

Complementos de Fabricação Mecânica

PMR 3301

Profa. Izabel Machado

machadoi@usp.br

Peças obtidas por cera perdida ou PMR 3301 investment casting

ESCOLA

DA USP

POLITÉCNICA

https://blog.franciscajoias.com.br/descubra-comofunciona-a-producao-com-cera-perdida-da-franciscajoias/

https://www.environmentalexpert.com/applications/lost-wax-investment-castingfoundry-for-stainless-steel-parts-11107

ESCOLA POLITÉCNICA. DA USP

Fundição de Precisão Microfundição

Fundição em cera perdida

(b) (c) (a) Injection wax pattern Pattern assembly Ejecting pattern or plastic pattern (Tree) (f) (d) [(e) Completed mold Stucco coating Slurry coating Molten (i) (g) (h) metal Autoclaved Heat Casting Aolten wax or plastic Pattern Shakeout Pattern meltout Pouring

Kalpakajian

Heat

Mold to make pattern

ESCOLA Politécnica Da USP Fundição de Precisão

Microfundição

Fundição: Cera perdida

https://www.youtube.com/watch?v=DF-LDcv4SFs

Fundição: Cera perdida

Fundição de Precisão

Microfundição

F(Reproduzir (K)): Cera perdida

5

https://www.youtube.com/watch?v=F-G0wjwavR8

https://pt.wikipedia.org/wiki/Cera_perdida

▶ 1:32 / 9:48

Fundição de Precisão

Microfundição

"Investment casting is an industrial process based on lost-wax casting, one of the oldest known metal-forming techniques. The term "lost-wax casting" can also refer to modern investment casting processes. Investment casting derives its name from the pattern being invested (surrounded) with a refractory material "

https://www.youtube.com/watch?v=npHQPXGGkgl

https://pt.wikipedia.org/wiki/Cera_perdida

https://en.wikipedia.org/wiki/Investment_casting

https://www.micrometal.com.br/produtos/microf undidos/?gclid=EAIaIQobChMIw9mm44f96wIVDAy RCh1UewUIEAAYASAAEgJxA_D_BwE

ESCOLA

DA USP

POLITÉCNICA

Uso de simulação - Exemplos

Exemplo: CAST-DESIGNER para fundição por gravidade é utilizado para projetar o sistema de canais, bem como realizar simulações para fundição em areia, coquilha, baixa pressão, microfusão, lostfoamcasting, fundição centrífuga, etc

http://www.castdesigner.com/lang/pt/gravity-castinggating.html

http://www.castdesigner.com/lang/ pt/gravity-castinggating.html

DA USP

Procedimento de projeto do sistema de canais de alimentação

Uso de simulação - Exemplos

Numerical simulation for the investment casting process of a large-size <code>titanium</code> alloy thin-wall casing

Neste estudo, o modelo fracamente compressível (WCM) e a malha de diferenças finitas não uniformizadas (UFDM) foram desenvolvidos para reduzir o custo computacional e garantir a eficiência da simulação. A precisão do WCM e UFDM foi verificada por simulação numérica da convecção térmica da cavidade em uma cavidade quadrada e simulação hidráulica do enchimento centrífugo em uma cavidade transparente.

A simulação numérica do processo de microfundição de um fundição de precisão de liga de titânio sob diferentes condições de processo foi realizada usando um software auto-desenvolvido, e as características de distribuição de defeitos de contração potenciais foram previstas.

https://doi.org/10.1016/j.pnsc.2018.06.005

Numerical simulation for the investment casting process of a large-size τ titanium alloy thin-wall casing

Fig. 5. Schematic of the mold (a) and its inner cavity (b) for hydraulics simulation.

ESCOLA Nume POLITÉCNICA large DA USP

Numerical simulation for the investment casting process of a large-size T titanium alloy thin-wall casing

The mold kept rotating at 150rpm in clockwise direction when colored water was poured into the cavity (pouring time was 3.3 s). The flow state of water was recorded by **high-speed camera** and numerical simulation under corresponding conditions was also done. The com- parison between numerical simulation result and recorded flow state at different time is shown in Fig. 6.

The results in Fig. 6 indicate that the numerical simulated flow state matches well with the recorded experimental results. Both the shape of the free surface and filling rate in the simulation result are similar to the recorded experimental result. Thus the precision of filling simulation result is verified further.

Fig. 6. Numerical simulated result and recorded flow state at different time: (a) (c) (e) (g) are recorded flow state after 0.483 s, 0.748 s, 0.889 s and 1.560 s from the beginning of pouring, respectively; (b) (d) (f) (h) are recorded flow state after 0.5 s, 0.8 s, 0.9 s and 1.6 s from the beginning of pouring, respectively.

ESCOLA Politécnica Da USP

Numerical simulation for the investment casting process of a large-size titanium alloy thin-wall casing

Fig. 7. 3-D model of the casing and its pouring system.

Table	1
-------	---

The simulation parameters of Ti-6Al-4V alloy casing in original process.

Parameters	Values
Pouring temperature (°C)	1720
Shell preheating temperature (°C)	200
Pouring time (s)	5.5
Centrifugal rotation speed (r/min)	0
Interfacial heat-transfer coefficient between casting and mold (W m ² k ⁻¹)	[25]
Mesh size (mm)	2 mm, 4 mm
Element number for casting	1593129(2 mm),
_	219566(4mm)
Element number for mold	2799935(2 mm),
	163000(4mm)

Numerical simulation for the investment casting process of a large-size titanium alloy thin-wall casing

Fig. 8. Simulated filling (a), solidification temperature field (b) of the casing in original process from the beginning of filling and simulated shrinkage holes in the casing (c).

Numerical simulation for the investment casting process of a large-size titanium alloy thin-wall casing

Fig. 9. Simulated results of the casing in the modified processes: (a1) (b1) (c1) simulated filling, temperature field and shrinkage defects of the casing in Scheme 1; (a2) (b2) (c2) simulated filling, temperature field and shrinkage defects of the casing in Scheme 2.

https://doi.org/10.1016/j.pnsc.2018.06.005

ESCOLA

DA USP

Izabel Machado - machadoi@usp.br

ESCOLA

DA USP

POLITÉCNICA

Numerical simulation for the investment casting process of a large-size titanium alloy thin-wall casing

O processo de fundição por cera perdida de uma parede fina de liga de titânio foi simulado por um software desenvolvido pelo próprio usando o método WCM e UFDM. (Weakly compressible model (WCM) e ununiformed finite difference mesh (UFDM))

O preenchimento, campo de temperatura de solidificação e vazios de contração em diferentes condições de processo foram investigados. Os vazios de contração (rechupe) na liga de titânio analisados usando testes de raios-X.

Com base nos resultados experimentais e na análise de simulação, as seguintes conclusões podem ser tiradas: (1) O WCM fornece uma boa precisão na simulação de fluxo sob rotação centrífuga. O UFDM mantém a precisão ,enquanto diminui significativamente o número de elementos da malha, o custo computacional e o tempo de simulação. (2) Os defeitos de contração (rechupes) previstos correspondem bem aos resultados do experimento de raios-X. (3) Os alimentadores são eficazes na eliminação de rechupes na fundição por gravidade, enquanto a rotação centrífuga adicional não apresenta melhorias óbvias nos defeitos concentrados na superfície. A fundição por gravidade é mais adequada do que a fundição centrífuga para a fabricação desta carcaça do compressor do ponto de vista da produção real.

PMR 3301

Numerical simulation for the investment casting process of a large-size titanium alloy thin-wall casing

Sumarizando:

Verificou-se que os defeitos previstos no revestimento da liga de titânio são detectados e relacionados com os resultados experimentais de raios-X (reais). Para os componentes investigados neste artigo, resultados de simulação numéricos mostram que o processo de fundição centrífuga em relação à fundição por gravidade não teve melhorias óbvias nos defeitos de contração, e o processo de fundição porto de vista da engenharia.

PMR 3301 Peças obtidas por fundição sob pressão

ESCOLA

DA USP

POLITÉCNICA

Figure 1: Die-cast mold with finished die-cast parts.

Image credit: <u>https://www.uddeholm.com/uk/en/applications/die-casting/</u>

500 × 476

https://www.thomasnet.com/articles/custommanufacturing-fabricating/die-casting-vs-sandcasting/#register

Fundição sob Pressão

Fundição sob pressão câmera quente

ESCOLA Politécnica Da USP

https://issuu.com/prodweb/docs/manual-de-fundicao-sobpressao

Ciclo de câmara quente

Os componentes básicos de uma máquina e molde de fundição de câmara quente são ilustrados nas Figuras 6 e 7. O processo é chamado de câmara quente porque a câmara de injeção e o pistão estão submersos no metal fundido no cadinho. A energia para injetar o metal na cavidade de fundição é fornecida por uma bomba hidráulica e armazenada no acumulador, de onde é retirada, conforme desejado, para movimentar o pistão.

A sequência de operação do ciclo da câmara quente é ilustrada na Figura 8. O molde é fechado no início do ciclo. A seguir, o pistão é acionado para baixo, forçando o metal fundido a sair do cilindro através do gooseneck, bocal, canais e entradas para a cavidade do molde, preenchendo-a e mantendo a pressão no metal, à medida que ele se solidifica. Após a solidificação, o molde é aberto, enquanto o pistão retorna para a posição inicial, recarregando o cilindro de injeção. A peça é então extraída e o ciclo é repetido. Um lubrificante pode ser aplicado de tempos em tempos no molde para facilitar a extração da peça.

Figura 8. O molde é fechado no início Molde Gooseneck Fundido Cadinho

Fig.6 Seção transversal de uma injetora de câmara quente

Fig.7 Seção transversal de um molde para findição sob pressão em câmara quente

ESCOLA Politécnica Da USP

https://issuu.com/prodweb/d ocs/manual-de-fundicao-sobpressao

Ciclo de câmara fria

A última área da cavidade do molde a ser preenchida normalmente contém o metal mais frio, o que pode resultar em defeitos na fundição. A tecnologia atual de fundição aplicada ao sistema de alimentação de metal e um bom projeto do sistema de refrigeração/ aquecimento dos moldes geralmente evitam esse tipo de defeito. Em alguns casos, é necessário alocar bolsas acopladas às cavidades do molde de forma a minimizar defeitos em algumas áreas críticas. A bolsa recebe o metal mais frio e permite que o metal com temperatura mais alta que vem a seguir preencha a cavidade do molde. As bolsas devem ser utilizadas apenas quando necessário, e seu tamanho deve ser cuidadosamente calculado, pois elas constituem metal extra para reciclagem. O processo em câmara fria é utilizado principalmente para as ligas ZA-12 e 27, pois a temperatura de fundição dessas ligas está dentro do intervalo no qual ligas zincoalumínio podem atacar o aço do gooseneck e do pistão. Esse é o mesmo processo utilizado para fundição de ligas de alumínio. A sequência para esse ciclo é basicamente a mesma que o ciclo de câmara quente. Ao invés de submergir o cilindro, o metal fundido é transferido, manualmente ou automaticamente em conchas, para um cilindro de injeção horizontal. Esse sistema não emprega canal de entrada, o pistão para antes de atingir o final do cilindro em uma distância de aproximadamente um terço do diâmetro do cilindro, formando a característica "bolacha". As etapas seguintes são idênticas ao ciclo de câmara quente.

Fig. 8 Sequência de operação de um ciclo do processo de fundição sob pressão em câmara quente

Este capítulo foi extraído do livro 'Zinc Alloy Castings - Design and Development' traduzido e editado para adequação ao manual

22

Zamac 2

3.9

0,025

2,7

0,0010

Restante

Al Mg Cu Fe Pb Cd Sn Ni máx

4,3

0,05

3,3

0,035

0,0040

0,0015

ESCOLA

DA USP

Zamac 3

máx

4,3

0,06

0,10

0,035

0,0040

0,0015

Restante

min

3,9

0,03

Zamac 7

máx

4,3

0,020

0,10

0,75

0,0030

0,0010

0,005 0,020

Restante

min

3,9

0,010

Zamac 5

máx

4,3

0,06

0,035

0,0040

Restante

min

3,9

0,03

0,7

ZA-8

máx

8,8

0,03

1,3

0,035

0,005

0,005

0,002

Restante

min

8,2

0,02

0,9

ZA-12

máx

11,5

0,03

1,2

0,005

0,002

Restante

min

10,8

0,02

0,5

ZA-27

máx

28,0

0,020

2,5

0,07

0,005

Restante

min

25,5

0,012

POLITÉCNICA

Fundição sob Pressão

PROPRIEDADES FÍSICAS E MECÂNICAS DAS LIGAS DE ZINCO PARA FUNDIÇÃO E OUTROS MATERIAIS SELECIONADOS

			LIGAS DE ZIN	C0	LIGAS DE	ALUMÍNIO	LIGAS DE MAGNÉSIO	POLIMEROS				
Propriedade	Unidades	Zamac 3	Zamac 5	Zamac 2	LM24	A380	AZ91D	ABS	Nylon PA66	Nylon PA66 Reforçado com 30% de fibra de vidro	Policarbonato	Poliacetal
Limite de escoamento	МРа	268	295	361	150	159	111-170	n/a	n/a	n/a	n/a	-
Limite de resistência à tração	MPa	308	331	397	320	317-324	200-260	25-65	71-85	155-210	54-72	37-70
Módulo de Young	GPa	96	96	96	71	71	44	1,4-5,1	0,7-4,1	3,2-12,7	1,6-5,5	1,4-3,6
Módulo de torção	MPa x 10 ³	33+	33+	33+	26,9	26,9	16,5	n/a	n/a	n/a	n/a	-
Alongamento em ruptura	%	5,8	3,4	6	2	3,5	3	2-110	15-300	2 -150	8-135	3-250
Resistência ao cisalhamento	MPa	214	262	317		186	138			-	-	-
Limite de escoamento por compressão	MPa	414	600	641			108-159		*	-	-	-
Resistência ao impacto	Joules	46	52	38	3,4	4	3,7-6	1-2	0,6-1,4	5	20-30	8
Resistência à Fadiga (5.10 diclos)	MPa	48	57	59	-	70-138	97	7	-	15	7	-
Dureza	Brinell	97	114	130	85	80	63-85	muito macio	muito macio	muito macio	muito macio	-
Tenacidade à fratura K _{IC}	x 10 ⁷ N.m ^{-3/2}	2,25	2,1	-	3,6	3,6		-	0,07	-	0,22	0,09
Densidade	g/cm ³	6,6	6,7	6,8	2,79	2,76	1,82	1,02-1,21	1,03-1,16	1,11-1,68	1,17-1,45	1,29-1,43
Capacidade de amortecimento a 35 MPa	%	18		-	2	1	25	-	-	-	-	-
Capacidade de amortecimento a 100 MPa	%	40			•	4	53		•		•	-
Coeficiente de expansão térmica	um/m/°C	27.4	27.4	27.8	21	21.1	25.2-26.0	50-150	65-150	17-104	32-20	12-162
Condutividade térmica	Wm ⁻¹ °K ⁻¹	113	109	105	96	109	51-72.7	0.2	0.24	<1	<1	0.13-0.3
Condutividade elétrica	% IACS	27	26	25	24	27	11.5-12.1	n/a	n/a	n/a	n/a	nla
Resistividade elétrica	u ohm - cm	6.37	6.54	6.85		-	-	-	-	-	-	-
Intervalo de temperatura de fusão	°C	381-387	380-386	379-390	520-580	538-593	468-598				-	-
Calor específico	J/ka/°C	419	419	419	960	960	1020	1.960-2.130	1.600-2.750	1.200-2.350	1.000-1.200	-
Coeficiente de atrito	-	0,07	0,08	0,08			1000	0,45	0,28-0,46	0,28	0,38	0,21
Precisão típica em mais de 100 mm	±μ	100	100	100	250-350	250-350	175	Alta contração e umidade faz com as tolerâncias sejam menores para o plástico				
Espessura de parede mínima	mm	0,4	0,4	0,4	1,3	1,3	1,2	÷.				
Velocidades típicas de produção	injeções por hora	"Grande 20 Muito	00-500. Peque pequeno 2.00	eno 400-1.000. 00-3.000."	50-250		Normal 200-275. Cerca de 2/3 comparados ao mesmo tamanho em Zn	Velocidades de produção regidas pelo tamanho do produto, material utilizado e taxa de resfriamento, que tende a ser menor do que em metais				
Variação de velocidade de produção	injeções por hora	ra 200-3.600			30-350		tamanho por tamanho. 40-2.400	Velocidade de injeção de 100 a 400 injeções por hora				
Ciclo de vida típico de ferramenta	injeções	7	50.000-2.000),000	100.000-225.000		300.000-500.000	Altamente dependente da composição e reforço				
												Tab.

s valores contidos nessa tabela são valores de referência, podendo variar de acordo com o processo.

https://issuu.com/prodweb/docs/manual-de-fundicao-sob-pressao

PMR 3301

Fundição sob pressão

Como todo o processo de fabricação, a fundição sob pressão tem uma série de vantagens e desvantagens. As vantagens são:

1. peças de ligas como as de alumínio, fundidas sob pressão, apresentam maiores resistências do que as fundidas em areia;

2. as peças fundidas sob pressão podem receber tratamento de superfície com um mínimo de preparo prévio da superfície;

3. possibilidade de produção de peças com formas mais complexas;

PMR 3301

Fundição sob pressão

Como todo o processo de fabricação, a fundição sob pressão tem uma série de vantagens e desvantagens. As desvantagens são:

- 1. tamanho das peças máximo (5 kg)
- 2. Custo do molde elevado
- 3. Produzir muitas peças amortizar os custos
- 4. Limitação dos tipos de liga (Al, Zn, baixo ponto de fusão)

Uso de simulação - Exemplos

Computer aided engineering (CAE) simulation for the design optimization of gate system on high pressure die casting (HPDC) process

Devido à alta velocidade do metal líquido, a fundição de alumínio é complexa e fluxo é uma questão crítica no processo de enchimento do molde. Em peças complexas, é quase impossível calcular o desempenho exato do preenchimento do molde com o uso de conhecimento experimental.

A simulação pode tornar um sistema de fundição ideal e também elevar a qualidade da fundição com menos experiência. A maior vantagem de usar programas de simulação é a economia de tempo e custo do projeto de layout de fundição.

PMR 3301

Computer aided engineering (CAE) simulation for the design optimization of gate system on high pressure die casting (HPDC) process

A seleção da condição do HPDC baseou-se principalmente na experiência e especialização de um trabalhador individual nas indústrias de fundição. Nas indústrias de fundição atuais, o paradigma de desenvolvimento de produto está mudando de tentativa e erro tradicional para prova de conceito baseada em simulação habilitada para CAE.

A análise de enchimento foi usada para descobrir o tamanho e a localização do canal de alimentação e o projeto adequado do sistema de rotor. Pela modificação do sistema de alimentação e a configuração de escoamento, porosidades internas causadas por aprisionamentos de ar foram previstas e reduzidas notavelmente. A análise de solidificação, as porosidades internas causadas pela retração de solidificação também foram previstas.

ESCOLA Politécnica Da USP Computer aided engineering (CAE) simulation for the design optimization of gate system on high pressure die casting (HPDC) process

Table 1Chemical composition (%) of SKD61.

С	Si	Mn	Р	S	Cr	Ni	Мо	v
0.32-0.42	0.80-1.20	< 0.50	< 0.03	< 0.03	4.50-5.60	-	1.00-1.50	0.80-1.20
W	Ν	Cu	Co	Pb	В	Nb	Al	Other
-	-	-	-	-	-	-	-	-

Table 2

Condition for the CAE simulation.

Part		Mold	Plunger		
Material	ACD12	Material	SKD61	Diameter	120mm
Liquidus line Solidus line Initial temperature Weight for casting	853.15K(580 °C) 788.15K(515 °C) 913.15K(640 °C) 4083 g	Initial Temperature - -	473.15K(200 °C) - - -	Slow velocity High velocity Length –	0.90 m/s 3.50 m/s 850 mm -

Robotics and Computer–Integrated Manufacturing 55 (2019) 147–153 https://doi.org/10.1016/j.rcim.2018.01.003

ESCOLA

DA USP

POLITÉCNICA

Computer aided engineering (CAE) simulation for the design optimization of gate system on high pressure die casting (HPDC) process

Fig. 3. Casting model of Oil Pan (BR2E). (A) Case 1, (B) Case 2, (C) Case 3.

Robotics and Computer–Integrated Manufacturing 55 (2019) 147–153 https://doi.org/10.1016/j.rcim.2018.01.003

80%

95%

Fig. 4. Simulation results of the mold filling. (A) Case 1, (B) Case 2, (C) Case 3.

60%

Robotics and Computer–Integrated Manufacturing 55 (2019) 147–153 https://doi.org/10.1016/j.rcim.2018.01.003

20%

20%

20%

40%

Fig. 5. Simulation results after 40% filling. (A) Case 1. (B) Case 2.

Robotics and Computer–Integrated Manufacturing 55 (2019) 147–153 https://doi.org/10.1016/j.rcim.2018.01.003

ESCOLA Politécnica

DA USP

Fig. 10. (A) Simulation results after 40% filling of case 3; (B) Final casting layout.

Robotics and Computer–Integrated Manufacturing 55 (2019) 147–153 https://doi.org/10.1016/j.rcim.2018.01.003

ESCOLA Politécnica Da USP

Fig. 11. Simulation results with the final tool design. (A) View of the moving side, (B) View of the fixed side.

Robotics and Computer–Integrated Manufacturing 55 (2019) 147–153 https://doi.org/10.1016/j.rcim.2018.01.003

Conclusões

Nas indústrias de fundição atuais, o projeto e o desenvolvimento de um produto e processo de fundição são um processo de tentativa e erro baseado no know-how heurístico. A solução alcançada desta forma carece de cálculos e análises científicas.

Usando simulação CAE com AnyCasting, os seguintes resultados foram alcançados: De acordo com o processo de enchimento, o layout de fundição final na Fig. 10 (B) é melhor do que outros layouts de fundição na Fig. 3 por causa da localização da zona de junção de fluxo e do enchimento uniforme e uniforme na cavidade do molde.

Áreas de defeito de contração (rechupe) são observadas com o **método do módulo**. O contração ocorre nessas áreas devido à temperatura de resfriamento uniforme e causa o defeito de contração (rechupe ?) Para evitar esses defeitos, um sofisticado sistema de resfriamento nessas áreas deve ser adicionado quando o molde é fabricado.

Ao aplicar o projeto de fundição final da Fig. 10 (B) em um molde HPDC de produção, os resultados da simulação da Fig. 11 devem ser verificados.

Sumário

Fundição em cera perdida

Fundição sob pressão