps to generate
ROC points are (1) sorting samples according to their scores and (2)
changing the threshold value from maximum to minimum to pro-
cess one sample at a time and update the values of TP and FP in
each time. The algorithm shows that the TP and the FP start at zero.
The algorithm scans all samples and the value of TP is increased for
Please cite this article in press as: A. Tharwat, Applied Computing and Inform
each positive sample while the value of FP is increased for each
negative sample. Next, the values of TPR and FPR are calculated
and pushed into the ROC stack (see step 6). When the threshold
becomes very low (threshold! �1), all samples are classified as
positive samples and hence the values of both TPR and FPR are one.

Steps 5–8 handle sequences of equally scored samples. Assume
we have a test set which consists of P positive samples and N neg-
ative samples. In this test set, assume we have p positive samples
and n negative samples with the same score value. There are two
extreme cases. In the first case which is the optimistic case, all pos-
itive samples end up at the beginning of the sequence, and this
case represents the upper L segment of the rectangle in Fig. 5. In
the second case, i.e., pessimistic case, all the negative samples
end up at the beginning of the sequence, and this case represents
the lower L segment of the rectangle in Fig. 5. The ROC curve rep-
resents the expected performance which is the average of the two
cases, and it represents the diagonal of the rectangle in Fig. 5. The
size of this rectangle is pn

PN, and the number of errors in both opti-
mistic and pessimistic cases can be calculated as follows, pn

2PN.
atics (2018), https://doi.org/10.1016/j.aci.2018.08.003
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Table 1
Values of TP; FN; TN; FP; TPR; FPR; FNR, precision (PPV), and accuracy (Acc in %) of our ROC example when changes the threshold value.

Threshold TP FN TN FP TPR FPR FNR PPV Acc

t1 ¼ 1 0 10 10 0 0 0 1 – 50
t2 ¼ 0:82 1 9 10 0 0.1 0 0.9 1.0 55
t3 ¼ 0:80 2 8 10 0 0.2 0 0.8 1.0 60
t4 ¼ 0:75 2 8 9 1 0.2 0.1 0.8 0.67 55
t5 ¼ 0:70 3 7 9 1 0.3 0.1 0.7 0.75 60
t6 ¼ 0:62 4 6 9 1 0.4 0.1 0.6 0.80 65
t7 ¼ 0:60 5 5 9 1 0.5 0.1 0.5 0.83 70
t8 ¼ 0:54 5 5 8 2 0.5 0.2 0.5 0.71 65
t9 ¼ 0:50 5 5 7 3 0.5 0.3 0.5 0.63 60
t10 ¼ 0:49 6 4 7 3 0.6 0.3 0.4 0.67 65
t11 ¼ 0:45 6 4 6 4 0.6 0.4 0.4 0.60 60
t12 ¼ 0:40 7 3 6 4 0.7 0.4 0.3 0.64 65
t13 ¼ 0:39 7 3 5 5 0.7 0.5 0.3 0.58 60
t14 ¼ 0:37 8 2 5 5 0.8 0.5 0.2 0.62 65
t15 ¼ 0:32 8 2 4 6 0.8 0.6 0.2 0.57 60
t16 ¼ 0:30 8 2 3 7 0.8 0.7 0.2 0.53 55
t17 ¼ 0:26 8 2 2 8 0.8 0.8 0.2 0.50 50
t18 ¼ 0:23 9 1 2 8 0.9 0.8 0.1 0.53 55
t19 ¼ 0:21 9 1 1 9 0.9 0.9 0.1 0.50 50
t20 ¼ 0:19 10 0 1 9 1.0 0.9 0 0.53 55
t21 ¼ 0:10 10 0 0 10 1.0 1.0 0 0.50 50
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Algorithm 1: Generating ROC Curve.

1: Given a set of test samples (Stest ¼ fs1; s2; . . . ; sNg), where N
is the total number of test samples, f ðiÞ is the classifier that
classify the ith sample to positive or negative classes, P and
N represent the total number of positive and negative
samples, respectively.

2: Sort the samples corresponding to their scores, where Ssorted
is the sorted samples.

3: FP  0, TP  0, f prev  �1, and ROC ¼ ½ �. 4: for i ¼ 1 to
jSsortedj do

5: if f ðiÞ – f prev then

6: ROCðiÞ  FP
N ; TPP

� �
, f prev  f ðiÞ

7: end if
8: if SsortedðiÞ is a positive sample then
9: TP  TP þ 1.
10: else
11: FP  FP þ 1.
12: end if
13: end for
14: ROCðiÞ  FP

N ; TPP
� �

.

In multi-class classification problems, plotting ROC becomes
much more complex than in binary classification problems. One
of the well-known methods to handle this problem is to produce
one ROC curve for each class. For plotting ROC of the class i (ci),
the samples from ci represent positive samples and all the other
samples are negative samples.

ROC curves are robust against any changes to class distribu-
tions. Hence, if the ratio of positive to negative samples changes
in a test set, the ROC curve will not change. In other words, ROC
curves are insensitive with the imbalanced data. This is because
ROC depends on TPR and FPR, and each of them is a columnar
ratio3.

The following example compares between the ROC using bal-
anced and imbalanced data. Assume the data is balanced and it
consists of two classes each has 1000 samples. The point (0.2,0.5)
on the ROC curve means that the classifier obtained 50% sensitivity
3 As mentioned before TPR ¼ TP
TPþFN ¼ TP

P and both TP and FN are in the same column,
and similarly FNR.
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(500 positive samples are correctly classified from 1000 positive
samples) and 80% specificity (800 negative samples are correctly
classified from 1000 negative samples). If the class distribution
changed to be imbalanced and the first and second classes have
1000 and 10,000 samples, respectively. Hence, the same point
(0.2, 0.5) means that the classifier obtained 50% sensitivity (500
positive samples are correctly classified from 1000 positive sam-
ples) and 80% specificity (8000 negative samples are correctly clas-
sified from 1000 negative samples). The AUC4 score for both cases
are the same while the other metrics which are sensitive to the
imbalanced data will be changed. For example, the accuracy rates
of the classifier using the balanced and imbalanced data are 65
and 77.3%, respectively, and the precision values will be � 0:71
and 0.20, respectively. These results reflect how the precision and
accuracy metrics are sensitive to the imbalanced data as mentioned
in Section 2.1.

It is worth mentioning that the comparison between different
classifiers using ROC is valid only when (1) there is only single
dataset, (2) there are multiple datasets with the same data size
and the same positive:negative ratio.
4. Area under the ROC curve (AUC)

Comparing different classifiers in the ROC curve is not easy. This
is because there is no scalar value represents the expected perfor-
mance. Therefore, the Area under the ROC curve (AUC) metric is
used to calculate the area under the ROC curve. The AUC score is
always bounded between zero and one, and there is no realistic
classifier has an AUC lower than 0.5 [4,15].

Fig. 9 shows the AUC value of two classifiers, A and B. As shown,
the AUC of B classifier is greater than A; hence, it achieves better
performance. Moreover, the gray shaded area is common in both
classifiers, while the red shaded area represents the area where
the B classifier outperforms the A classifier. It is possible for a
lower AUC classifier to outperform a higher AUC classifier in a
specific region. For example, in Fig. 9, the classifier B outperforms
A except at FPR > 0:6 where A has a slight difference (blue shaded
area). However, two classifiers with two different ROC curves may
have the same AUC score.

The AUC value is calculated as in Algorithm 2. As shown, the
steps in Algorithm 2 represent a slight modification from
4 The AUC metric will be explained in Section 4
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Fig. 9. An illustrative example of the AUC metric.
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Algorithm 1. In other words, instead of generating ROC points in
Algorithm 1, Algorithm 2 adds areas of trapezoids5 of the ROC curve
[4]. As shown in Algorithm 2, the AUC score can be calculated by
adding the areas of trapezoids of the AUC measure. Fig. 9 shows an
example of one trapezoid; the base of this trapezoid is
ðFPR2 � FPR1Þ, and the height of the trapezoid is ðTPR1 þ TPR2Þ=2;
hence, the total area of this trapezoid is calculated as follows,
A ¼ Base� Height ¼ ðFPR2 � FPR1Þ � ðTPR1 þ TPR2Þ=2.

Algorithm 2: Calculating the AUC measure.

1: The same first two steps in Algorithm 1.
2: FP  0, TP  0, f prev  �1, FPprev  0, TPprev  0, and

A 0, where A is the area under the ROC curve, i.e., AUC
score. 3: for i ¼ 1 to jSsortedj do

4: if f ðiÞ – f prev then
5: A Aþ Trapezoid AreaðFP; FPprev ; TP; TPprevÞ.
6: f prev  f ðiÞ, FPprev  FP, TPprev  TP
7: end if
8: if SsortedðiÞ is a positive sample then
9: TP  TP þ 1.
10: else
11: FP  FP þ 1.
12: end if
13: end for
14: A ðAþ Trapezoid AreaðFP; FPprev ; TP; TPprev ÞÞ=ðP � NÞ.
15: function Trapezoid AreaðX1;X2;Y1;Y2Þ
16: Base! X1 � X2j j, Height ! ðY1 þ Y2Þ=2
17: return Base� Height.

The AUC can be also calculated under the PR curve using the
trapezoidal rule as in the ROC curve, and the AUC score of the per-
fect classifier in PR curves is one as in ROC curves.

In multi-class classification problems, Provost and Domingos
calculated the total AUC of all classes by generating a ROC curve
for each class and calculate the AUC value for each ROC curve [10].
The total AUC (AUCtotal) is the summation of all AUC scoresweighted
by the prior probability of each class as follows, AUCtotal ¼P

ci2CAUCðciÞ:pðciÞ, where AUCðciÞ is the AUC under the ROC curve
of the class ci;C is a set of classes, and pðciÞ is the prior probability
5 A trapezoid is a 4-sided shape with two parallel sides.
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of ci [10]. Thismethod of calculating the AUC score is simple and fast
but it is sensitive to class distributions and error costs.
5. Precision-Recall (PR) curve

Precision and recall metrics are widely used for evaluating the
classification performance. The Precision-Recall (PR) curve has the
same concept of the ROC curve, and it can be generated by changing
the threshold as in ROC. However, the ROC curve shows the relation
between sensitivity/recall (TPR) and 1-specificity (FPR) while the PR
curve shows the relationship between recall and precision. Thus, in
the PR curve, the x-axis is the recall and the y-axis is the precision,
i.e., the x-axis of ROC curve is the y-axis of PR curve [8]. Hence, in
the PR curve, there is no need for the TN value.

In the PR curve, the precision value for the first point is unde-
fined because the number of positive predictions is zero, i.e.,
TP ¼ 0 and FP ¼ 0. This problem can be solved by estimating the
first point in the PR curve from the second point. There are two
cases for estimating the first point depending on the value of TP
of the second point.

1. The number of true positives of the second point is zero: In this
case, since the second point is (0,0), the first point is also (0,0).

2. The number of true positives of the second point is not zero:
this is similar to our example where the second point is (0.1,
1.0). The first point can be estimated by drawing a horizontal
line from the second point to the y-axis. Thus, the first point
is estimated as (0.0, 1.0).

As shown in Fig. 10, the PR curve is often zigzag curve; hence,
PR curves tend to cross each other much more frequently than
ROC curves. In the PR curve, a curve above the other has a better
classification performance. The perfect classification performance
in the PR curve is represented in Fig. 10 by a green curve. As shown,
this curve starts from the (0,1) horizontally to (1,1) and then verti-
cally to (1,0), where (0,1) represents a classifier that achieves 100%
precision and 0% recall, (1,1) represents a classifier that obtains
100% precision and sensitivity and this is the ideal point in the
PR curve, and (1,0) indicates the classifier obtains 100% sensitivity
and 0% precision. Hence, we can say that the closer the PR curve is
to the upper right corner, the better the classification performance
is. Since the PR curve depends only on the precision and recall
measures, it ignores the performance of correctly handling nega-
tive examples (TN) [16].

Eq. (18) indicates the nonlinear interpolation of the PR curve
that was introduced by Davis and Goadrich [5].

y ¼ TPA þ x

TPA þ xþ FPA þ FPB�FPA
TPB�TPA :x

ð18Þ

where TPA and TPB represent the true positives of the first and sec-
ond points, respectively, FPA and FPB represent the false positives of
the first and second points, respectively, y is the precision of the
new point, and x is the recall of the new point. The value of x can
be any value between zero and jTPB � TPAj. A smooth curve can be
obtained by calculating many intermediate points between two
points A and B. In our example in Fig. 10, assume the first point is
the fifth point and the second point is the sixth point (see Table 1).
From Table 1, the point A is (0.3,0.75) and the point B is (0.4,0.8).
The value of jTPB � TPAj ¼ j4� 3j ¼ 1 and hence the value of x can
be any value between zero and one. Let x ¼ 0:5, which is the middle
point between A and B and hence the recall for the new point is
0:3þ0:4

2 ¼ 0:35. The precision of the new point is calculated as follows,
y ¼ 3þx

3þxþ1þ1�1
4�3�x

¼ 3þ0:5
3þ0:5þ1þ0 � 0:778, where the new point using the
atics (2018), https://doi.org/10.1016/j.aci.2018.08.003

https://doi.org/10.1016/j.aci.2018.08.003


Fig. 10. An illustrative example of the PR curve. The values of precision and recall of
each point/threshold are calculated in Table 1.

Fig. 12. An illustrative example of the DET curve. The values of FRR and FAR of each
point/threshold are calculated in Table 1.
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linear interpolation is (0:3þ0:42 ; 0:75þ0:82 Þ ¼ ð0:35;0:775). In our exam-
ple, for simplicity, we used the linear interpolation.

The end point in the PR curve is calculated as follows, ð1; P
PþNÞ.

This is because (1) the recall increases by increasing the threshold
value and at the end point the recall reaches to the maximum
recall, (2) increasing the threshold value increases both TP and
FP. Therefore, if the data are balanced, the precision of the end
point is P

PþN ¼ 1
2. The horizontal line which passes through P

PþN
represents a classifier with the random performance level. This line
separates the area of the PR curve into (1) the area above the
line and this is the area of good performance and (2) the area below
the line and this is the area of poor performance (see Fig. 10). Thus,
Fig. 11. Illustrative example to test the influence of changing
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the ratio of positives and negatives defines the baseline. Hence,
changing the ratio between the positive and negative classes
changes that line and hence changes the classification performance.

As indicated in Eq. (6), according to the precision metric, lower-
ing the threshold value increases the TP or FP. Increasing TP
increases the precision while increasing the FP decreases the preci-
sion. Hence, lowering the threshold value fluctuates the precision.
On the other hand, as indicated in Eq. (2), lowering the threshold
may leave the recall value unchanged or increase it. Due to the pre-
cision axis in the PR curve; hence, the PR curve is sensitive to the
imbalanced data. In other words, the PR curves and their AUC val-
ues are different between balanced and imbalanced data.

6. Biometrics measures

Biometrics matching is slightly different than the other classifi-
cation problems and hence it is sometimes called two-instance
the threshold value on the values of FAR; FRR, and EER.
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Fig. 13. Results of our experiment. (a) ROC curve, (b) Precision-Recall curve.

Fig. 14. Confusion matrices of the three classes in our experiments.

6 More details about SVM can be found in [24].
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problem. In this problem, instead of classifying one sample into
one of c groups or classes, biometric determines if the two samples
are in the same group. This can be achieved by identifying an
unknown sample by matching it with all the other known samples.
This step generates a score or similarity distance between the
unknown sample and the other samples. The model assigns the
unknown sample to the person which has the most similar score.
If this level of similarity is not reached, the sample is rejected. In
other words, if the similarity score exceeds a pre-defined thresh-
old; hence, the corresponding sample is said to be matched; other-
wise, the sample is not matched. Theoretically, scores of clients
(persons known by the biometric system) should always be higher
than the scores of imposters (persons who are not known by the
system). In biometric systems, a single threshold separates the
two groups of scores; thus, it can be utilized for differentiating
between clients and imposters. In real applications, for many rea-
sons sometimes imposter samples generate scores higher than the
scores of some client samples. Accordingly, it is a fact that however
the classification threshold is perfectly chosen, some classification
errors occur. For example, given a high threshold; hence, the
imposters’ scores will not exceed this limit. As a result, no impos-
ters are incorrectly accepted by the model. On the contrary, some
clients are falsely rejected (see Fig. 11 (top panel)). In opposition
to this, lowering the threshold value accepts all clients and also
some imposters are falsely accepted.

Two of the most commonly used measures in biometrics are the
False acceptance rate (FAR) and False rejection/recognition rate (FRR).
The FAR is also called false match rate (FMR) and it is the ratio
between the number of false acceptance to the total number of
imposters attempts. Hence, it measures the likelihood that the bio-
metric model will incorrectly accept an access by an imposter or an
unauthorized user. Hence, to prevent imposter samples from being
easily correctly identified by the model, the similarity score has to
exceed a certain level (see Fig. 11) [2]. The FRR or false non-match
rate (F NMR) measures the likelihood that the biometric model will
incorrectly reject a client, and it represents the ratio between the
number of false recognitions to the total number of clients’
attempts [2]. For example, if FAR ¼ 10% this means that for one
hundred attempts to access the system by imposters, only ten will
be succeeded and hence increasing FAR decreases the accuracy of
the model. On the other hand, with FRR ¼ 10%, ten authorized per-
sons will be rejected from 100 attempts and hence reducing FRR
will help to avoid a high number of trails of authorized clients.
As a consequence, FAR and FRR in biometrics are similar to false
positive rate (FPR) and false negative rate (FNR), respectively (see
Section 2.4). Equal error rate (EER) measure solves the problem
of selecting a threshold value partially, and it represents the failure
rate when the values of FMR and F NMR are equal. Fig. 11 shows the
FAR and FRR curves and also the EER measure.

Detection Error Trade-off (DET) curve is used for evaluating bio-
metric models. In this curve, as in the ROC and PR curves, the
threshold value is changed and the values of FAR and FRR are cal-
culated at each threshold. Hence, this curve shows the relation
Please cite this article in press as: A. Tharwat, Applied Computing and Inform
between FAR and FRR. Fig. 12 shows an example of the DET curve.
As shown, as in the ROC curve, the DET curve is plotted by chang-
ing the threshold on the confidence score; thus, each threshold
generates only one point in the DET curve. The ideal point in this
curve is the origin point where the values of both FRR and FAR
are zeros and hence the perfect classification performance in the
DET curve is represented in Fig. 12 by a green curve. As shown, this
curve starts from the point (0,1) vertically to (0,0) and then hori-
zontally to (1,0), where (1) the point (0,1) represents a classifier
that achieves 100% FAR and 0% FRR, (2) the point (0,0) represents
a classifier that obtains 0% FAR and FRR, and (3) the point (1,0) rep-
resents a classifier that indicates 0% FAR and 100% FRR. Thus, we
can say that the closer a DET curve is to the lower left corner,
the better the classification performance is.
7. Experimental results

In this section, an experiment was conducted to evaluate the
classification performance using different assessment methods. In
this experiment, we used Iris dataset which is one of the standard
classification datasets and it is obtained from the University of Cal-
ifornia at Irvin (UCI) Machine Learning Repository [1]. This dataset
has three classes, each class has 50 samples, and each sample is
represented by four features. We used (1) the Principal component
analysis (PCA) [23] for reducing the features to two features and
(2) Support vector machine (SVM)6 for classification.

In our experiment, we used different assessment methods for
evaluating the learning model. Fig. 13 shows the ROC and
Precision-Recall curves. As shown, there are three curves, one
curve for each class and as shown, the first class obtained results
better than the other two classes. Fig. 14 shows the confusion
matrix for each class. From these confusion matrices we can calcu-
late different metrics as mentioned before (see Fig. 3). For example,
the results of the first class were as follows, Acc; TPR; TNR; PPV , and
NPV were 99.33, 100, 98.0, 99.01, 100, respectively. Similarly, the
results of the other two classes can be calculated.
8. Conclusions

In this paper, the definition, mathematics, and visualizations of
the most well-known classification assessment methods were pre-
sented and explained. The paper aimed to give a detailed overview
of the classification assessment measures. Moreover, based on the
atics (2018), https://doi.org/10.1016/j.aci.2018.08.003
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confusion matrix, different measures are introduced with detailed
explanations. The relations between these measures and the
robustness of each of them against imbalanced data are also intro-
duced. Additionally, an illustrative numerical example was used
for explaining how to calculate different classification measures
with binary and multi-class problems and also to show the robust-
ness of different measures against the imbalanced data. Graphical
measures such as ROC, PR, and DET curves are also presented with
illustrative examples and visualizations. Finally, various classifica-
tion measures for evaluating biometric models are also presented.
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