Lista 7: Transformada de Laplace (extraídos do livro de Boyce e DiPrima)

Problems

In each of Problems 1 through 3, sketch the graph of the given function. In each case determine whether f is continuous, piecewise continuous, or neither on the interval $0 \leq t \leq 3$.

1. $f(t)= \begin{cases}t^{2}, & 0 \leq t \leq 1 \\ 2+t, & 1<t \leq 2 \\ 6-t, & 2<t \leq 3\end{cases}$
2. $f(t)= \begin{cases}t^{2}, & 0 \leq t \leq 1 \\ (t-1)^{-1}, & 1<t \leq 2 \\ 1, & 2<t \leq 3\end{cases}$
3. $f(t)= \begin{cases}t^{2}, & 0 \leq t \leq 1 \\ 1, & 1<t \leq 2 \\ 3-t, & 2<t \leq 3\end{cases}$
4. Find the Laplace transform of each of the following functions:
a. $f(t)=t$
b. $f(t)=t^{2}$
c. $f(t)=t^{n}$, where n is a positive integer
5. Find the Laplace transform of $f(t)=\cos (a t)$, where a is a real constant.

Recall that

$$
\cosh (b t)=\frac{1}{2}\left(e^{b t}+e^{-b t}\right) \text { and } \sinh (b t)=\frac{1}{2}\left(e^{b t}-e^{-b t}\right) .
$$

In each of Problems 6 through 7, use the linearity of the Laplace transform to find the Laplace transform of the given function; a and b are real constants.
6. $f(t)=\cosh (b t)$
7. $f(t)=\sinh (b t)$

Recall that

$$
\cos (b t)=\frac{1}{2}\left(e^{i b t}+e^{-i b t}\right) \text { and } \sin (b t)=\frac{1}{2 i}\left(e^{i b t}-e^{-i b t}\right) .
$$

In each of Problems 8 through 11, use the linearity of the Laplace transform to find the Laplace transform of the given function; a and b are real constants. Assume that the necessary elementary integration formulas extend to this case.
8. $f(t)=\sin (b t)$
9. $f(t)=\cos (b t)$
10. $f(t)=e^{a t} \sin (b t)$
11. $f(t)=e^{a t} \cos (b t)$

In each of Problems 12 through 15 , use integration by parts to find the Laplace transform of the given function; n is a positive integer and a is a real constant.
12. $f(t)=t e^{a t}$
13. $f(t)=t \sin (a t)$
14. $f(t)=t^{n} e^{a t}$
15. $f(t)=t^{2} \sin (a t)$

In each of Problems 16 through 18, find the Laplace transform of the given function.
16. $f(t)= \begin{cases}1, & 0 \leq t<\pi \\ 0, & \pi \leq t<\infty\end{cases}$
17. $f(t)= \begin{cases}t, & 0 \leq t<1 \\ 1, & 1 \leq t<\infty\end{cases}$
18. $f(t)= \begin{cases}t, & 0 \leq t<1 \\ 2-t, & 1 \leq t<2 \\ 0, & 2 \leq t<\infty\end{cases}$

In each of Problems 19 through 21, determine whether the given integral converges or diverges.
19. $\int_{0}^{\infty}\left(t^{2}+1\right)^{-1} d t$
20. $\int_{0}^{\infty} t e^{-t} d t$
21. $\int_{1}^{\infty} t^{-2} e^{t} d t$
22. Suppose that f and f^{\prime} are continuous for $t \geq 0$ and of exponential order as $t \rightarrow \infty$. Use integration by parts to show that if $F(s)=\mathcal{L}\{f(t)\}$, then $\lim F(s)=0$. The result is actually true under less restrictive conditions, such as those of Theorem 6.1.2.
23. The Gamma Function. The gamma function is denoted by $\Gamma(p)$ and is defined by the integral

$$
\begin{equation*}
\Gamma(p+1)=\int_{0}^{\infty} e^{-x} x^{p} d x \tag{7}
\end{equation*}
$$

The integral converges as $x \rightarrow \infty$ for all p. For $p<0$ it is also improper at $x=0$, because the integrand becomes unbounded as $x \rightarrow 0$. However, the integral can be shown to converge at $x=0$ for $p>-1$.
a. Show that, for $p>0$,

$$
\Gamma(p+1)=p \Gamma(p)
$$

b. Show that $\Gamma(1)=1$.
c. If p is a positive integer n, show that

$$
\Gamma(n+1)=n!
$$

Since $\Gamma(p)$ is also defined when p is not an integer, this function provides an extension of the factorial function to nonintegral values of the independent variable. Note that it is also consistent to define $0!=1$.
d. Show that, for $p>0$,

$$
p(p+1)(p+2) \cdots(p+n-1)=\frac{\Gamma(p+n)}{\Gamma(p)} .
$$

Thus $\Gamma(p)$ can be determined for all positive values of p if $\Gamma(p)$ is known in a single interval of unit length - say, $0<p \leq 1$. It is possible to show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$. Find $\Gamma\left(\frac{3}{2}\right)$ and $\Gamma\left(\frac{11}{2}\right)$.

