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ABSTRACT

MOORE, S. A., H. A. MCKAY, H. MACDONALD, L. NETTLEFOLD, A. D. G. BAXTER-JONES, N. CAMERON, and P. M. A.

BRASHER. Enhancing a Somatic Maturity Prediction Model. Med. Sci. Sports Exerc., Vol. 47, No. 8, pp. 1755–1764, 2015. Purpose:

Assessing biological maturity in studies of children is challenging. Sex-specific regression equations developed using anthropometric

measures are widely used to predict somatic maturity. However, prediction accuracy was not established in external samples. Thus, we

aimed to evaluate the fit of these equations, assess for overfitting (adjusting as necessary), and calibrate using external samples. Methods:

We evaluated potential overfitting using the original Pediatric Bone Mineral Accrual Study (PBMAS; 79 boys and 72 girls; 7.5–17.5 yr).

We assessed change in R2 and standard error of the estimate (SEE) with the addition of predictor variables. We determined the effect

of within-subject correlation using cluster-robust variance and fivefold random splitting followed by forward-stepwise regression. We used

dominant predictors from these splits to assess predictive abilities of various models. We calibrated using participants from the Healthy

Bones Study III (HBS-III; 42 boys and 39 girls; 8.9–18.9 yr) and Harpenden Growth Study (HGS; 38 boys and 32 girls; 6.5–19.1 yr).

Results: Change in R2 and SEE was negligible when later predictors were added during step-by-step refitting of the original equations,

suggesting overfitting. After redevelopment, new models included age � sitting height for boys (R2, 0.91; SEE, 0.51) and age � height for

girls (R2, 0.90; SEE, 0.52). These models calibrated well in external samples; HBS boys: b0, 0.04 (0.05); b1, 0.98 (0.03); RMSE, 0.89; HBS

girls: b0, 0.35 (0.04); b1, 1.01 (0.02); RMSE, 0.65; HGS boys: b0,j0.20 (0.02); b1, 1.02 (0.01); RMSE, 0.85; HGS girls: b0,j0.02 (0.03);

b1, 0.97 (0.02); RMSE, 0.70; where b0 equals calibration intercept (standard error (SE)) and b1 equals calibration slope (SE), and RMSE

equals root mean squared error (of prediction). We subsequently developed an age � height alternate for boys, allowing for predictions

without sitting height. Conclusion: Our equations provided good fits in external samples and provide an alternative to commonly used

models. Original prediction equations were simplified with no meaningful increase in estimation error. Key Words: PEAK HEIGHT

VELOCITY, MATURATION, ADOLESCENTS, GROWTH MODELING, CALIBRATION

T
he well-known variation in the tempo and timing of
biological maturity for boys and girls of the same
chronological age (35,36) necessitates the use of an

accurate measure of maturation in research involving chil-
dren and adolescents. The status and timing of biological

maturity are commonly assessed using methods such as skel-
etal age, pubertal (e.g., Tanner) staging, age at menarche,
percentage of adult height, and age at peak height velocity
(APHV) (7,9,20). Given the concerns related to the inva-
siveness of some methods and the logistical challenges of
others (7,9,20), simple noninvasive methods to assess bio-
logical maturity have been suggested (26).

The prediction of APHV using sex-specific regression
equations offers one such noninvasive method (26). Estima-
tion of actual APHV requires serial longitudinal data span-
ning the period from late childhood through adolescence,
which is often unavailable. Thus, based on the known dif-
ferential timings of growth in height, sitting height and leg
length, Mirwald et al. (26) developed equations to predict
years from APHV (maturity offset (MO)) in boys and girls
from simple one-time anthropometric measures. These pre-
diction equations have been well utilized, having been cited
more than 250 times since 2002 (Web of Science, search
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date: September 12, 2014). However, results of three longi-
tudinal studies published in the last decade highlight potential
limitations associated with these equations. Specifically, in a
7-yr longitudinal study of 13 regional and national level female
gymnasts age 6.0–17.6 yr, a systematic bias was reported
such that predicted APHV was underestimated in gymnasts
with a later observed APHV and overestimated in those with
an earlier observed APHV (21). More recently, Malina and
Koziel (23 evaluated the prediction equations and their
errors in 391 Polish boys (22) and girls (23) age 8.0–18.0 yr
from the Wroclaw Growth Study. In the boys, the prediction
equations performed more variably in early- and late-
maturing groups; mean differences were negative in late-
maturing boys (i.e., prediction was early) and positive in
early-maturing boys (i.e., prediction was late) (22). In the
girls, the authors found that predicted MO and APHV were
dependent on age at the time of prediction and performance
was better when predicted before expected APHV (23). These
findings were consistent with the error discussed in the origi-
nal article (26). In all three studies by Malina and colleagues,
APHV was determined using the Preece–Baines (P-B) model
1 curve-fitting procedure (29). Bland–Altman plots were
then used to assess agreement between the criterion measure
and predicted value. There are potential limitations associ-
ated with these approaches. First, there was a large age range
in the sample. With any prediction, we would expect pre-
diction to perform best nearer to the observed measure (e.g.,
closest to the time of actual APHV); this was reflected in all
studies. Second, although the P-B model 1 provides a number
of biologically meaningful parameters, it has been shown to
underestimate APHV compared with raw height velocities or
nonparametric modeling techniques (16). Third, when evalu-
ating a prediction equation, we are interested in calibration and
the possibility of recalibration to improve predictions in new
populations (8). When evaluating the performance of a model,
calibration refers to whether the predicted agrees with the ob-
served measure (15,17). Calibration of the prediction equations
was not investigated in any of these previous studies.

When we considered calibration of the predictive equa-
tions, we acknowledged the possibility of overfitting. If
overfitting is present, the model could perform poorly in
external samples. Overfitting occurs when some of the co-
variance included in the model are based on spurious asso-
ciations and/or coefficients are artificially large. This results
from fitting the sample rather than the population and can
lead to poor predictive performance (38). Development of
the original prediction equations was based on 659 and 599
observations for boys and girls, respectively. The authors
considered 15 potential predictors in their sex-specific models.
This ratio of observations to predictors (40:1) suggests that
overfitting should not be a problem (34). However, observa-
tions were not independent, as there were multiple obser-
vations per child, which reduces the effective sample size.
Not acknowledging a within-child association may have
resulted in standard errors (SE) and P values that were too
small; this may have led to spurious variables being included

in the prediction models. Overfitting can be minimized using
four strategies: 1) prespecifying well-motivated predictors, 2)
eliminating predictors without using the outcome, 3) cross-
validating the target measure of the predictive errors using the
outcome, and 4) shrinking the coefficient estimates using the
outcome (38).

Given the widespread use of Mirwald et al. (26) pre-
diction equations, recent queries regarding the fits of these
equations (21–23), and the continued interest to develop non-
invasive methods to assess maturity, we aimed to: 1) explore
the possibility of over-fitting in the original development
of the MO prediction equations; 2) modify the regression
equations (as needed) employing cluster-robust variance
techniques, 3) internally validate our equations using k-fold
cross-validation; 4) create alternative equations that do not
require sitting height; and 5) externally validate our equations
using a cohort of Canadian children from the longitudinal
Healthy Bones Study III (HBS-III) and a cohort of British
children from the Harpenden Growth Study (HGS).

METHODS

Study participants. Our study includes participants
from three well-known longitudinal growth studies: the
Pediatric Bone Mineral Accrual Study (PBMAS), the HBS-
III, and the HGS. We briefly describe each cohort in this
subsection.

The original prediction equations were developed using
data from the University of Saskatchewan’s PBMAS (1991–
1997), a mixed longitudinal study of 251 Canadian boys
(n = 115) and girls (n = 136) recruited from two elementary
schools in Saskatoon, Saskatchewan, Canada, between 1991
and 1993 (2,3,5). The study was designed to assess factors
associated with bone acquisition in growing children. Par-
ticipants were 8.0–15.0 yr of age at baseline; ages ranged
between 8.0 and 21.0 yr across the initial 7-yr of the study.
All participants were white (Caucasian) as determined by
parents’ place of birth (by questionnaire). Investigators created
a subset of the PBMAS cohort for whom had sufficient
measures to calculate APHV (n = 151 [60%]; 79 boys and
72 girls; see APHV protocol). All children were healthy with
no conditions known to affect growth. Growth parameters
were measured semiannually. Written informed consent was
obtained from the parents of the participating children be-
tween 1991 and 1993. The University of Saskatchewan’s
Research Ethics Board approved all procedures. Professor
Adam Baxter-Jones (coauthor), University of Saskatchewan,
kindly provided all data from the original paper (26) for our
analyses.

Our research group conducted the University of British
Columbia’s HBS-III (1999–2012), a mixed longitudinal study
of 1071 Canadian boys (n = 515) and girls (n = 556) recruited
from elementary schools in Vancouver and Richmond,
British Columbia, Canada, between 1999 and 2009 (18,19,28).
The HBS-III study was designed to assess factors associated
with bone strength accrual in growing children. Participants
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were 8.8–12.4 yr of age at baseline; ages ranged from 8.8 to
23.2 yr across the 14-yr study. The HBS-III sample was
multiethnic; participants were of Asian (n = 533), white
(n = 412), or ‘‘other’’ or ‘‘mixed’’ (n = 126) ancestry. We
determined each participant’s ethnicity based on their parents’
or grandparents’ place of birth as reported on a health his-
tory questionnaire at baseline. We classified participants as
white if both parents or three of four grandparents were born
in North America or Europe, and Asian if both parents or
three of four grandparents were born in Hong Kong, China,
Japan, Taiwan, Philippines, Korea, or India. Owing to the
known ethnic-specific variation in the timing and tempo of
growth (12), we excluded participants of Asian and other or
mixed ethnicity from this analysis. From the white subsam-
ple, we included only those for whom we could accurately
calculate APHV (n = 81 [20%]; 42 boys and 39 girls; see
APHV protocol). All children were healthy and had no con-
ditions known to affect growth. We performed anthropometry
protocols in our laboratory annually. Written informed con-
sent was provided by the parents or legal guardians, written
assent from participants younger than 18.0 yr, and written
informed consent from participants older than 18.0 yr. The
University of British Columbia Clinical Research Ethics Board
approved all procedures.

The Harpenden Growth Study (HGS; 1948–1971) was
a mixed longitudinal study of 701 British boys (n = 419)
and girls (n = 282) recruited from a national children’s
home in Harpenden, UK. The participants were 1.0–20.0 yr
of age at baseline; with a range of 1.0–35.1 yr of age across
the 24-yr study. The HGS was the first longitudinal study
of human growth in Europe. The Harpenden team mea-
sured participants semiannually until age 12.0 yr, quarterly
from the initiation of puberty, annually until age 20, and
quinquennially thereafter. All measures were within T3 wk
of the target measurement date. For the present study, we
included boys and girls who were first measured before
9.0 and 7.0 yr of age, respectively. Thus, our sample in-
cluded 366 participants (238 boys and 128 girls) age 1.0–
9.0 yr at baseline and whose ages ranged from 1.0 to 30.7 yr
across the study’s duration. From this subsample, we se-
lected only those for whom we could accurately calculate
APHV (n = 70 [19%], 38 boys and 32 girls; see APHV
protocol). All children were white and were healthy, with no
conditions known to affect growth. The study was carried out
before the requirement of ethics committees and procedures
or participants’ consent. Professor Noël Cameron (coauthor),
Loughborough University, kindly provided all HGS data for
these analyses.

Anthropometry. The two Canadian Studies (PBMAS
and HBS-III) used identical anthopometric protocols. The
PBMAS and HBS-III studies assessed height (cm) during
sitting and standing using standard stretch stature tech-
niques (32) against a wall-mounted stadiometer and re-
corded the value to the nearest 0.1 cm. The PBMAS and
HBS-III studies assessed weight (kg) to the nearest 0.1 kg
on a calibrated electronic scale with the participants dressed

in light clothing. All measures were taken in duplicate by
trained research assistants at the respective laboratories. If
measurements differed by more than the accepted measure-
ment error (4 mm), a third measure was taken. Final height
and weight were the mean of two (or three) measures. Leg
length (cm) was determined by subtracting sitting height
from standing height.

The HGS team measured height (cm) and sitting height (cm)
using the same stretch stature techniques as described pre-
viously for the Canadian studies. Leg length was also deter-
mined in the same manner as the Canadian studies. Finally,
weight was measured with participants in the nude on a
portable beam balance to the nearest 0.1 kg. One technician
(RH Whitehouse) took all measurements for the duration
of the study.

Observed age at peak height velocity and matu-
rity offset. For the PBMAS cohort, APHV was provided
by Professor Baxter-Jones and was determined by fitting
an interpolating cubic spline to empirical data using Prism
(version 5.0, GraphPad, San Diego, CA). Age at peak height
velocity was calculated from quotients of annual veloci-
ties and age differences (2). We used the same data set as
in the original publication (26). In the HBS-III cohort, we
chose to calculate APHV using the same statistical method
as PBMAS (interpolating cubic splines). Briefly, we calcu-
lated APHV for those participants with sufficient height
measurements during the identified pubertal period (five
measures for boys between 11.5 and 16.5 yr and four
measures for girls between 11.0 and 13.0 yr). We calculated
running annual velocities and fit an interpolating cubic
spline on a regular grid to identify maximum height velocity
(APHV) for each participant. We performed this analysis
in Stata (version 10.1, StataCorp, College Station, TX).
We visually inspected all plots and selected those that had
clear peaks during the pubertal spurt as well as pre- and
post-APHV data. We provide a complete description of the
HBS-III APHV protocol in Supplemental Digital Content
1 (See document, Supplemental Digital Content 1, Age at
Peak Height Velocity Protocol for the Healthy Bones Study
III, http://links.lww.com/MSS/A476).

Similar to the HBS-III protocol, we calculated APHV
for the HGS participants with sufficient height measures
during the pubertal period (15 measures for boys between
10.5 and 16.5 yr and for girls between 8.5 and 14.5 yr).
We calculated running annual velocities and fit an interpo-
lating cubic spline on a regular grid to identify maximum
height velocity (APHV). We visually inspected all plots and
selected those that had the most complete data during the
pubertal growth spurt and where pre- and post-APHV could
be clearly identified.

Finally, for all samples, we used APHV to calculate a
biological maturity offset (MO, yr) by subtracting APHV
from chronological age at the time of measurement. Thus,
we generated a continuous measure of biological age (e.g., a
MO = j1 yr is equivalent to 1 yr before APHV). Although
APHV is our benchmark, we describe each measure as years
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from APHV; where the difference is defined as MO (26). As
MO allows for comparisons of somatic maturity between
sexes, we considered the prediction of MO an advantage
compared to that of APHV. Age at peak height velocity can
easily be calculated after predicting MO.

Statistical analyses. We performed all statistical anal-
yses in Stata (version 10.1, StataCorp, College Station, TX).
We inspected data for potential errors and missing data; we
cleaned and prepared all data for analyses. We removed any
duplicate data. In the event of within-subject negative changes
in growth parameters (G1% of observations), we checked the
data and corrected with linear interpolation if a change in
height was negative or assigned the previous year’s value if
we determined that adult height had been attained.

To determine whether overfitting occurred during devel-
opment of original sex-specific prediction models, we first
refit and evaluated the original equations. The original equa-
tions were developed using multivariable regression with hi-
erarchical entry. Fifteen independent predictors (age, height,
sitting height, leg length, weight, age � height, age � sitting
height, age � leg length, age � weight, leg length � sitting
height, weight by height � 100, body mass index (BMI;
weight divided by height squared), sitting height by height �
100, leg length by height � 100, and leg length by sitting
height � 100) were identified. As authors did not report
the order in which predictors were entered, we reviewed
the four models presented by Mirwald et al. (26) to surmise
the most likely hierarchical order. To assess the potential for
overfitting, we calculated change in R2 and SEE with the
addition of each predictor that Mirwald et al. (26) included
in the original model.

We confirmed that overfitting was present after our step-
by-step refitting of the original models. Thus, we proceeded
to redevelop and create more parsimonious models. First, we
reduced the number of potential predictors by examining
correlations among predictors (15); when correlations were
0.99 or greater, we excluded the variable from the model that
demonstrated the greatest measurement variability. Second,
we addressed within-subject correlations by using a cluster-
robust variance estimator in the regression model (30,39); this
estimator is available in Stata via the vce (cluster id) option.
We used a forward stepwise procedure to select other vari-
ables to include in the regression model (analysis 1) from the
variables that remained. We recognize the limitations asso-
ciated with automatic variable selection procedures so we
performed an analysis akin to k-fold cross-validation (15). We
randomly split the data set into seven subsets for boys and six
subsets for girls, ensuring all subsets included 70 or more
observations. We included only one observation for each in-
dividual. In each subset, we used forward stepwise regression
to select variables. We repeated the random split five times
(5 � 7- and 5 � 6-fold random splitting in boys and girls,
respectively). We tabulated the number of times each pre-
dictor was selected for inclusion in the model (analysis 2).
We used the variables that entered in analysis 1 and others
consistently identified as important in the 35 samples for

boys and 30 samples for girls to develop final sex-specific
prediction equations using a forward step-by-step entry ap-
proach. Finally, with the interest of creating alternate equa-
tions not requiring sitting height, we fit a separate model
(age � height) for boys.

We validated the new prediction models using the HBS-
III and HGS data. We produced calibration plots (observed vs
predicted values), calculated the coefficients of the calibration
curve, and produced a descriptive and graphical summary
of the differences between the observed and predicted values.

RESULTS

We provide a summary of the number of participants,
measures, and a comparison between APHV (calculated by
interpolating cubic spline as previously described) for boys
and girls in the three studies (Table 1). In the boys, APHV
did not differ between the HBS-III and PBMAS cohorts.
However, APHV was significantly later in the HGS boys
compared with the PBMAS boys (mean difference was
0.64 T 0.05 yr [95% CI, 0.55–0.74]). In the girls, APHV was
not significantly different between the three cohorts.

To assess the potential for overfitting of the original
model, we provide the incremental change in R2 and SEE,
with the addition of each predictor variable to the sex-
specific regression equations (Table 2). The original equa-
tions (26) had four predictors for both boys and girls. In the
boys, the predictors were leg length � sitting height, age �
leg length, age � sitting height, and leg length by height �
100. In the girls, the predictors were leg length � sitting
height, age � sitting height, leg length by height �100, and
age � weight. In the boys, after the first three predictors
were entered, the change in R2 and the SEE was negligible
(G1%). Similarly, in the girls, the change in R2 and the SEE
was negligible (G1%) after the first two predictors were en-
tered. These small changes suggest that overfitting is present
in the original equations and redevelopment of the regres-
sion equations may be useful.

In redeveloping the equations, we first assessed the
original 15 predictor variables (26) and excluded variables
where statistically and biologically appropriate. We identified
three sets of variables with very high correlations (r = 0.99):

TABLE 1. Sample size, number of observations, test occasions, and mean APHV
determined by interpolating cubic spline (in years) in the three studies: PBMAS,
HBS-III, and the HGS.

Boys

Study
Sample
Size (n)

Observations
(n)

Visits
(n, Range)

APHV
(Mean (SD))

APHV
(Range)

PBMAS 79 659 5–13 13.4 (0.7) 11.1–15.6
HBS-III 42 427 7–15 13.5 (1.1) 10.9–15.9
HGS 38 745 14–24 14.0 (1.0) 11.3–16.2

Girls

Sample
Size (n)

Observations
(n)

Tests
(n, Range)

APHV
(mean (SD))

APHV
(Range)

PBMAS 72 592 6–12 11.9 (0.7) 10.3–13.6
HBS-III 39 335 4–15 11.6 (0.7) 10.5–13.4
HGS 32 676 15–26 12.1 (1.0) 9.8–14.2

SD, standard deviation.

http://www.acsm-msse.org1758 Official Journal of the American College of Sports Medicine

SP
EC

IA
L
C
O
M
M
U
N
IC
AT

IO
N
S

Copyright © 2015 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.



age � sitting height, age � height, and age � leg length
interaction variables, leg length by height�100, leg length by
sitting height �100, and sitting height by height �100 ratio
variables and height, sitting height and leg length. We re-
moved one variable from each set: age � leg length, leg
length by height �100, and leg length, given that leg length
had the greatest measurement error (~6 mm). In our equation
redevelopment, we included four candidate predictor vari-
ables (age, height, sitting height, and weight), four in-
teractions (age � height, age � sitting height, age � weight,
and leg length � sitting height), and four ratios (BMI, weight
by height �100, sitting height by height �100, leg length by
sitting height � 100) for a total of 12 potential predictors.

We accounted for within-subject correlation when rede-
veloping the model as previously described. We provide
results from the forward stepwise variable selection proce-
dure, which incorporated a cluster-robust variance, in Sup-
plemental Digital Content 2 [see table, Supplemental Digital
Content 2, Forward Stepwise Regression from the Original
Pediatric Bone Mineral Accrual Study (PBMAS) Boys and
Girls, http://links.lww.com/MSS/A477]. In Table 3, we
provide the frequency of variable selection from the 5 � 7-
and 5 � 6-fold random splitting exercise in boys and girls,
respectively. In the boys, the most frequent predictors in
both procedures were age � sitting height, and sitting height.
In girls, the most frequent predictors were age � height, and
leg length.

After reviewing the selected variables identified using
these two approaches, we fit new sex-specific regression
models to the PBMAS data. In the boys, the simplified MO
regression equation is:

Maturity offset ¼ j8:128741
þ 0:0070346 � ðage � sitting heightÞð Þ;

where R2 ¼ 0:906 & SEE ¼ 0:514

In the girls, the simplified MO regression equation is:

Maturity offset ¼ j7:709133
þ 0:0042232� ðage� heightÞð Þ;

where R2 ¼ 0:898 & SEE ¼ 0:528

All height measurements are in centimeter. The models
here consider robust standard errors of coefficients as we used
the cluster-robust variance estimator while developing these
new equations. Using a step-by-step approach, we added

a second predictor to each model, which yielded only minor
changes (G1%) in the R2 and SEE; in the boys, R2 = 0.910;
SEE = 0.504; and in the girls, R2 = 0.906; SEE = 0.508.

We calibrated the new prediction equations using two ex-
ternal validation samples: the HBS-III and HGS cohorts. We
plotted calibration curves (observed vs predicted) and calcu-
lated the coefficients for the calibration plots. This provided us
a summary of the observed and predicted values. A calibration
curve with an intercept of zero and a slope of one overlay the
y = x line; that is, the closer b0 to 0 and b1 to 1, the better
the performance of the prediction on average.

We also provide a visual summary of the difference in the
calibration curves between the original equations and the
revised equations in boys and girls (Fig. 1). We quantified
the difference between the calibration curves and present
these results in Table 4. With fewer variables in the model,
the redeveloped equations performed as well as the original
equations in all cases except the HGS boys. The mean pre-
diction error (in years) for the HBS boys was j0.05; HBS

TABLE 2. Changes in R2 and the SEE with step-by-step refitting the original Mirwald et al. (26) equations.

Predictor 1 Predictor 2 Predictor 3 Predictor 4 R2 Change in R2 SEE Change in SEE

Boys
leg � sit 0.802 0.802 0.748 0.748
leg � sit age � leg 0.872 0.069 0.605 0.143
leg � sit age � leg age � sit 0.912 0.041 0.499 0.106
leg � sit age � leg age � sit Leg/ht � 100 0.915 0.003 0.490 0.009

Girls
leg � sit 0.774 0.774 0.790 0.790
leg � sit age � sit 0.898 0.124 0.532 0.258
leg � sit age � sit leg/ ht � 100 0.908 0.010 0.505 0.027
leg � sit age � sit leg/ ht � 100 Age � wt 0.910 0.002 0.500 0.005

Leg, leg length; sit, sitting height; ht, height; wt, weight.

TABLE 3. Results of the 5 � 7- and 5 � 6-fold random-splitting analysis with the
original PBMAS boys and girls, respectively.

Potential Predictor
Variables

Frequency of Variable
Entering the Model (#/35)

Frequency of Variable
Entering the Model (%)

Boys
age � sitting height 35 100%
sitting height 16 46%
age 9 26%
height 8 23%
leg length � sitting

height
5 14%

age � height 1 3%
leg length 1 3%

Potential Predictor
Variables

Frequency of Variable
Entering the Model

(#/30)

Frequency of Variable
Entering the Model

(%)

Girls
age � height 30 100
leg length 15 50
weight 8 27
BMI 7 23
height 4 13
leg length � sitting

height
3 10

age � weight 3 10
age 2 7
weight / height �100 1 3

This created 35 subsets in boys and 30 subsets in girls (with one observation per child;
where n Q 70). A forward stepwise regression procedure was used with P e 0.10 for
entry and P Q 0.11 for removal.
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girls, 0.35; HGS boys, j0.28; and HGS girls, j0.02. We
attribute the poorer calibration in the HGS boys to their later
APHV. Thus, we recalibrated the equation in this group by
subtracting the calibration intercept (b0), which yielded:

Maturity offset ¼ j8:128741j 0:2683693ð Þ
þ 0:0070346� age� sitting heightð Þ

We describe the prediction error byMO category in Table 5
for both the redeveloped and original equations. These results
indicate that prediction error is smaller for predictions
made closer to APHV using both the redeveloped and orig-
inal equations. The redeveloped and original equations
performed similarly by MO category. With the redeveloped
equations, mean differences between observed and predicted

TABLE 4. Summary results of the calibration curves and descriptive summaries of the prediction residuals (including 25th, 50th, and 75th percentiles) for the external validation samples:
HBS-III and HGS.

Prediction Error n b0 (SE) b1 (SE) Min p25 p50 p75 Max Mean RMSE

HBS-III boys
Redeveloped 320 j0.05 (0.05) 0.98 (0.02) j2.18 j0.75 j0.12 0.60 2.64 j0.05 0.8966
Original 320 0.10 (0.05) 0.96 (0.02) j2.01 j0.58 0.02 0.74 2.81 0.10 0.9073

HBS-III girls
Redeveloped 233 0.35 (0.03) 1.01 (0.03) j1.28 0.01 0.41 0.77 1.80 0.35 0.6524
Original 233 0.33 (0.04) 1.06 (0.03) j1.46 j0.01 0.40 0.75 1.98 0.40 0.6585

HGS boys
Recalibrated* 745 j0.01 (0.01) 1.02 (0.01) j2.00 j0.47 j0.15 0.29 2.47 0.01 0.802
Redeveloped 745 j0.20 (0.02) 1.02 (0.01) j2.27 j0.74 j0.41 0.02 2.21 j0.27 0.8489
Original 745 0.02 (0.03) 1.02 (0.02) j1.80 j0.46 j0.14 0.36 2.15 0.01 0.7789

HGS girls
Redeveloped 676 j0.02 (0.03) 0.97 (0.02) j2.05 j0.51 j0.04 0.55 2.28 j0.02 0.7006
Original 676 0.05 (0.03) 1.02 (0.02) j2.00 j0.51 j0.02 0.58 2.68 0.05 0.8124

b0 is the calibration curve intercept (standard error, SE), b1 is the calibration curve slope (SE), and RMSE is the root mean squared error of the prediction.
*Recalibrated given the later APHV in the HGS boys compared with the PBMAS boys.

FIGURE 1—Calibration curves (observed vs predicted) in HBS-III boys (A), HBS-III girls (B), HGS boys (C), and HGS girls (D); where thick light
gray line is y = x, black solid line is calibration line for the redeveloped equations; black open dots are predicted maturity offset (MO) by the redeveloped
equations, black dashed line is calibration line for the original Mirwald et al. (26) equations, black dots are predicted MO by the original Mirwald et al.
(26) equations, and dark gray thick dotted line (C only) is the recalibrated equations to account for significant difference in APHV. If b0 = 0 and b1 = 1,
the calibration line would overlay the y = x line; that is, the closer b0 to 0 and b1 to 1, the better the performance of the prediction on average.
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were less than 0.5 yr between j2 and +4 MO in the HBS-III
boys, j2 and +2 in the HBS-III girls, j1 and +4 MO in the
HGS boys; and j3 and +2 MO in the HGS girls. With the
original equations, mean differences between observed and
predicted were less than 0.5 yr. There were the same as the
redeveloped equation in the HBS-III boys, girls, and the HGS
girls but slightly less in the HGS boys, were mean differences
in the observed and the predicted, were less than 0.5 yr be-
tween j2 and +2 MO. That is, there was a larger window of
prediction (with G0.5-yr error) using the redeveloped equa-
tion compared to the original. The ideal timing to predict is
when a participant is closest to his or her expected APHV or
a MO of zero.

Our sample was not large enough to rigorously assess
variation in prediction error due to early- and late-maturing
children. However, we identified a number of children in
our sample who might be considered early or late maturers,
and we used these data to illustrate how the equation per-
forms in those cases. For the HBS-III boys whose APHV
was between 13.5 and 14.5 yr, the mean (SD) error (MO; in
years) was 0.57 (0.50), where n (observations) = 132. In the
boys with APHV less than 12.5 yr (i.e., early maturers), the
mean (SD) error was 0.87 (0.48), where n = 39; the mean
(SD) prediction error using the original equation in early-
maturing boys was 1.14 (0.86). In the boys with APHV
greater than 15.5 yr (i.e., late maturers), the mean (SD) error
was 1.35 (0.47), where n = 14. The mean (SD) prediction
error was similar 1.36 (0.56) in late-maturity boys when
using the original equation. In the HBS-III girls for whom
APHV were between 11.5 and 12.5 yr, the mean (SD) error
was 0.12 (0.42), where n = 66. In the girls with APHV less
than 11.0 yr (i.e., early maturers), the mean (SD) error was
0.94 (0.31), where n = 49. Finally, in the girls with APHV
greater than 13.0 yr (i.e., late maturers), the mean (SD) error
was j0.76 (0.24), where n = 14. The mean (SD) prediction

error was similar in early- and late-maturity girls when
using the original equation: 0.95 (0.43) and j0.81 (0.42),
respectively.

Finally, we acknowledge that sitting height may not be
assessed in all growth studies. Therefore, we created an
alternative model for boys that included an age–height inter-
action term for use when sitting height has not been docu-
mented. The alternate age � height MO regression equation
for boys is:

Maturity offset ¼ j7:999994
þ 0:0036124� ðage� heightÞÞ;ð

R2 ¼ 0:896; SEE ¼ 0:542

All height measurements are in centimeter. We provide
a full description of the calibration for the alternative equa-
tion for boys in Supplemental Digital Content 3 (see docu-
ment, Supplemental Digital Content 3, Alternate Maturity
Offset Prediction Equation for Boys when there is No Docu-
mented Sitting Height and External Calibration Results,
http://links.lww.com/MSS/A478).

DISCUSSION

Managing the effect of maturity and the substantial range in
the tempo and timing of growth in studies of children con-
tinues to be a challenge. Valid and reliable maturity prediction
equations using easily accessible noninvasive somatic growth
measures may be one positive and effective solution. Our
study identified and addressed issues of within-subject cor-
relation and overfitting of the original Mirwald et al. (26)
prediction equations. With these issues accounted for, the
redeveloped sex-specific regression equations more appro-
priately predict MO and APHV in growing children. Our

TABLE 5. Summary statistics (mean (SD)) for observed MO, predicted MOs, and prediction errors for the redeveloped equations and the original equations (26) (observed minus
predicted) by observed MO category in HBS-III (top) and HGS (bottom) boys (left) and girls (right).

HBS-III Boys HBS-III Girls

MO n
Predicted MO
Mean (SD)

Observed-Predicted MO
Redeveloped Mean (SD)

Observed-Predicted MO
Original Mean (SD) MO n

Predicted MO
Mean (SD)

Observed-Predicted MO
Redeveloped Mean (SD)

Observed-Predicted MO
Original Mean (SD)

j4 6 j3.69 (0.15) j1.48 (0.42) j1.22 (0.47) j4 — — — —
j3 38 j3.04 (0.35) j0.84 (0.53) j0.64 (0.54) j3 4 j2.94 (0.38) j0.74 (0.41) j0.64 (0.58)
j2 42 j2.03 (0.34) j0.24 (0.73) j0.05 (0.77) j2 11 j1.93 (0.26) j0.36 (0.36) j0.34 (0.42)
j1 46 j2.06 (0.34) j0.01 (0.74) 0.20 (0.76) j1 35 j0.97 (0.29) 0.22 (0.43) 0.18 (0.47)
0 49 j0.02 (0.37) 0.22 (0.82) 0.36 (0.85) 0 57 j0.01 (0.31) 0.36 (0.48) 0.29 (0.49)

+1 42 1.05 (0.34) 0.02 (0.93) 0.10 (0.97) +1 50 0.98 (0.29) 0.44 (0.54) 0.39 (0.46)
+2 42 2.05 (0.32) 0.09 (0.92) 0.19 (0.94) +2 41 1.93 (0.32) 0.44 (0.54) 0.45 (0.53)
+3 39 3.05 (0.31) 0.33 (0.91) 0.46 (0.93) +3 24 3.07 (0.29) 0.57 (0.55) 0.73 (0.47)
+4 16 3.72 (0.14) 0.40 (0.83) 0.48 (0.83) +4 11 3.80 (0.13) 0.71 (0.63) 0.97 (0.49)

HGS Boys HGS Girls

MO n
Predicted MO

Mean (SD)
Observed-Predicted MO
Redeveloped Mean (SD)

Observed-Predicted MO
Original Mean (SD) MO n

Predicted MO
Mean (SD)

Observed-Predicted MO
Redeveloped Mean (SD)

Observed-Predicted MO
Original Mean (SD)

j4 36 j3.73 (0.13) j1.16 (0.60) j0.87 (0.59) j4 28 j3.73 (0.14) j0.71 (0.72) j0.73 (0.71)
j3 95 j2.98 (0.28) j0.86 (0.65) j0.56 (0.63) j3 72 j3.00 (0.28) j0.45 (0.76) j0.46 (0.73)
j2 126 j1.98 (0.29) j0.53 (0.59) j0.21 (0.60) j2 89 j1.99 (0.28) j0.28 (0.75) j0.27 (0.70)
j1 142 j0.97 (0.29) j0.23 (0.63) 0.10 (0.62) j1 103 j0.98 (0.28) j0.05 (0.79) j0.02 (0.74)
0 140 0.01 (0.28) j0.07 (0.70) 0.20 (0.70) 0 113 0.00 (0.28) j0.01 (0.78) 0.03 (0.71)

+1 95 0.96 (0.27) j0.01 (0.79) 0.19 (0.79) +1 119 0.98 (0.28) 0.09 (0.81) 0.22 (0.78)
+2 56 1.92 (0.27) 0.16 (0.90) 0.37 (0.85) +2 94 1.93 (0.29) 0.22 (0.76) 0.33 (0.69)
+3 41 2.95 (0.28) 0.37 (0.94) 0.63 (0.86) +3 43 2.93 (0.26) 0.61 (0.80) 0.77 (0.71)
+4 14 3.76 (0.14) 0.27 (0.70) 0.60 (0.62) +4 15 3.70 (0.15) 0.90 (0.73) 1.13 (0.65)
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findings suggest that the Mirwald et al. (26) equations can
be simplified without a meaningful increase in estimation
error and, importantly, without sacrificing prediction accu-
racy. We have also created equations that do not require sitting
height; enhancing their usability across disciplines and by
researchers, physicians, and other health professionals. Fi-
nally, although we saw similar predictions and prediction
errors in our two external samples, the redeveloped equa-
tions should theoretically produce better fits across a range of
external samples.

The original equations were developed to predict how
far a child is away from APHV by providing the user a
prediction of MO and a way to align children on a matura-
tional timeline. The authors thoughtfully considered pre-
dictors based on differential timing of pubertal growth and
developed sex-specific regression equations and identified
four predictor variables that comprised the models for boys
and girls, respectively. In the boys, the predictors were leg
length� sitting height, age� leg length, age� sitting height,
and leg length by height �100. In the girls, the predictors
were leg length � sitting height, age � sitting height, leg
length by height �100, and age � weight. In these equations,
R2 = 0.891 and SEE = 0.592 for the boys and the R2 = 0.890
and SEE = 0.569 for girls. However, these values may have
been compromised for three reasons: 1) the number of pre-
dictors was too large relative to the number of independent
observations; 2) the R2 was calculated from data used to
create the model; and 3) the SEE may underestimate the
prediction error in both equations, as the analyses did not
account for within-subject correlation.

Our results attained similar predictions and prediction
errors using simpler models. To minimize prediction error,
an accurate but more conservative estimate of target pre-
diction error is preferable (38). R2 is the proportion of var-
iance explained by the regression model and increases
with the addition of each covariate. Importantly, overfitting
may lead to a model that does not perform well with exter-
nal data. Given that the usefulness of the original predic-
tions (26) has been questioned in external samples (21–23),
we aimed to determine if this lack of fit could be a result
of overfitting. Thus, we used several statistical strategies
to ensure the best fit for our redeveloped models: 1) we
assessed the original prespecified predictors, 2) we reduced
the number of predictors using biological and statistical ra-
tionale, 3) we used two methods that considered the within-
subject clustering and identified final predictors; 4) we
used a step-by-step forward-stepwise regression proce-
dure (using robust standard errors) to enter variables in the
model and assess the change in R2 and SEE, and 5) with the
final redeveloped models, we calibrated and compared ob-
served versus predicted values using two external samples
that had accurate measures of APHV and MO.

Many studies are using maturity prediction equations to
classify maturational status and align children by MO or
APHV. For example, equations are most commonly used to
assess maturity status of athletes, for talent identification, or to

assess changes in function or performance after activity-related
interventions (11,24,27,31,33,37). It has historically been a
challenge to provide a model that equitably classifies youth
for sports participation and competition (4,6). Assessments
are continually being sought at all levels of sport competi-
tion to represent a young athlete’s maturity status. Malina and
colleagues (21–23) cautioned those who might use these
assessments for sports groups when there is the propensity for
young participants to be early or late maturers (e.g., gym-
nastics). Although redevelopment of the original Mirwald
et al. (26) equations addressed some sources of ‘‘systematic’’
error noted by Malina and Koziel (22,23), we note that pre-
diction error is still likely to be slightly higher in early- or
late- maturing children. Not surprisingly, prediction error also
increases the farther a child is away from expected APHV.

We identified a small subset of children in our sample
considered to be early or late maturers. When we applied
the redeveloped prediction equation, prediction error was
2–3 times greater in the boys and 6–7 times greater in the
girls, for early and late maturers. The mean prediction error
for all groups with the exception of late-maturing boys was
less than T1 yr; perhaps still within the range to appropri-
ately classify children into maturity groups for sports partici-
pation purposes.

Further, the Mirwald et al. (26) equations were developed
using data acquired from a sample of white children. How-
ever, they have been applied, perhaps inappropriately, to
predict biological age in ethnically diverse cohorts (1,10,13,
14,25). In light of the documented differences in the timing
and tempo of growth and maturation between ethnicities
(12), there is a need to confirm the usefulness of our new
equations in other ethnic samples and, if needed, develop
ethnic-specific equations.

We also revisited the findings of Mirwald et al. (26) that
in 95% of cases, MO could be predicted accurately within
T1 yr. However, this suggestion may have been optimistic for
the reasons of within-subject correlation and overfitting. We
assessed the predictive ability of the original equations and
found that in 80%–85% of cases, MO was predicted accu-
rately within T1 yr in two external samples. We then assessed
the redeveloped equations presented here and found that in
90% of the cases MO was predicted accurately within T1 yr,
despite large ranges in APHV and MO. These estimates are
more realistic, as they are calculated with external samples.
We attribute the good fits (despite being simpler models) to
the interaction terms included in the models, which consider
both the measured aspect of linear growth (i.e., sitting height
in boys; height in girls), and the timing (i.e., the interaction
with age of the event). Mirwald et al. (26) also carefully
considered differential timing of the various aspects of linear
growth; thus, we found that the most influential predictors
were these interaction terms.

We conclude that there is a profound need for accu-
rate noninvasive approaches to predict maturity in chil-
dren and youth. We found evidence of overfitting in the
Mirwald et al. (26) prediction equations and subsequently

http://www.acsm-msse.org1762 Official Journal of the American College of Sports Medicine

SP
EC

IA
L
C
O
M
M
U
N
IC
AT

IO
N
S

Copyright © 2015 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.



redeveloped the equations. The redeveloped equations per-
form similarly or better than the original equations; we found
that 90% of predictions were within T1 yr in two external
samples. Importantly, our predictions provide alternatives for
investigations in which sitting height has not been docu-
mented. Given the rigor with which we developed our pre-
diction models, we propose that they be considered by
clinicians, sports governing bodies, and in pediatric research
to assess maturity and to align children on biological age. The
predictions will prove most useful in children from similar
populations. We acknowledge that external validation of
models using data acquired from early or late maturers such as
athletes, clinical populations, or ethnic groups is warranted.
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