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Objectives and references

• To introduce to basic aspects related to analytical mechanics and dynamics of
structures;

• The topics addressed in the class are discussed in greater depth in other
graduate courses (PEF5916 and PME5010);

• Examples of references:

1 Clough, R.W. & Penzien, J., 1975. Dynamics of Structures. McGraw Hill.
2 Lanczos, C., 1986. The variational principles of mechanics. Dover

publications.
3 Mazzilli, C.E.N., André, J.C., Bucalem, M.L. & Cifú, S., 2016. Lições em

mecânica das estruturas: Dinâmica. Edgard Blucher.
4 Meirovitch, L., 2003. Methods of Analytical Dynamics. Dover

Publications.
5 Pesce, C.P., 1999. Dinâmica dos corpos rígidos.

• A complete set of lectures on Analytical Mechanics can be found here.
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Fundamental concepts

• Mechanical system: System of interacting particles;

• Con�guration space: Let N being the number of independent particles (free of
constraints) of a certain mechanical system. We can de�ne a space
(con�guration space) characterized by the coordinates xi , yi and zi
(i = 1, 2 . . . ,N) of each particle. The temporal evolution of the mechanical
system is a curve in the con�guration space;

• Constraint equations: Commonly, we have constraint equations that link the
motion of some particles. We de�ne c as the number of constraint equations;

• Focus is placed on holonomic constraints (constraint equations depend on the
generalized coordinates and not on the generalized velocities).
fk = fc (xi , yi , zi , t) (k = 1, . . . , c; i = 1, . . . ,N)→ Holonomic and rheonomic
constraint. fk = fc (xi , yi , zi ) (k = 1, . . . , c; i = 1, . . . ,N)→ Holonomic and
scleronomic constraint and focus of the class..

• Number of degrees of freedom (dof): Number of generalized coordinates
necessary for the complete description of the mechanical system. n = 3N − c;
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Fundamental concepts

• Generalized coordinate qi : Set of independent variables that de�nes the
con�guration of a mechanical system. The temporal derivative of the
generalized coordinates corresponds to the generalized velocities. The
generalized coordinates must de�ne, in a biunivic way, the motion in the physical
coordinates. The choice of the generalized coordinates is not unique in general.;

• Virtual displacement: Arbitrary change in the position of the particles that
satis�es the constraints of the problem. The virtual displacement does not
consider the �ux of time. For a system with n dofs described by q1, q2 . . . , qn, if
the position of a certain particle is ri = ri (q1, q2, . . . , qn, t), the associated
virtual displacement is

δri =
n∑

j=1

∂r i

∂qj
δqj (1)

where δqj is the variation of the generalized coordinate qj .
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d'Alembert's principle

• Consider a system with N point masses mi , i = 1, 2, . . . ,N de�ned by the
corresponding position vectors ri .

• Second Newton's law, assuming that mi is independent of time:

d

dt
(mi ṙi ) = Fi → mi r̈i = Fi = F a

i + F ic
i + F nc

i (2)

F a
i is the applied force, F ic

i and F nc
i are the forces associated with ideal and

non-ideal constraints.

• Restricted d'Alembert's principle:

−mi r̈i + F a
i + F ic

i + F nc
i = 0 (3)

• (−mi r̈i + F a
i + F ic

i + F nc
i ).δr i = 0

• As the virtual work of the forces associated with ideal constraints is null and
de�ning the e�ective force F e

i = F a
i + F nc

i , we have (−mi r̈i + F e
i ).δr i = 0

• For the system with N particles

N∑
i=1

(−mi r̈i + F e
i ).δr i = 0 (4)
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Extended Hamilton's principle

• We de�ne the e�ective force as the sum of a term arisen from a potential
function (conservative force F c

i ) with a non-conservative one F nc
i ;

• The virtual work of the conservative and non-conservative forces are
F c
i δri = −δUi and F nc

i δri = δW nc , respectively;

• With the above de�nitions, Eq. 4 reads

N∑
i=1

(−δUi + δW nc
i −mi r̈ i .δri ) = 0→ −δU + δW nc −

N∑
i=1

mi r̈ i .δri = 0 (5)

• The variation of kinetic energy is

δT =
N∑
i=1

δ

(
1

2
mi ṙi .ṙi

)
=

N∑
i=1

mi ṙi .δṙi (6)

• Mathematical identity:

N∑
i=1

mi
d

dt
(ṙi .δri ) =

N∑
i=1

(mi r̈i .δri + mi ṙi .δṙi ) (7)
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Extended Hamilton's principle

• From Eq. 7, we have

−
N∑
i=1

mi r̈i .δri = −
N∑
i=1

mi
d

dt
(ṙi .δri ) + δT (8)

• Using Eq. 8 in Eq. 5

−δU + δW nc + δT =
N∑
i=1

mi
d

dt
(ṙi .δri ) (9)

• Now, we integrate Eq. 9 from t1 to t2. In these instants ri are known and,
hence δri (t1)=δri (t2) = 0

∫ t2

t1

(δT − δU + δW nc )dt =
N∑
i=1

mi [ri .δri ]
t2
t1

= 0 (10)
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Extended Hamilton's principle

• Contrary to Newtonian mechanics, the use of analytical mechanics allows
obtaining the equations of motion from the scalar quantities kinetic energy T ,
potential energy U and virtual work of the non-conservative forces δW nc ;

• As shown (and discussed in greater depth in other graduate courses), the
equations of motion are obtained by imposing∫ t2

t1

(δT − δU + δW nc )dt = 0 (11)

where δT and δU are the �rst variations of kinetic and potential energies,
respectively.

• The focus herein is not the derivation of the extended Hamilton's principle. The
objective of this course is on the practical use of this principle for obtaining
equations of motion of mechanical systems.
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Extended Hamilton's principle: application

We will �nd the equation of
motion for the problem below
sketched.

k

c

m

u(t)

p(t)

• Kinetic energy and its
variation:
T = 1

2
mu̇2 → δT = mu̇δu̇;

• Potential energy and its
variation:
U = 1

2
ku2 → δU = kuδu;

• Virtual work of the
non-conservative forces:
δW nc = (−cu̇ + p(t))δu

• Extended Hamilton's principle:∫ t2

t1

(δT − δU + δW nc )dt = 0↔

↔
∫ t2

t1

[mu̇δu̇ − (ku + cu̇ − p(t))δu]dt = 0

(12)

• Integrating Eq. 12 by parts and recalling that
δu(t1) = δu(t2) = 0, we obtain:

∫ t2

t1

(−mü − cu̇ − ku + p(t))δudt+

+ [mu̇δu]t2t1︸ ︷︷ ︸
0

= 0 (13)

• Since δu is arbitrary, Eq. 13 holds if
mü + cu̇ + ku = p(t).
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Euler-Lagrange's equation

• The kinetic energy T is function of the generalized coordinates qi and the
corresponding generalized velocities q̇i . Mathematically, T and δT read

T = T (q1, q2, . . . , qn, q̇1, q̇2 . . . , q̇n)→ δT =
n∑

i=1

(
∂T
∂qi

δqi +
∂T
∂q̇i

δq̇i

)
(14)

• On the other hand, the potential energy is function of the generalized
coordinates.

U = U(q1, q2, . . . , qn)→ δU =
n∑

i=1

∂U
∂qi

δqi (15)

• Consider that the mechanical system is loaded by Nf non-conservative forces
Fj , j = 1, 2, . . . ,Nf . The virtual work of the non-conservative forces is:

δW nc =

Nf∑
j=1

Fj .δrj =

Nf∑
j=1

Fj .
n∑

i=1

∂rj

∂qi
δqi =

n∑
i=1

 Nf∑
j=1

Fj .
∂rj

∂qi


︸ ︷︷ ︸

Qi

δqi (16)
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Euler-Lagrange's equation

• Equations 14-16 are substituted into the extended Hamilton's principle. Using
integration by parts and recalling that δqi (t1) = δqi (t2) = 0, i = 1, 2, . . . , n, we
have: ∫ t2

t1

n∑
i=1

[
−

d

dt

(
∂T
∂q̇i

)
+
∂T
∂qi
−
∂U
∂qi

+ Qi

]
δqi = 0 (17)

• Equation 17 holds if:

d

dt

(
∂T
∂q̇i

)
−
∂T
∂qi

+
∂U
∂qi

= Qi , i = 1, 2, . . . , n (18)

• Equation 18 is known as Euler-Lagrange's equation. If we de�ne the Lagrangian
as L = T − U , Eq. 18 is rewritten as:

d

dt

(
∂L
∂q̇i

)
−
∂L
∂qi

= Qi , i = 1, 2, . . . , n (19)
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Pendulum under support excitation

Obtain the equation of motion for the pendulum under support excitation. The rigid
and massless arm has length L. Vertical displacement y(t) is applied to the support

L
g

m

O
y(t) i

j

�

• Velocity of the mass:
vm = vO + ω × (m − O) =
ẏ j + θ̇k × (L sin θi − L cos θj ) =
(θ̇L cos θ)i + (ẏ + θ̇L sin θ)j ;

• The origin of the �xed referential
coincides with the hinge point O
when y(t) = 0;

• Kinetic energy: T = 1
2
mvm .vm =

1
2
m(ẏ2 + 2ẏ θ̇L sin θ + (θ̇L)2);

• Potential energy and its variation:
U = mg(y − L cos θ);

• Virtual work of the non-conservative
forces: δW nc = 0→ Qθ = 0

• Using Euler-Lagrange's equation:
mL2θ̈ + m(g + ÿ)L sin θ = 0
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Ziegler's column under follower force

Classical problem, recently
readdressed in d'Annibale &
Ferretti (2020) and in Franzini &
Mazzilli (2021). The massless bars
have length L and are connected
by means of torsional springs of
sti�ness k. A follower force p is
applied to the tip.

L

2m

O
i

j

��

m

L

p

��

k

k

• Position vectors of the masses:
r1 = L(sin θ1i + cos θ1j ) and
r2 = r1 + L(sin θ2i + cos θ2j );

• δr1 = L(cos θ1i − sin θ1j )δθ1;

• δr2 = δr1 + L(cos θ2i − sin θ2j )δθ2 =;

• Kinetic energy: T = 1
2

(2m)ṙ1.ṙ1 + 1
2
mṙ2.ṙ2

• Potential energy: U = 1
2
kθ21 + 1

2
k(θ2 − θ1)2;
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Ziegler's column under follower force

• Virtual work of the non-conservative force:

δW nc = p.δr2 =

= −p(sin θ2i + cos θ2j ).L((cos θ1δθ1 + cos θ2δθ2)i − (sin θ1δθ1 + sin θ2δθ2)j ) =

= −pL sin(θ2 − θ1)δθ1 → Qθ1 = −pL sin(θ2 − θ1),Qθ2 = 0 (20)

• After the derivatives and the application of Euler-Lagrange equation:

3mL2θ̈1 + mL2 cos(θ2 − θ1)θ̈2 + mL2 sin(θ1 − θ2)θ̇22 + 2kθ1 − kθ2 =

= pL sin(θ1 − θ2) (21)

mL2 cos(θ1 − θ2)θ̈1 + mL2θ̈2 + kθ2 − kθ1 −mL2 sin(θ1 − θ2)θ̇21 = 0 (22)
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Ziegler's column under follower force

Now, we linearize the equations of motion around a certain position (θ01 ; θ02). We
consider θ1(t) = θ01 + q1(t) and θ2(t) = θ02 + q2(t), q1(t) and q2(t) disturbances
superimposed to the point around which the mathematical model is linearized.

• θ̇1 = q̇1, θ̇2 = q̇2, θ̈1 = q̈1 and θ̈2 = q̈2;

• Using Taylor series and keeping only the �rst two terms:
sin(θ1 − θ2) = sin(θ01 − θ02) + cos(θ01 − θ02)q1 − cos(θ01 − θ02)q2 and
cos(θ1 − θ2) = cos(θ01 − θ02)− sin(θ01 − θ02)q1 + sin(θ01 − θ02)q2;

• Here, we linearize around the trivial condition (θ01 ; θ02) = (0; 0), we have
sin(θ1 − θ2) = q1 − q2 and cos(θ1 − θ2) = 1.

• Using these quantities, the linearized mathematical model is:

3mL2q̈1 + mL2q̈2 + (2k − pL)q1 − (k − pL)q2 = 0 (23)

mL2q̈1 + mL2q̈2 − kq1 + kq2 = 0 (24)

• In this problem, the linearized sti�ness matrix is no longer symmetric.
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1-dof linear oscillator

• As mentioned, the equation of motion of a 1-dof linear oscillator can be
obtained by using either the second Newton's law or concepts of analytical
mechanics (extended Hamilton principle, Euler-Lagrange's equation);

• Consider the 1-dof system of mass m, spring sti�ness k and damping constant
c. The system is forced by an external load p(t). The displacement (generalized
coordinate) is u = u(t). The equation of motion is given by:

mü + cu̇ + ku = p(t) (25)

• Equation 25 is a second-order, linear, ordinary di�erential equation. The
solution of Eq. 25 is the sum of the homogeneous solution uh with the
particular solution up . Mathematically, u = uh + up . The initial conditions
u(0) = u0 and u̇(0) = u̇0 must be imposed to the complete solution;

• De�nitions ω =
√

k
m

(undamped natural frequency), ζ = c
2mω

= c
2
√
km

(damping ratio) and ωd = ω
√
1− ζ2 (damped natural frequency).
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1-dof linear oscillator: Free vibrations

• In free vibrations, the external oscillation is null → p(t) = 0. Oscillations occur
due to non-trivial initial conditions;

• Three cases appear, depending on the value of ζ. ζ < 1 (sub-critical case) is the
focus herein, since it is more common on engineering problems (civil, mechanical
and naval engineering);

• In the sub-critical case: u(t) = ρe−ζωt cos(ωd t − θ), ρ and θ depending on the
initial conditions. Oscillations amplitudes exponentially decay with time.

• A system in free vibrations oscillates with its damped natural frequency ωd !!!!;

• If ζ << 1→ ωd ≈ ω. For example, ζ = 0.10→ ωd = 0.995ω.
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1-dof linear oscillator: Harmonically forced vibrations

• In this case p(t) = p0 cos(ω̄t) = Re{p0e iω̄t};
• In the damped case, the homogeneous solution uh → 0 when t →∞

(steady-state response). In this case only the particular solution up appears;

• Finding up . We assume u = up = Re{Ue iω̄t} → u̇ = Re{iω̄Ue iω̄t},
ü = Re{−ω̄2Ue iω̄t}. Now, we consider the complex quantities in the equations
of motion, taking the real part at the end of the derivation:

• Using the above consideration

(−mω̄2 + iω̄c + k)Ue iω̄t = p0e
iω̄t → U =

p0

(−mω̄2 + iω̄c + k)
= p0H(ω̄)

(26)

• H(ω̄) is the frequency response function. Notice that H(ω̄) and U are complex
functions.
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1-dof linear oscillator: Harmonically forced vibrations

Following, we de�ne β = ω̄
ω
. As a consequence, u reads:

u =
p0

(−mω̄2 + iω̄c + k)
e iω̄t =

p0

k

(
1

(1− β2) + i2ζβ

)
e iω̄t =

=
p0

k

(
1√

(1− β2)2 + (2ζβ)2

)
e i(ω̄t−θ̄); tan θ̄ =

2ζβ

1− β2
(27)

• The dynamic magni�cation factor D is de�ned as D = 1√
(1−β2)2+(2ζβ)2

.

Notice that p0
k

= us is response to a load equal to the amplitude of the varying

load statically applied to the structure. θ̄ is the phase lag between excitation
and displacement;

• As the external excitation is the real part of p0e iω̄t , we take the real part of Eq.
27, obtaining u = ρ̄ cos(ω̄t − θ̄) = usD cos(ω̄t − θ̄).

• If the excitation is poly-chromatic (i.e., composed of a number of harmonic
functions), we can obtain the response for each individual component and
superimpose the result. This is valid within the linear theory!.
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1-dof linear oscillator: Harmonically forced vibrations

(a) D(β). (b) θ̄(β).

(c) D(β, ζ).
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2-dof undamped linear oscillator

k1
m1

u1(t)

p1(t)

k2
m2

u2(t)

p2(t)
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2-dof undamped linear oscillator

In this case, the equations of motion are easily obtained by using Euler-Lagrange's
equation.

• Kinetic energy:

T =
1

2
m1u̇

2
1 +

1

2
m2u̇

2
2 (28)

• Potential energy:

U =
1

2
k1u

2
1 +

1

2
k2(u2 − u1)2 (29)

• Lagrangian L = T − U ;
• Virtual work of the non-conservative forces:

δWnc = p1δu1 + p2δu2 = Q1δu1 + Q2δu2 (30)
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2-dof undamped linear oscillator

Euler-Lagrange's equation:

d

dt

(
dL
du̇i

)
−
∂L
∂ui

= Qi , i = 1, 2 (31)

m1ü1 + (k1 + k2)u1 − k2u2 = p1(t) (32)

m2ü2 − k2u1 + k2u2 = p2(t) (33)

We can de�ne vectors U = {u1 u2}T and P(t) = {p1(t) p2(t)}T . Using these
de�nitions, Eqs. 32 and 33 can be written in the matrix form as

MÜ + KU = P(t) (34)

M and K being the mass matrix and the sti�ness matrix, respectively. If linear
damping is considered, the term CU̇ is included on the left-hand side of Eq. 34.
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Modal analysis

• Any N-dof undamped linear oscillator is governed by the general Eq. 34. Modal
analysis deals with the unforced response of this system (P(t) = 0). In this
scenario:

Ü + AU = 0 (35)

where A = M−1K .

• A general solution for Eq. 35 is U = φe iωt . Substituting this expression into
Eq. 35, we have:

(A− ω2I )φe iωt = 0 (36)

• The existence of non-trivial solutions of Eq. 36 implies that det(A− ω2I ) = 0.
Hence, the eigenvalues of A are the natural frequencies ω squared. The
eigenvectors φ de�ne the natural modes, associated with the �shape� of the
response;

• The modal vectors φ play a key role in dynamics. It can be shown that they can
be used for decoupling a system of N di�erential equations into N uncoupled
oscillators.
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State-space representation

• The representation of the dynamics on the con�guration space does not allow
assessing the velocities involved in the dynamics;

• Hence, the representation in the state-space appears as an interesting approach;

• As a �rst example, consider the forced 1-dof linear oscillator
ü + 2ζωu̇ + ω2u = p(t)/m. We de�ne can de�ne the state-variables as x1 = u
and x2 = u̇.

• The original equation is rewritten as:

ẋ1 = x2 (37)

ẋ2 = −ω2x1 − 2ζωx2 + p(t)/m (38)

• De�ning x = {x1 x2}T , Eqs. 37 and 38 can be rewritten in matrix form as:

ẋ =

[
0 1
−ω2 −2ζω

]{
x1
x2

}
+

{
0

p(t)/m

}
= Ax + b (39)

• In a more general form ẋ = f (x ,µ, t), µ being a vector with parameters of the
mathematical model (mass, damping, sti�ness...). A system with this form is
said to be non-autonomous, since it explicitly depends on time. An autonomous
system has no explicit dependence on time and, hence, is given by the general
form ẋ = f (x ,µ).
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State-space representation

• The state-space representation transforms an ordinary di�erential equation of
second order into a system of �rst-order di�erential equations;

• For linear undamped systems with N degrees of freedom, the general equation of
motion is given by Eq. 34. If we de�ne x = {u1 u2 . . . uN u̇1 u̇2 . . . u̇N}T ,
the corresponding �rst-order system of di�erential equations is:

ẋ =

[
0N×N IN×N

−M−1K 0N×N

]
x1
x2
...

x2N

+

{
0N×1
P(t)

}
= Ax + b (40)

• Notice that the damping matrix C can be easily included in Eq. 40.

• Notice also that in non-linear systems, M, C or K depend on the state-vector x ;

• For non-autonomous systems, the dimension of the state-space is 2N. On the
other hand, this dimension is 2N + 1 for non-autonomous systems;

• It is worth mentioning that we can transform a non-autonomous system into an
autonomous one. For this, we can include the state-variable xN+1 = t and its
derivative as ẋN+1 = 1.
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Example: van der Pol equation

• Consider the van der Pol equation ü + ε(u2 − 1)u̇ + u = 0

• De�ning x1 = u and x2 = u̇, we have:

ẋ1 = x2 (41)

ẋ2 = −x1 − ε(x21 − 1)x2 (42)

• The solution of the van der Pol equation is a curve (orbit) in the phase-plane
(x1(t); x2(t)). The tangent vector to this curve is
(ẋ1; ẋ2) = (x2;−x1 − ε(x21 − 1)x2)
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Example: van der Pol equation

(a) u(t) = x1(t). (b) x2(t)× x1(t).

(c) x2(t)× x1(t).
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