Física IV

21 setembro 2020
Equações de Maxwell o conjunto completo

Equações de Maxwell

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{D}=\frac{\rho}{\epsilon_{0}} & \\
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \\
\vec{D}=\kappa \vec{E} \\
\vec{B}=0 & \\
& \vec{B}=\mu \vec{H}
\end{array}
$$

$\vec{\nabla} \times \vec{H}=\vec{\jmath}$

Equações de Maxwell

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{D}=\frac{\rho}{\epsilon_{0}} & \\
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \vec{D}=\kappa \vec{E} \\
\vec{\nabla} \cdot \vec{B}=0 & \\
& \vec{B}=\mu \vec{H}
\end{array}
$$

$\vec{\nabla} \times \vec{H}=\vec{\jmath}$

$\vec{\nabla} \times \vec{H}=\vec{\jmath}$

$$
\vec{\nabla} \times \vec{H}=\vec{\jmath}
$$

Mas $\vec{\nabla} \cdot \vec{\nabla} \times \vec{H}=0$

$$
\vec{\nabla} \times \vec{H}=\vec{\jmath}
$$

Mas $\vec{\nabla} \cdot \vec{\nabla} \times \vec{H}=0$

$$
\Rightarrow \vec{\nabla} \cdot \vec{j}=0
$$

$$
\vec{\nabla} \times \vec{H}=\vec{\jmath}
$$

Mas $\vec{\nabla} \cdot \vec{\nabla} \times \vec{H}=0$

$$
\Rightarrow \vec{\nabla} \cdot \vec{j}=0
$$

$$
\vec{\nabla} \times \vec{H}=\vec{\jmath}
$$

Mas $\vec{\nabla} \cdot \vec{\nabla} \times \vec{H}=0$

$$
\vec{\nabla} \cdot \vec{j}=0
$$

$\vec{\nabla} \times \vec{H}=\vec{\jmath}$
Mas $\vec{\nabla} \cdot \vec{\nabla} \times \vec{H}=0$

$$
\vec{\nabla} \cdot \vec{j}=0
$$

$$
\vec{\nabla} \cdot \vec{j}=-\frac{\partial \rho}{\partial t}
$$

$\vec{\nabla} \times \vec{H}=\vec{\jmath}$
Só quando $\frac{\partial \rho}{\partial t}=0$

$\vec{\nabla} \times \vec{H}=\vec{\jmath}$
 Só quando $\frac{\partial \rho}{\partial t}=0$

$$
\vec{\nabla} \times \vec{H}=\vec{j}+\vec{X}
$$

$\vec{\nabla} \times \vec{H}=\vec{\jmath}$
Só quando $\frac{\partial \rho}{\partial t}=0$

$$
\begin{equation*}
\vec{\nabla} \times \vec{H}=\vec{j}+\vec{X} \tag{0}
\end{equation*}
$$

$$
\vec{\nabla} \times \vec{H}=\vec{J} \quad \text { Só quando } \frac{\partial \rho}{\partial t}=0
$$

$$
\vec{\nabla} \times \vec{H}=\vec{j}+\vec{X}
$$

$$
\vec{\nabla} \cdot \vec{\nabla} \times \vec{H}=\vec{\nabla} \cdot \vec{\jmath}+\vec{\nabla} \cdot \vec{X}
$$

$\vec{\nabla} \times \vec{H}=\vec{\jmath}$

$$
\vec{\nabla} \times \vec{H}=\vec{j}+\vec{X}
$$

$$
\vec{\nabla} \cdot \vec{\nabla} \times \vec{H}=\vec{\nabla} \cdot \vec{\jmath}+\vec{\nabla} \cdot \vec{X}
$$

$$
0=-\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{X}
$$

$\vec{\nabla} \times \vec{H}=\vec{j}$
Só quando $\frac{\partial \rho}{\partial t}=0$

$$
\vec{\nabla} \times \vec{H}=\vec{j}+\vec{X}
$$

$$
\vec{\nabla} \cdot \vec{\nabla} \times \vec{H}=\vec{\nabla} \cdot \vec{\jmath}+\vec{\nabla} \cdot \vec{X}
$$

$$
0=-\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{X}
$$

$$
\vec{\nabla} \times \vec{H}=\vec{\jmath}+\vec{X}
$$

$$
\vec{\nabla} \cdot \vec{\nabla} \times \vec{H}=\vec{\nabla} \cdot \vec{\jmath}+\vec{\nabla} \cdot \vec{X}
$$

$$
0=-\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{X}
$$

$$
\text { Mas } \frac{\rho}{\epsilon_{0}}=\vec{\nabla} \cdot \vec{D}
$$

$$
\vec{\nabla} \times \vec{H}=\vec{J}+\vec{X}
$$

$\vec{\nabla} \cdot \vec{\nabla} \times \vec{H}=\vec{\nabla} \cdot \vec{\jmath}+\vec{\nabla} \cdot \vec{X}$

$$
\vec{\nabla} \cdot \vec{X}=\frac{\partial \rho}{\partial t}
$$

$\operatorname{Mas} \frac{\rho}{\epsilon_{0}}=\vec{\nabla} \cdot \vec{D}$

$$
\vec{\nabla} \times \vec{H}=\vec{\jmath}+\vec{X}
$$

$$
\vec{\nabla} \cdot \vec{\nabla} \times \vec{H}=\vec{\nabla} \cdot \vec{\jmath}+\vec{\nabla} \cdot \vec{X}
$$

$$
\begin{aligned}
0 & =-\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{X} \quad \text { Mas } \frac{\rho}{\epsilon_{0}}=\vec{\nabla} \cdot \vec{D} \\
\vec{\nabla} \cdot \vec{X} & =\epsilon_{0} \vec{\nabla} \cdot \frac{\partial \vec{D}}{\partial t}
\end{aligned}
$$

$$
\vec{\nabla} \times \vec{H}=\vec{\jmath}+\vec{X}
$$

$$
\vec{\nabla} \cdot \vec{\nabla} \times \vec{H}=\vec{\nabla} \cdot \vec{\jmath}+\vec{\nabla} \cdot \vec{X}
$$

$$
\begin{aligned}
& 0=-\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{X} \quad \text { Mas } \frac{\rho}{\epsilon_{0}}=\vec{\nabla} \cdot \vec{D} \\
& \vec{X}=\epsilon_{0} \frac{\partial \vec{D}}{\partial t}
\end{aligned}
$$

$$
\vec{\nabla} \times \vec{H}=\vec{J}+\vec{X}
$$

$$
\begin{gathered}
\vec{X}=\epsilon_{0} \frac{\partial \vec{D}}{\partial t} \\
\vec{\nabla} \times \vec{H}=\vec{\jmath}+\epsilon_{0} \frac{\partial \vec{D}}{\partial t}
\end{gathered}
$$

Equações de Maxwell

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{D}=\frac{\rho}{\epsilon_{0}} & \\
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \vec{D}=\kappa \vec{E} \\
\vec{\nabla} \cdot \vec{B}=0 & \\
\vec{\nabla} \times \vec{H}=\vec{j}+\epsilon_{0} \frac{\partial \vec{D}}{\partial t} &
\end{array}
$$

Equações de Maxwell
 Corrente de deslocamento

$$
\vec{\nabla} \times \vec{H}=\vec{\jmath}+\epsilon_{0} \frac{\partial \vec{D}}{\partial t}
$$

Equações de Maxwell
 Corrente de deslocamento

$$
\begin{gathered}
\vec{\nabla} \times \vec{H}=\vec{\jmath}+\epsilon_{0} \frac{\partial \vec{D}}{\partial t} \\
\vec{H}=?
\end{gathered}
$$

Equações de Maxwell
 Corrente de deslocamento

$$
\begin{gathered}
\vec{\nabla} \times \vec{H}=\vec{\jmath}+\epsilon_{0} \frac{\partial \vec{D}}{\partial t} \\
\vec{H}=? \\
\int \vec{H} \cdot \mathrm{~d} \vec{\ell}=I \quad \Rightarrow H=\frac{I}{2 \pi a}
\end{gathered}
$$

Equações de Maxwell
 Corrente de deslocamento

$$
\begin{gathered}
\vec{\nabla} \times \vec{H}=\vec{\jmath}+\epsilon_{0} \frac{\partial \vec{D}}{\partial t} \\
\vec{H}=? \\
\int \vec{H} \cdot \mathrm{~d} \vec{\ell}=A \epsilon_{0} \frac{d D}{d t}
\end{gathered}
$$

Equações de Maxwell
 Corrente de deslocamento

$$
\begin{aligned}
\vec{\nabla} \times \vec{H} & =\vec{\jmath}+\epsilon_{0} \frac{\partial \vec{D}}{\partial t} \\
\int \vec{H} \cdot \mathrm{~d} \vec{\ell} & =A \epsilon_{0} \frac{d D}{d t} \quad D=\frac{1}{\epsilon_{0}} \frac{Q}{A}
\end{aligned}
$$

Equações de Maxwell Corrente de deslocamento

$$
\begin{aligned}
& \vec{\nabla} \times \vec{H}=\vec{\jmath}+\epsilon_{0} \frac{\partial \vec{D}}{\partial t} \\
& \int \vec{H} \cdot \mathrm{~d} \vec{\ell}=A \epsilon_{0} \frac{d D}{d t} \quad D=\frac{1}{\epsilon_{0}} \frac{Q}{A} \\
& \int \vec{H} \cdot \mathrm{~d} \vec{\ell}=A \epsilon_{0}\left(\frac{1}{A \epsilon_{0}} \frac{d Q}{d t}\right)
\end{aligned}
$$

Equações de Maxwell Corrente de deslocamento

$$
\begin{aligned}
& \vec{\nabla} \times \vec{H}=\vec{\jmath}+\epsilon_{0} \frac{\partial \vec{D}}{\partial t} \\
& \int \vec{H} \cdot \mathrm{~d} \vec{\ell}=\pi a^{2} \epsilon_{0} \frac{d D}{d t} \quad D=\frac{1}{\epsilon_{0}} \frac{Q}{A} \\
& \int \vec{H} \cdot \mathrm{~d} \vec{\ell}=A \epsilon_{0}\left(\frac{1}{A \epsilon_{0}} \frac{d Q}{d t}\right) \\
& \int \vec{H} \cdot \mathrm{~d} \vec{l}=I
\end{aligned}
$$

