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We applied the bag of visual words model for visual texture to a dataset of realistic powder micrograph
images drawn from eight closely related particle size distributions. We found that image texture based
powder classification performance saturates at 89� 3% with 640 training images (80 images per class).
This classification accuracy is comparable to classification using conventional segmentation-based parti-
cle size analysis. Furthermore, we found that particle size distributions obtained via watershed segmen-
tation are generally not statistically equivalent to the ground truth particle size distributions, as
quantified by the two-sample Kolmogorov-Smirnov test for distribution equivalence. We expect image
texture classification methods to outperform particle size analysis for more challenging real-world pow-
der classification tasks by capturing additional information about particle morphology and surface tex-
tures, which add complexity to the image segmentation task inherent in particle size distribution
estimation.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The discipline of materials science has long history of quantify-
ing microstructural images to interpret structure–properties–pro
cessing relationships. However, many of the microstructures found
in technologically important materials systems are complex and do
not map well onto a reductionist segment-and-measure paradigm,
at least under the constraints of our current understanding of
mesoscale physics. Where explicit mesoscale materials models
are not available, there has been interest in applying more flexible
image representations to microstructure data in an attempt to cir-
cumvent these limitations [1–5]. For example, we recently demon-
strated that the ‘bag of visual words’ (BOVW) image texture
representation can be used to automatically differentiate between
qualitatively different microstructures [5].

As materials scientists we are ultimately interested in learning
quantitative structure ! properties and processing ! structure
mappings. We hope that image texture characterization methods
can aid us in this goal. A critical outstanding question in this
approach is the problem of physical size: can scale-invariant tex-
ture features (like the BOVW approach) support quantitative struc-
ture ! properties mappings that depend strongly on relative
feature sizes? In this work, we move towards quantitative
microstructure characterization by focusing on microstructures
that vary primarily in their physical dimensions. Here we focus
on a simple model system: powder materials with different parti-
cle size distributions (PSD).

The size distribution and morphology of powder materials play
important roles in powderbed fusion additive manufacturing (AM)
[6–8] and other powder metallurgy applications [9]. This class of
AM techniques enables rapid building of parts with complex
geometries in a layer-by-layer process where a powder feedstock
material is locally fused using a computer-routed laser or electron
beam [10,11]. The PSD and morphology can play a large role in
powder rheology [6,8], and can affect the density distribution in
the powder bed, which in turn can alter energy absorption and
thermal conductivity [12,13]. Together these factors influence both
the final microstructure of the built part, and its properties such as
porosity, hardness, mechanical strength, and surface roughness
[14,15].

Understanding how powder character affects the build process
and final properties is especially important when recycling the
unused portion of the powder bed, because the powder character
has been shown to change with recycling [14–16]. Unused powder
can contain distorted partially melted particles, sintered particle
clusters, or solidified melt-pool ejecta [14,15]; recycled powders
are typically sieved to remove these, and to ensure that the
recycled powder has a maximum particle size consistent with
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the powder bed thickness. Recent powder rheometry studies indi-
cate that sieving may not always mitigate the adverse effects of
recycling; powder flowability may decrease [15,17] or increase
[14,16] after recycling. For these reasons, it is important to charac-
terize the morphology of AM powder feedstock material, and to
couple this with an understanding of how powder morphology
influences the build process [18,15,17].

A wide array of characterization techniques has been applied to
AM powder feedstock materials [18], including laser PSD measure-
ments [19], X-ray computed tomography (XCT) to measure three
dimensional particle sizes and shapes, X-ray diffraction for phase
identification, scanning electron microscopy to qualitatively study
surface structure, and energy-dispersive spectroscopy (EDS) and
X-ray photospectroscopy (XPS) to measure chemical composition.
Importantly, the PSD alone does not provide information about
powder morphology that may be important for understanding
the behavior of the powder [15]. Consider the gas-atomized
powders shown in Fig. 1. Some of the powder particles are non-
spherical and appear to have non-trivial surface roughness. Fur-
thermore, many of the particles obscure and occlude each other,
and smaller particles tend to agglomerate. These morphological
features may not be adequately resolved by laser particle size dis-
tribution measurements [18] or region-based image analysis tech-
niques [17], and it may be impractical and/or cost-prohibitive to
conduct XCT and powder rheometry experiments regularly in a
production setting. Therefore it is of interest to develop powder
characterization techniques based on image texture analysis to
complement the suite of analytical tools currently in use.

In this study, we investigate the capability of image texture
methods, specifically the BOVWmodel, to capture quantitative dif-
ferences in microstructure, where the primary aspect of interest is
the relative size of microstructure features. Using 3D rendering to
create realistic powder micrographs, we generated a dataset of
2048 synthetic micrographs representing eight different powder
PSDs. This dataset provides a realistic materials science applica-
tion, which we use to exercise and evaluate the BOVW representa-
tion for microstructure characterization and to delineate the
amount of microstructure information required to support a
data-driven powder characterization approach. We also evaluate
particle size measurements obtained through a conventional
segmentation-based method by comparing to the ground truth
particle sizes in the rendered images. We conclude that image tex-
ture methods, together with rheological and build-performance
studies, offer a promising approach to evaluate and qualify powder
feedstock for AM processes.
2. Methods

2.1. Synthetic powder micrographs

We created a dataset of realistic powder micrographs; Fig. 2
shows example renderings. This microstructure synthesis task
Fig. 1. Scanning electron micrographs of gas atomized powders of a: Al, b: Ti-6Al4V, c: In
was performed using Blender [20], an open source computer
graphics suite used for 3D modeling, rendering, animation, and sci-
entific visualization; the scripts and texture resources used to gen-
erate this dataset are included in a data-in-brief summary [21]. In
the present study, we limit ourselves to powders consisting of
spherical particles with spatially uncorrelated positions. We con-
sider eight powders differing only in their PSD, which are shown
in Fig. 3. For each generating distribution we rendered 256 images,
yielding a total dataset of 2048 synthetic powder micrographs.
Fig. 2 shows one randomly selected example rendering for each
of these eight particle size distributions. We used half of the data-
set (1024 images; 128 images per class) for model training and val-
idation, and held out the other half of the dataset as an
independent testing set.

The PSDs in Fig. 3 consist of pairs of size distributions that are
relatively similar to each other, as detailed in Table 1. This repre-
sents a challenging classification problem. Distributions a and b
are lognormal distributions with the same mean particle size of
la ¼ lb ¼ 0:1, and shape parameters of ra ¼ 0:5 and rb ¼ 0:6,
measured in arbitrary Blender units. Distributions c and d are a
normal distribution and a lognormal distribution, each with a
mean particle size of lc ¼ ld ¼ 0:1. These are the cleanest powders
in the dataset, differing primarily in their upper and lower tails,
with small shape parameters of rc ¼ 0:025 and rd ¼ 0:25. Distri-
butions e and f are lognormal distributions with the same mean
particle size of le ¼ lf ¼ 0:12, and the same shape parameters as
distributions a and b (re ¼ ra ¼ 0:5 and rf ¼ rb ¼ 0:6). Distribu-
tions g and h are weibull distributions that have been parameter-
ized to fit data sampled from the lognormal distributions e and f,
respectively.

Each 11� 11� 2 (arbitrary Blender units) render volume con-
tains 800 particles with radii sampled from one of the eight gener-
ating distributions. The imaging plane is normal to the shorter (z)
axis of the render volume, and intersects the centroid of the render
volume. The camera is located 10 Blender units away from the
imaging plane along the z direction, and images are rendered at a
resolution of 512 � 512 pixels. Particle positions are randomly
sampled from a uniform distribution over the render volume.
Because of this, the spherical particles often occlude and/or inter-
sect each other. Each particle is modeled by a spherical mesh,
which we imbue with realistic surface texture. by wrapping an
image of macroscopic zinc grains found in the passivating surface
of galvanized iron. We considered several procedurally-generated
image textures, but found that mapping an image of macroscopic
zinc grains found in the passivating surface of galvanized iron onto
the surface of each particle qualitatively yields more realistic
results, as the actual metal powders are polycrystalline.

2.2. Bag of visual words image representation

We characterize the synthetic powder micrographs using a bag
of visual words (BOVW) image representation [5], which is an
conel-718, and d: a maraging steel. Courtesy of A.D. Rollett, R. Cunningham, H. Jain.



Fig. 2. a–h: Synthetic powder micrographs with particles sizes sampled from each of the eight generating distributions in Fig. 3.

Fig. 3. The eight generating particle size distribution functions, measured in
arbitrary Blender units.

Table 1
Distribution parameters for the eight generating particle size distributions. Distribu-
tions g and h are weibull distributions fit to samples from the lognormal distributions
e and f; the parameters listed are for the lognormal distributions.

Class Family Mean (l) Shape (r)

a Lognormal 0.1 0.5
b Lognormal 0.1 0.6
c Normal 0.1 0.025
d Lognormal 0.1 0.25
e Lognormal 0.12 0.5
f Lognormal 0.12 0.6
g Weibull 0.12 0.5
h Weibull 0.12 0.6
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established approach in computer vision for object and texture
recognition tasks [22–24]. In this model, an image is represented
by a (discrete) distribution of local image pattern descriptors, often
called keypoint features. Commonly used pattern descriptors
include image patches [25], histograms of oriented image gradient
values [26–29], and binary descriptors of spatial patterns of image
intensity values (BRIEF [30], ORB [31], BRISK [32], etc). Each carry
trade-offs between descriptive power, invariance to image trans-
formations, and computational expense. In the BOVWmodel, these
keypoint features are organized into a visual dictionary (via
k-means clustering [33,34], for example). The resulting BOVW
representation is an occurrence frequency histogram obtained by
assigning each keypoint feature in an image to the nearest cluster
center (i.e. visual word) in the visual dictionary [23,24].

In this work, we select distinctive keypoint features across a
range of sizes by applying the Difference of Gaussians (DoG) [27]
and Harris-LaPlace (HL) [35] interest point detectors, which local-
ize blob-like and corner-like image features, respectively. We char-
acterize the regions surrounding these keypoint features using the
Scale Invariant Feature Transform (SIFT) [27,28] computed using
the VLFeat library [36], which computes a spatially resolved his-
togram of oriented image gradient values. Since these SIFT descrip-
tors are computed in a reference frame that is normalized with
respect to both the scale and the dominant image gradient orienta-
tion of the keypoint feature, the resulting image texture represen-
tation is robust to changes in feature scale and orientation [27,28].
We use k-means clustering [33,34] on a subset of SIFT descriptors
extracted from the training set of images to compile a dictionary of
k visual words, where the size k of the dictionary is chosen based
on the distribution of keypoint features in the training set
[37,24]. For each image, we obtain SIFT descriptors at each of the
DoG and HL interest points, map each SIFT descriptor to the closest
visual word in the dictionary extracted from the training set, and
construct a normalized occurence frequency histogram over the
visual words [23,24]. This BOVW representation is a generic image
fingerprint that is appropriate for any image drawn from the same
distribution as the training set. Using the v2 metric [38]

DðX;YÞ ¼ 1
2

Pm
i¼1

ðxi�yiÞ2
xiþyi

for comparing discrete m-dimensional prob-

ability distributions X and Y, we can quantitatively study relation-
ships between different microstructures using e.g. Support Vector
Machine classification (SVM) [39,40], for which we use the
Scikit-Learn machine learning library [41].
2.3. Watershed segmentation

To compare the machine vision approach to conventional
segment-and-measure characterization, we use ImageJ [42], an
open source image analysis toolkit, to segment the synthetic pow-
der micrographs with the watershed [43] algorithm. This scheme
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first uses a simple threshold operation to distinguish the particles
from the background of the image. The resulting images tend to
contain large contiguous regions corresponding to multiple parti-
cles, due to agglomeration and occlusion of particles in the original
image. The watershed operation partially mitigates this effect. The
threshold image is used to compute a distance map from each pixel
to the background region. The negated distance map is analogous
to a surface with many basins. The watershed algorithm finds
new region boundaries corresponding to the watershed lines on
this surface by flooding the surface from the local minima.

We measure particle size distributions for each image by com-
puting circle-equivalent radii for each of the segmented regions
obtained via watershed segmentation. We constructed particle size
histograms for each image using 25 bins of equal width spanning
the range of particle sizes from 0.0 to 0.6 (arbitrary Blender units).
To directly compare the watershed results to the BOVW results, we
use these empirical particle size histograms as input to the same v2

SVM classification approach applied to the BOVW image represen-
tation. We also quantitatively evaluate the accuracy of the mea-
sured size distributions with the generating distributions using
the Kolmogorov-Smirnov (KS) test [44]. The KS test is a simple
non-parametric statistical hypothesis test based on the maximum
difference between the measured and theoretical cumulative par-
ticle size distributions. The null hypothesis of the KS test states
that the empirical distribution is equal to the reference distribution
it is being compared with.
3. Results

3.1. Classification results

3.1.1. Bag of visual words
To quantitatively evaluate how well the BOVW representation

can characterize powder micrographs, we performed v2-kernel
SVM classification [39,40]. We use half of our dataset (128 images
from each of the eight generating distributions) to tune model
parameters (the number of visual words in the dictionary k and
the SVM regularization parameter C) via 5� 8-fold cross-
validation, randomly partitioning the training set into 7 folds for
training and one fold for testing, repeated five times. We chose a
dictionary size of k ¼ 100 using the commonly used ’elbow’ heuris-
tic [45,46], which expresses the trade-off between the number of
clusters (visual words) and the compactness of the clusters. Cluster
compactness is quantified by the sum of squared distances
between each data point x and the nearest cluster center c in the
set of k clusters C. In other words, we perform k-means clustering
on the training set of keypoint descriptors for dictionary sizes, and
graphically analyze (as in Fig. 4a) the objective function k-means

objective function
P

x2Xminc2Cðjjx� cjj2Þ. An appropriate number
of clusters occurs at the ‘elbow’ where the objective function
begins to converge with respect to the number of clusters. For
the BOVW application, we are not overly concerned with more
sophisticated clustering techniques, as this step primarily serves
to partition the keypoint descriptors into discrete categories [24].

We set the SVM regularization parameter C ¼ 4 by performing
cross-validation for different values of C in the range
f2�5;2�4; . . .25g, and selecting C so as to maximize the classifica-
tion performance for the validation sets while ensuring that the
classification performance for the training sets is not significantly
higher, which would indicate overfitting. The cross-validation
results shown in Fig. 4b indicate that validation accuracy increases
slightly as the amount of regularization is decreased (i.e. as C
increases), up until around our choice of C ¼ 4 (indicated by the
dashed line), where the training performance begins to diverge
from the validation performance. For C ¼ 4, the cross-validation
accuracy was 0:894� 0:022 and the training accuracy was
0:919� 0:004.

After selecting appropriate model parameters, we re-trained the
SVM classifier using the full training set, and measured the classi-
fication performance on the independent testing set. We obtained
an overall classification accuracy of 0.889 on these 128 images per
class (1024 total). The confusion matrix in Fig. 6a shows a detailed
summary of these classification results. The SVM classifier shows
the highest selectivity for distributions a and b (about 98% cor-
rectly classified), followed by distributions c and d (about 90% cor-
rectly classified). There is a higher misclassification rate between
the two pairs of closely-related distributions ðe; gÞ and ðf ;hÞ, where
each pair of distributions consists of a lognormal distribution and a
weibull distribution with parameters selected to fit the corre-
sponding lognormal distribution. However, despite the similarity
between these PSDs, between 80% and 85% are correctly classified
using the BOVWmodel. Overall, these results demonstrate that the
image texture approach is sensitive to small quantitative differ-
ences between images and can attain high classification accuracy
even for very similar microstructural families.
3.1.2. Segment-and-measure results
In order to compare the BOVW image texture method to more

traditional microstructural quantification, we used the particle size
histograms obtained via watershed segmentation to classify the
same set of synthetic powder micrographs. We again used SVM
classification with the v2 kernel, selecting the SVM regularization
parameter C by performing cross-validation for different values
of C, for C in f2�10;2�9; . . .23g. For C ¼ 0:01, cross-validation
resulted in a training set accuracy of 0:949� 0:003%, and a valida-
tion set accuracy of 0:912� 0:014%. Retraining the classifier on the
full training set with C ¼ 0:01 yielded a training accuracy of 0:944
and a testing set accuracy of 0:902, almost the same as for the
image texture method.

The confusion matrix in Fig. 6b shows the classification results
in detail. Compared with the BOVW results, the particle size classi-
fier is not as symmetric about the diagonal elements. Instead, it is
biased towards particular distributions: b and f, the two lognormal
distributions with shape parameter 0:6. Notably, it has somewhat
less difficulty discriminating between the two strongly peaked dis-
tributions c and d, but this may be related to the bias towards dis-
tribution f.

The v2 kernel particle size classification results demonstrate
that watershed segmentation is sufficient to build a discriminative
classifier distinguishing between the eight PSDs in this study with
accuracy comparable the BOVW method. However, these results
do not necessarily imply that the watershed segmentation process
accurately recovers the true PSD. Given the level of particle
agglomeration and occlusion in both experimental and synthetic
powder micrographs, an image-based approach to quantitatively
measuring the PSD may be much more challenging than discrimi-
nating between different distributions. Fig. 5a compares the cumu-
lative PSD obtained from the generating distribution (dashed
curve), the sample ground truth particle sizes (yellow curve), and
the empirical watershed measurement (blue curve) for a single
synthetic micrograph drawn from distribution a. While the water-
shed method should be exact for images of isolated particles (i.e.
low particle density), here the watershed PSD tends to shift toward
larger particle sizes near the center of the distribution, with less
deviation near the tails. This is most likely due to failure of the
watershed segmentation to separate some of the overlapping and
partially-occluded particles. Fig. 5b shows the distribution of parti-
cle circularities C ¼ 4pA=P2 for the same synthetic micrograph.
Though the mode of this distribution is 1 as expected for circular
regions, there is significant probability mass in the lower tail of



Fig. 4. a: Selecting the visual dictionary size k ¼ 100 (indicated by the dashed line) via the graphical ‘elbow’ method. b: Selecting the SVM regularization parameter C (dashed
line) based on the divergence of the SVM training (upper red curve) and validation (lower blue curve) accuracies. Confidence bands indicate sample standard deviations over
cross-validation sets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. a: Cumulative distributions for generating, sample ground truth, and empirical watershed PSD for a single synthetic powder micrograph drawn from distribution a. b:
Histogram of the circularity for each watershed-segmented region in the image from a.

Fig. 6. a: Detailed classification results for bag of SIFT SVM classification (89:9% overall testing set accuracy). b: Detailed classification results for watershed particle size
distributions (90:2% overall testing set accuracy). The vertical axis of each confusion matrix indicates the true class, and the horizontal axis indicates the class predicted by
the SVM classifier.
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Fig. 7. Classification accuracy vs. number of training examples per class. The red
(upper) curve shows the training accuracy and the blue (lower) curve shows the
testing set accuracy; the confidence bands indicate sample standard deviations. For
each training set size that was evaluated, 25 random subsets of the original training
set were used for training, using the independent testing set (128 examples per
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the distribution, indicating that there are a substantial number of
regions with more complex shapes, which can decrease the quality
of the PSD estimate obtained via watershed segmentation.

We quantitatively compare the empirical particle size his-
tograms obtained through watershed segmentation with the con-
tinuous ground truth PSDs using the Kolmogorov-Smirnov (KS)
test [44]. We reject the null hypothesis (at the 5% significance
level) that the empirical distribution and the ground truth distribu-
tion are equal for the 86� 10% of the 256 images from each gen-
erating distribution. In other words, the measured PSDs are
statistically different from the ground truth PSDs. This result has
important implications for computational modeling of AM powder
feedstock. For example, model powders built from experimental
powder PSDs determined via image analysis may not accurately
represent the intended system.

In contrast, when comparing the ground truth particle size sam-
ples with their continuous generating distributions, the KS test
(again at the 5% significance level) suggests we reject the null
hypothesis for only 4� 1% of the 256 samples. Thus, the particle
sizes used to create the synthetic powder images are an accurate
representation of the particle size distributions; this establishes that
sampling effects are not responsible for the poor recovery of the
ground truth PSDs via watershed segmentation and region analysis.
class) only for performance evaluation. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
3.2. Learning curve

Machine learning models may require different amounts of data
to achieve good performance, depending on the flexibility of the
model and the difficulty of the task [37]. Models that are simple or
are based on strong (relevant) prior knowledge about the data typi-
cally need fewer trainingexamples than richer,moreflexiblemodels
[37]. To understand the data requirements of the BOVWmodel, we
measured the change in training and testing accuracy as the size of
the training set is increased over the range of N ¼ f1;2; . . .128g
examples per class. For each training set size that was evaluated,
25 randomsubsets of the original training setwere used for training.
In all cases, the full independent testing set (128 examples per class)
was used for performance evaluation. For convenience, we reused
the visual dictionary obtained from the original training set instead
of extracting a new visual dictionary for each cross-validation itera-
tion. We also use the SVM regularization parameter C ¼ 4 that we
selected via cross-validation over the training set.

The learning curve in Fig. 7 shows the improvement in classifi-
cation accuracy as more images are included in the training set.
The red (upper) curve shows the training set accuracy and the blue
(lower) curve shows the testing set accuracy; the confidence bands
indicate sample standard deviations. With small training sets, the
accuracy on the training set is much higher than accuracy on the
validation set. For example, training sets with only one or two
instances per class yield a model that perfectly fits the training
set, but generalizes poorly, indicating significant overfitting to
the small training set. As the training set size increases, the average
training set accuracy decreases and converges to about 92%. In
contrast, the testing set accuracy begins low and increases with
more training examples, converging to about 89% accuracy
(dashed line) with around 80 training images per class (640 train-
ing images total). The classification accuracies converge to values
that are consistent with the cross-validation accuracies obtained
from the training set during the model parameter optimization
procedure, as described above in Section 3.1.1.
4. Discussion

For this synthetic powder micrograph dataset, the BOVW
method yields comparable classification results to segmenting
and measuring sphere-equivalent particle size distributions. This
demonstrates that the BOVW model is not necessarily limited to
applications involving qualitatively different microstructures, but
has the potential to provide quantitative microstructural insight.
We believe that the BOVW features for this particular synthetic
powder dataset effectively capture the shape of the PSD by captur-
ing statistical differences in the tendency for particles of different
size to intersect and overlap in the image. Here, this is primarily
a function of the shape of the PSD, because the particles in the syn-
thetic powder images are spatially randomly distributed. We note
that the BOVW model might not be discriminative for powder
micrographs with sparse powder coverage, if the majority of key-
point features were individual spherical particles with statistically
equivalent surface texture.

Performance on our 8-way powder classification task converged
to about 89� 3% with around 80 images per powder class. Gener-
alizing this data requirement to a real-world powder classification
task is confounded by several factors, but collecting a comparably
sized initial training set of SEM powder micrographs should be
well within the capabilities of an industrial or academic group
attempting to develop a powder characterization system. Ideally,
the collection of a training set of powder micrographs (a minimum
of 80 images per class) is an up-front cost; potentially powder and/
or machine manufacturers could provide a set of images to support
material qualification. Once a training set is established, the data
acquisition cost for this system is no greater than that of an
image-based PSD characterization approach.

Care must be taken to ensure that sample preparation yields
representative and repeatable images. Maintaining consistent
SEM imaging conditions will pose a significant challenge, as
changes in image contrast can affect resolution of topographical
features on the surface of the powder particles. In practice, it is dif-
ficult to prepare sparsely dispersed powder samples with consis-
tent spatial distribution of particles, even when using the same
material source; the spatial distribution of particles can vary dras-
tically across a single physical sample. For optimal image classifi-
cation, it may be necessary and/or desirable to select regions of
the sample on the basis of particle number density as is done pre-
sently. Alternatively, it may be more effective to characterize den-
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sely dispersed powder samples using image texture methods, as
this may eliminate some of the sample preparation effects on the
spatial distribution of particles. One drawback of characterizing
dense powder samples is that this could potentially make powder
defects such as satellite particles difficult to resolve.

When comparing powder from different sources, it may be nec-
essary to select the magnification to keep the average-sized parti-
cle consistent. This approach may help to capture the relative (but
not absolute) shape of the PSD, morphological features, and to
some extent the local spatial distribution of powder particles. It
may not be possible to use a scale-invariant image texture repre-
sentation to fully support inference about powder properties that
depend heavily on the absolute physical scale of the particles.
One potential approach to address this weakness is to include
information about the physical scale of individual keypoint fea-
tures. For example, a more robust microstructure descriptor might
be obtained by appending the size (in microns) of each keypoint
descriptor to the corresponding SIFT descriptor before performing
the visual dictionary extraction and BOVW construction steps, sim-
ilar to the location-augmented SIFT descriptors used by [47,48].

In real powder feedstock, common ‘defects’, including necked
particles, broken or fragmented particles, surface roughness, and
agglomerated clusters of fine particles can potentially influence
the rheological properties of the powder, and thus overall build
quality [14,18,15]. A realistic powder system encompasses particle
size, shape, and spatial distributions; particle surface texture; and
geometric defects such as partially fused, necked, and satellite par-
ticles. Rendering powder micrographs with these features may be
challenging, so synthetic datasets will not likely serve as a useful
training set for application of image texture methods to real pow-
der materials. It is worth noting that this same set of features can
make other PSD measurement approaches (including high-
throughput methods such as laser particle size analysis) unreliable,
because they violate the assumption of spherical particles implicit
in many of these techniques. By associating these defects with
visual words, the BOVW approach (and image texture methods
in general) can be used to identify and flag them, and potentially
link them to property metadata such as flowability.

In the present work, we use the same surface texture source
image for each synthetic powder class. One objective for future
research in this area is to consider synthetic powder classes with
identical particle size distributions and different surface texture
source images in order to decouple the contribution of powder
material surface texture and particle size distribution.

Finally, we emphasize that the PSDs obtained through water-
shed segmentation of our synthetic powder micrographs are not
statistically consistent with the ground truth PSDs. This indicates
that a PSD obtained via image analysis is not necessarily a more
objective representation than an implicit image texture represen-
tation. This is especially true for powders with a high degree of
particle agglomeration and morphological heterogeneity, for which
the implicit assumption of spherical particles does not apply. For
powders displaying these features, it may be necessary to develop
a computational model of the image formation process in order to
infer a precise PSD via image-based methods.
5. Conclusions

We apply the bag of visual words (BOVW) computer vision
technique to obtain a rich microstructure representation that can
be used to explore process–structure–properties mappings. We
find that BOVW classification performance saturates at 89� 3%
with 80 synthetic powder micrograph instances for each of eight
generating particle size distributions. The BOVW classification
accuracy is comparable to conventional segmentation-based parti-
cle size analysis. Though watershed segmentation yields discrimi-
native particle size distributions (PSD) for this synthetic dataset,
we demonstrate that they are not statistically equivalent to the
ground truth PSDs. The BOVW and other image texture approaches
have the additional capability of characterizing important morpho-
logical and surface features of the powder particles. Image texture
methods offer a promising image-based means of evaluating and
qualifying powder feedstock for additive manufacturing (AM) pro-
cesses, supplementing contemporary powder material characteri-
zation techniques. While we focus on powder feedstock for AM,
image texture characterization methods are also applicable to
other complex microstructure systems, such as those found in
AM builds.
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