ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP

PSI 3214 - LABORATÓRIO DE INSTRUMENTAÇÃO ELÉTRICA (2020)

No. USP	Nor	ne	Nota	Bancada
Data:	Turma	Profs:		
Dala.	Turma:	FIUIS.		

EXPERIÊNCIA 04 – POTÊNCIA EM CORRENTE ALTERNADA

GUIA DE ATIVIDADE REMOTA E ROTEIRO DO RELATÓRIO

H. P. S., A.S.; E.G; H.M.P.; L.Y Atualização 2020: E. Galeazzo

OBJETIVOS DA ATIVIDADE REMOTA

- . Verificar as várias definições associadas à potência elétrica;
- . Efetuar simulações com circuitos que contêm bipolos comumente encontrados em sistemas monofásicos;
- . Verificar as leis de conservação de potência ativa, reativa e aparente.

MATERIAIS NECESSÁRIOS

. Simulador de circuitos Multisim

Breve Introdução sobre às Atividades da Experiência

O que faremos nesta experiência?

O objetivo geral desta experiência é explorar os conceitos de potência elétrica em circuitos elétricos com bipolos passivos no laboratório.

Porém, devido à pandemia, a atividade laboratorial será efetuada em fevereiro de 2021.

Na aula remota e atividades online trabalharemos com os conceitos de potência elétrica <u>por meio de simulações de circuitos elétricos</u>. Analisaremos também, por meio de simulações, como o fator de potência (ou $\cos \varphi$) de uma instalação elétrica poderá ser corrigido, para que possamos aplicar a mesma metodologia na prática, ao retornarmos para o laboratório didático.

PARTE EXPERIMENTAL:

1 CARACTERIZAÇÃO DA IMPEDÂNCIA DE COMPONENTES PASSIVOS

OBJETIVO: Determinar a impedância complexa **Z** de bipolos passivos utilizando-se o simulador de circuitos elétricos Multisim.

1.1 PROCEDIMENTO PARA AS SIMULAÇÕES E EXTRAÇÃO DE MEDIDAS

Fazer medidas de tensão, corrente e potência ativa no simulador para diferentes bipolos alimentados pela tensão da rede elétrica (ideal), um de cada vez.

A primeira simulação deverá ser efetuada para <u>uma carga resistiva</u> (lâmpada incandescente) ligada à rede elétrica ideal, cujo valor da tensão eficaz teórica é de 127 Vrms.

Este procedimento deverá ser repetido para <u>um bipolo capacitivo</u> e, depois, para <u>um motor indutivo</u> (que deverá ser representado por uma resistência em série com um indutor ideal), substituindo a lâmpada pelas cargas reativas.

A rede elétrica deverá ser simulada com uma fonte senoidal sem "o terra" associado a ela, para simular a fase e o neutro de uma ligação monofásica. Para medir a tensão neste bipolo, utilize *o probe diferencial*. Acesse o help do simulador para maiores informações.

Entre o gerador e o circuito, você deverá inserir um transformador de isolação 1:1. As justificativas para isso encontram-se no quadro a seguir.

Dica: Existem vários tipos de transformadores no Multisim. Aconselhamos utilizarem o modelo do conjunto "basic, transformer, modelo 1P 1S", pois este não apresenta perdas indutivas. Não se esqueçam de programarem adequadamente o transformador para atuar com a razão 1:1 (entre o primário e o secundário).

O terra (*ou ground*) do circuito deverá ser colocado junto com o transformador. Necessitaremos dele para poder fazer as medidas com o osciloscópio.

Você deverá utilizar os seguintes recursos do simulador para analisar o circuito: *probe* de voltímetro, incluindo o *probe* diferencial, *probe* de amperímetro, osciloscópio digital da Agilent, sonda de corrente (*current clamp*) e wattímetro digital. As grandezas a serem medidas são tensão, corrente, potência útil e fator de potência. As formas de onda da tensão e corrente, assim como a potência instantânea, deverão ser visualizadas na tela do osciloscópio e apresentadas no relatório.

<u>Dicas</u> para capturar as imagens do osciloscópio e inserir comentários: utilize o menu do word: inserir instantâneo, que captura uma imagem de uma janela disponível, e para escrever sobre a imagem capturada, utilize o menu "desenhar".

Dicas, cuidados e sugestões para serem utilizadas nas simulações:

- **a**. A sonda de corrente (current clump) deve sempre "abraçar" o fio do condutor e, ao ser ligada ao osciloscópio, possibilitará a visualização do comportamento da corrente em função do tempo, escolhendo-se <u>uma escala de conversão "corrente-tensão" adequada</u>. Utilize o <u>help do simulador</u> para maiores informações.
- **b**. As pontas de prova (de tensão e de corrente), também denominadas de "probes", são ferramentas que devem ser utilizadas no seu circuito, pois fornecerão as informações necessárias de forma mais rápida. Elas sempre medem o sinal em relação a um referencial, por isso, nos casos em que não há o "ground" no circuito, utilize o *probe diferencial*. (Obs: isso ocorrerá no caso da fonte de alimentação de 127 Vrms).
- c. Em um experimento real, em hipótese alguma utilize o osciloscópio para medir tensões diretamente da rede elétrica! Você poderá danificar o osciloscópio. A solução nestes casos é usar um transformador de isolação entre a rede elétrica e o circuito em análise. Este procedimento irá proteger seu osciloscópio de um possível curto-circuito ocasionado pela ponta de prova. Por isso, mesmo nas nossas simulações, usaremos um transformador de isolação (1:1) em paralelo com a fonte para reforçarmos este cuidado. Feito isso, você deve visualizar com o osciloscópio do simulador as formas de ondas de tensão (e de corrente) do seu circuito, e analisar se estão defasadas ou não. Escolha o modelo de osciloscópio da Agilent, pois ele tem a função matemática "produto" que utilizaremos bastante, mas que os outros modelos não apresentam.
- **d.** Com o wattímetro digital (instrumento) ligado ao circuito, será possível medir, além da potência útil, o fator de potência.

Assista ao vídeo sobre dicas do Multisim para ver mais detalhes sobre a sonda de corrente, probes e os equipamentos a serem utilizados. (Notem que neste vídeo não usamos o transformador de isolação).

1.2 CÁLCULOS A SEREM EFETUADOS APÓS A EXTRAÇÃO DAS MEDIDAS:

Para cada bipolo testado, deve-se determinar as seguintes grandezas, a partir da Vef, lef e P:

- . O módulo da Potência Aparente (|Pap|)
- . Potência Reativa (Q);
- . Impedância Complexa: **a)** módulo (*em ohms* $[\Omega]$: $|\mathbf{Z}| = \frac{Vef}{lef}$)
 - **b)** fase (em graus ou radianos: $\varphi = \angle Z = arcos\left(\frac{P}{|P_{ap}|}\right)$)
 - c) Re{Z} e Im{Z}.

Após de ter concluído esta etapa de simulação, assista aos vídeos disponibilizados para entender como estas mesmas medidas são efetuadas em um ambiente de laboratório, como faremos posteriormente.

1.3 RESULTADOS OBTIDOS E DISCUSSÃO

Preencha as tabelas a seguir, com os resultados das simulações e dos cálculos solicitados.

1.3.1 LÂMPADA INCANDESCENTE

Tabela 1 – Caracterização do BIPOLO RESISTIVO com MULTISIM. Adote R = 150 Ω .

		as Medid e com o V		Gr	andezas	Calculado	as				
D. 1	1.7	,	Fator de		10 1	0	Impedância com		a comple	ıplexa	
Bipolo	V_{ef}	I_{ef}	Р	potência	P _{ap}	Q	Z	φ	Re { <i>Z</i> }	Im { <i>Z</i> }	
Lâmpada											
incandescente											
com R=150 Ω											

Apresente os cálculos efetuados e discuta se os valores obtidos são coerentes para a carga ensaiada:
Apresente as formas de onda obtidas da tensão e da corrente no bipolo (identificando-as):

Qual é a fase esperada entre a tensão da rede e a corrente do circuito neste caso? Por quê? Analise sua
simulação e discuta se o observado condiz com a expectativa teórica.
Apresente graficamente a potência instantânea do bipolo. Indique no gráfico o valor da potência útil:
Analisando a curva da potência instantânea, por que se pode afirmar que toda potência entregue é
absorvida pela carga resistiva?

1.3.2 CARGA CAPACITIVA DE $5 \mu F$

Troque a carga resistiva pelo bipolo capacitivo e repita as medidas, os cálculos e responda as perguntas relacionadas:

Tabela 2- Caracterização de BIPOLO CAPACITIVO: medidas com os probes e o wattímetro do Multisim.

			as com os Vattímetr	"probes" o		Gr	andezas	Calculado	as	
D: 1	Fator de		10 1	(Impedância complexa					
Bipolo	$V_{\it ef}$	lef	Р	potência	P _{ap}	$ P_{ap} $ Q		φ	Re { <i>Z</i> }	Im { <i>Z</i> }
Capacitor 5 μF										

Apresente os cálculos efetuados e discuta se as grandezas calculadas são coerentes para a carga ensaiada.
Apresente as formas de onda obtidas da tensão e da corrente no bipolo (identificando-as):
Qual é a fase esperada entre a tensão da rede e a corrente do circuito neste caso? Por quê? Analise sua
simulação e discuta se o observado condiz com a expectativa teórica.

Apresente graficamente a potência instantânea do bipolo. Indique no gráfico o valor da potência útil. Também destaque no gráfico a parcela da potência que é absorvida pelo bipolo para gerar campos eletromagnéticos, e aquela que é devolvida à rede elétrica:							

1.3.3 MOTOR INDUTIVO (MODELADO POR UM RESISTOR R E UMA INDUTÂNCIA L)

Troque a carga capacitiva pelo conjunto resistor-indutor e repita as medidas, os cálculos e responda as perguntas relacionadas:

Tabela 3- Caracterização do BIPOLO INDUTIVO. Adote R = 70 Ω e L = 180 mH.

	Grandezas Medidas com os "probes" e Wattímetro			Grandezas Calculadas									
Dinolo	W	,	Р	D Fotor do		Fatar da		0	Impedância complexa				
Bipolo	$V_{\it ef}$	I ef	P	Fator de potência	$ P_{ap} $	Q	<i>Z</i>	φ	Re { <i>Z</i> }	Im { <i>Z</i> }			
Motor													
elétrico													
indutivo													

Apresente os cálculos efetuados e discuta se as grandezas calculadas são coerentes para a carga ensaiada.

Apresente as formas de onda obtidas da tensão e da corrente no bipolo (identificando-as):
Visualizando-se as formas de onda da tensão e da corrente sobre o motor com o osciloscópio, responda:
a. A corrente está adiantada ou atrasada em relação a tensão?
a. A corrente esta adiantada ou atrasada em relação a tensão:
b. Por que a defasagem entre tensão e corrente não é igual a 90º neste caso?
Apresente graficamente a potência instantânea do bipolo. Indique no gráfico o valor da potência útil.
Também destaque no gráfico a parcela da potência que é absorvida pelo bipolo para realizar trabalho e
gerar campos eletromagnéticos, e aquela que é devolvida à rede elétrica:

Analisando o gráfico da potência instantânea obtido, por que se pode afirmar que parte da potência entregue é absorvida pelo motor indutivo?
2 Conservação da potência
Este item tem por finalidade verificar a conservação da potência reativa Q e da potência aparente $ P_{ap} $.
Ligue o capacitor em paralelo com o motor (use o mesmo valor de $C = 5 \mu F$). Meça as grandezas solicitadas com o wattímetro e os "probes" adequados, e calcule as potências aparente e reativa (ou seja, do circuito total, somente do motor e somente do capacitor), de acordo com a Tabela 4.
Apresente o layout esquemático da sua simulação para efetuar as medidas solicitadas:
Tipresente o layout esquemation au suu simulayan para elettaal us mediaas solisitaasii

Tabela 4: dados para verificação da conservação da potência reativa e aparente, caracterizada com MOTOR + CAPACITOR

	" Total ": (Motor + Capacitor)		Motor		Capacitor		Soma dos módulos das grandezas obtidas no "motor" e "capacitor"
Grandezas	V _{ef}		V _{ef}		V _{ef}		xxxxxxxxxxxxxx
obtidas com o	I _{ef(total)}		I _{ef(motor)}		I _{ef(C)}		
wattímetro e os probes	P _{total}		P_{motor}		Pc		
Grandezas Calculadas	Pap _{total}		Pap _{motor}		<i>Pap</i> _C		
Calculadas	Q _{total}		$Q_{ m motor}$		Q_{C}		

a) Compare os valores das grandezas da coluna "Soma dos módulos das grandezas" com os valores correspondentes indicados na coluna "Total:(motor+capacitor)". Quais "somas dos módulos das grandezas" corresponderam e quais <u>não corresponderam</u> ao valor obtido na coluna "Total: motor + capacitor"? Justifique o porquê.		

b) (1) Represente graficamente as potências (ativa e reativa) do motor e do capacitor (indicados na Tabela 4) no mesmo plano complexo (identificando-as). (2) No outro diagrama, indique as potências ativa e reativa resultantes e, a partir delas, calcule graficamente a potência aparente total.

(2) Representação das potências resultantes e
indicação da potência aparente total calculada:
<u> </u>

c) Compare o valor da potência aparente obtida graficamente (b.2) com o valor indicado na tabela 4. (vej
se sua justificativa apresentada no item "a" corrobora com sua análise apresentada aqui). Justifique.

3 Correção do Fator De Potência (FP)

O art. 64 da Resolução nº 456, de 29/11/2000, da ANEEL, estabelece um nível máximo para a utilização de energia reativa pela unidade consumidora, em função da energia ativa consumida. O fator de potência (FP) indica qual a porcentagem da potência total fornecida é efetivamente usada como potência ativa.

Para melhorar o FP deve-se reduzir o consumo de energia reativa, ou seja, solicitar menos energia reativa da concessionária.

Por este princípio, o nível mínimo de aproveitamento da potência total fornecida deve ser de 92%, ou seja, $FP \ge 92\%$. Valores inferiores indicam excedente de reativo, que será cobrado na conta de energia elétrica uma vez detectado pela concessionária.

Vamos supor que sua empresa utilizará o mesmo motor que utilizou nas simulações desta experiência.

a j	medido pelo Wattímetro e indicado na Tabela 3.
b)	Determine teoricamente qual deverá ser o capacitor ligado em paralelo com o motor para que o fator de potência resultante seja igual a 1. Apresente seus cálculos.
c)	Analise agora o circuito incluindo o capacitor calculado no item anterior, , apresente as formas de onda da tensão e corrente do circuito, e discuta porque agora o circuito atende a especificação da norma.

d)	Apresente a curva da potência instantânea sobre o motor nesta condição. Indique a parcela da potência que <i>é absorvida para</i> realizar trabalho e gerar campos eletromagnéticos, e aquela que é <i>devolvida</i> à
	rede elétrica nessa nova condição:
e) (sista aos vídeos para entender como será possível fazer esta experiência no laboratório! Crie uma lista, com ao menos 10 pontos importantes, para ajudá-lo a relembrar sobre os conceitos mais portantes e os cuidados que deve ter, antes de efetuar esta experiência no laboratório, em fevereiro de 21: