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Mixed integer programming (MIP) formulations for scheduling problems can be classified based on the
decision variables upon which they rely. In this paper, four different MIP formulations based on four dif-
ferent types of decision variables are presented for various parallel machine scheduling problems. The
goal of this research is to identify promising optimization formulation paradigms that can subsequently
be used to either (1) solve larger practical scheduling problems of interest to optimality and/or (2) be
used to establish tighter lower solution bounds for those under study. We present the computational
results and discuss formulation efficacy for total weighted completion time and maximum completion
time problems for the identical parallel machine case.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The field of deterministic scheduling has received a great deal of
research attention in the last 40 years. Scheduling research has
been motivated by questions that arise in production planning,
telecommunications, logistics, and computer control, to name only
a few application domains. Manufacturing and service industries
use many different solution approaches to schedule and/or se-
quence activities. As an organization’s failure to meet customer
due date/delivery requirements can result in a significant loss of
goodwill, practitioners and researchers have investigated numer-
ous types of scheduling problems in the hopes of producing opti-
mal or near-optimal solution methodologies. Indeed, the field of
machine scheduling has been and will continue to be a rich and
promising field for research in the future.

A machine can be thought of as a production resource on which
activities (jobs) are sequenced and processed. Often, various
sequencing and/or processing restrictions exist against which deci-
sion makers try to minimize some performance measure(s) (objec-
tive function(s)) of interest. While many different types and
classes of scheduling problems exist, non-preemptive scheduling
of multiple machines operating in parallel (‘‘parallel machines”) is
the focus of this paper. The non-preemptive, parallel machine sched-
uling problem is to sequence jobs without interrupting (preempt-
ing) job processing at any time across all available machines.
These machines may or may not be identical to one another. Parallel
machine job processing environments can be described as identical
ll rights reserved.
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machines operating in parallel (identical machine environment:
‘‘Pm”), machines operating in parallel at different (albeit consistent)
speeds/processing rates (non-identical machine environment:
‘‘Qm”), and machines operating in parallel with job-dependent pro-
cessing speeds (unrelated machine environment: ‘‘Rm”).

These three parallel machine processing environments can be
investigated over a wide range of objective functions, each combi-
nation of which results in a different scheduling problem. For
example, an important objective function in the scheduling litera-
ture is to minimize total weighted completion time for all jobs:P

jwjCj, where weight wj describes job j’s priority or importance
and Cj represents job j’s completion time. Job due date-based per-
formance measures, such as the scheduling problem with the
objective function of minimax type (e.g. maximum lateness: min-
Lmax = min[maxj (Cj � dj)]) and minsum type (e.g. total weighted
tardiness: min

P
jwjTj ¼min

P
jwj maxðCj � dj;0ÞÞ are also of re-

search and practical importance.
The scheduling literature contains a wide array of heuristic

solution procedures for analyzing production scheduling problems,
as the majority of practically motivated production scheduling
problems are NP hard. However, often a researcher’s first key step
prior to developing an effective heuristic is to develop a mathemat-
ical programming formulation of the scheduling problem under
study. This is often done to understand the underlying structure
of the problem (if any exists) and as a means to evaluate the effi-
cacy of subsequently developed heuristics by comparing heuristic
solutions to know optimal solutions for small, solvable problem
sets.

Although mathematical programming models have been devel-
oped by a number of researchers, they typically do not perform
very well for practically motivated problem instances due to model
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formulation and/or computational difficulties. However, recent
computational performance advances have become available due
to increasingly powerful microprocessors becoming available to
the public. In addition, researchers have begun to exploit the
polyhedral properties of some optimization models, including
production scheduling models, in order to develop more efficient,
effective combinatorial optimization solution techniques.

Optimization formulations and relaxed formulations are proven
methods for producing strong lower bounds for many types of
scheduling problems. These bounds may eventually lead to the
development of an effective solution strategy or some other type
of algorithmic approach for solving production scheduling prob-
lems. However, many different types of optimization model formu-
lation paradigms exist, each of which may potentially have its own
strengths and weaknesses in terms of the types of scheduling prob-
lems that lend themselves to analysis using a given paradigm.

Although a number of machine scheduling survey papers have
appeared in literature, only a few of them focus on optimization
model formulation paradigms. First, Blazewicz, Dror, and Weglarz
(1991) compile a large number of mathematical formulations for
and provide the complexity of various production scheduling prob-
lems. Another comprehensive survey of mixed integer program-
ming (MIP) formulations is given by Queyranne and Schulz
(1994), who also describe the polyhedral analysis of some single
machine scheduling problem formulations. Finally, Keha, Khowa
la, and Fowler (2009) present a comparative analysis of the compu-
tational performance for the single machine formulations in
Queyranne and Schulz (1994).

As no existing research is evident that investigates parallel ma-
chine optimization model formulation paradigms, we compare and
contrast mathematical programming models for parallel machine
scheduling problems for important performance measures. Clearly,
successful investigation into various parallel machine environ-
ments can be easily reduced to the single machine environment.
The research goal is to identify promising optimization formulation
paradigms for various types of parallel machine and objective func-
tion environments that can subsequently be used to either (1)
solve larger practical scheduling problems of interest to optimality
and/or (2) be used to establish tighter lower solution bounds for
large scheduling problems under study.
2. Production scheduling optimization modeling paradigms

Scheduling problem MIP formulations can be classified or de-
scribed based on the decision variables upon which they rely. A
number of different types of decision variables exist with which
researchers previously have modeled and optimized production
scheduling problems—these are described in detail in this section.

2.1. Job completion time variables

Job completion time is a key metric in assessing the quality of a
proposed production schedule. In fact, a vast majority of schedul-
ing problem performance measures is derived from and/or is a
function of job completion times. Completion time variables,
which are sometimes referred to as ‘‘natural date variables”
(Queyranne & Schulz, 1994), were used by Balas (1985) in his dis-
junctive formulation of a well-known job shop scheduling prob-
lem. Later, the initial formulation of Balas (1985) was also
studied by Queyranne and Wang (1991) and Queyranne (1993).

2.2. Assignment and positional date variables

MIP formulations containing assignment and positional date
variables specify which job is scheduled next and at what time this
job will start processing. For example, in a single machine schedul-
ing problem, n jobs are assigned to n available positions. Lasserre
and Queyranne (1992) consider a single machine problem as a sys-
tem which can be controlled at discrete instants in time using a
combination of discrete and continuous controls. Further, the prob-
lem of minimizing the total number of tardy jobs on a single ma-
chine was studied by Dauzère-Pérès (1997) and Dauzère-Pérès
and Sevaux (2003) using assignment and positional date variables.

2.3. Linear ordering variables

The linear ordering of jobs can be thought of as the set of all se-
quence permutations (solutions). In this manner, a binary linear
ordering variable is defined—it is typically equal to one if a given job
succeeds another job, thereby describing precedence relationships
among all jobs. Linear ordering variables are also referred to as
‘‘sequencing variables” (Pinedo, 2002). Dyer and Wolsey (1990) use
linear ordering in combination with starting time variables in their
single machine problem study with release dates. In addition to Dyer
and Wolsey (1990) developing several polyhedral approaches, these
variables also are studied by Blazewicz et al. (1991), Nemhauser and
Savelsbergh (1992), and Chudak and Hochbaum (1999).

2.4. Time indexed variables

Time indexed variables, which typically assign jobs to time peri-
ods, are decision variables indexed by both job and time dimen-
sions that have been used in a variety of machine scheduling
problems. Time indexed variables for machine scheduling were
first introduced by Sousa and Wolsey (1992) who study a single
machine case. Later, different problems in a variety of single ma-
chine environments are studied by Blazewicz et al. (1991), Sousa
and Wolsey (1992), Chan, Kaminsky, Muriel, and Simchi-Levi
(1995), Van den Akker, Hurkens, and Savelsbergh (2000), Van
den Akker, Van Hoesel, and Savelsbergh (1999), and Šoric (2000).

2.5. Network variables

Network or ‘‘traveling salesman variables” (Queyranne & Schulz,
1994) initially were used to model the single machine scheduling
problem with sequence dependent processing times, as it was
shown to resemble a time-dependent traveling salesman problem
(TSP) (Houck & Vemuganti, 1976). Precedence relationships for the
same problem studied by Queyranne and Schulz (1994) afford poly-
hedral analysis of the model. Blazewicz et al. (1991) give a network
formulation based on Miller, Tucker, and Zemlin (1960) for single
machine scheduling problems, also extending the formulation to
consider job release dates/times. Cakici and Mason (2007) present
a network-based MIP formulation for parallel machine scheduling
in the presence of auxiliary resource constraints.
3. Optimization models

This section contains discrete optimization formulations for
parallel machine scheduling problems using four different model-
ing (decision variable) paradigms. Specifically, the decision vari-
ables considered are time indexed variables, network variables,
and assignment and positional date variables. Job completion time
variables are too simplistic to consider for the parallel machine
environment case, especially considering their known poor perfor-
mance in single machine environments. For this reason, this ap-
proach is not investigated in this paper.

The overall research objective of this paper is to determine if
one or more modeling paradigms lend themselves to improved
tractability for different parallel machine scheduling problems of



Decision
variables

Cj Completion time of job j; non-negative; used in
minimizing total weighted completion time:P

j2JwjCj

Lj Lateness of job Lj = Cj � dj; used in minimizing
maximum lateness: Lmax = maxj (Cj � dj)

Tj Tardiness of job Tj = max{0,Cj � dj}; used in
minimizing total weighted tardiness:

P
j2JwjTj

Uj = 1 if job jis tardy; otherwise, = 0; used in minimizing
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interest. As the problems under study are all NP hard, improved
model tractability can help researchers evaluate the performance
of proposed heuristics for larger problem instances and/or provide
tighter lower bounds for parallel machine scheduling problems of
interest. In order to increase our computational efficacy, we also
extend polyhedral cut schemes from the single and identical paral-
lel machine scheduling literature to both the non-identical (Qm)
and the unrelated parallel machine (Rm) environments in this
paper.

3.1. Assumptions and notation

In all parallel machine scheduling problem cases, we assume n
jobs are to be processed without preemption. We further assume
that all parameters are known and given in integer values. The fol-
lowing notation describes the sets, parameters, and variables used
in the mathematical formulations that follow (note: not all nota-
tion is required in each model):

Sets
J set of jobs, indexed j = 1, . . . ,n
l set of machines, indexed i = 1, . . . ,m
s set of time periods, indexed t = 1, . . . , l
Parameters
dj due date of job j
rj release date of job j
wj priority or weight of job j
vi speed of machine i; in the case of job-dependent machine

speed, mij denotes the speed of machine i for job j
pi

j processing time of job j on machine i, defined as pj for the
Pm environment, pj

v i
for the Qm case, and pj

mij
for the Rm

environment
l upper bound for makespan (total time required to process

all jobs), defined for different machine environments as
follows
Identical parallel machines ðPmÞ : l P
X

j

pj þmax
j
frjg

Non-identical parallel machines ðQmÞ:

l P max
i

P
jpj

v i
þmax

j
frjg

� �

Unrelated parallel machines ðRmÞ : l P max
i

X
j

pj

v ij
þmax

j
frjg

( )

These three inequalities tighten the formulations which rely on
knowledge of the completion time of the last job on a machine
(i.e., upper bound of makespan). Similarly, we develop three differ-
ent methods for bounding our penalty parameter:

M a large number (i.e., ‘‘big-M”)
Pm: M P

P
jpj þmaxjfrjg

Qm: Mi can be defined for each machine i as

Mi P
P

j
pj

v i
þmaxjfrjg. However, in order to promote tigh-

ter model formulations, we define parameter

Mij ¼ Mi �
pj

v i
þ rj

� �
for each job j and machine i.

Rm: Mi can be defined for each machine i as
Mi P

P
j

pj

v ij
þmaxjfrjg. Further, parameter Mij for each job j and

machine i can be defined as follows: Mij ¼ Mi �
pj

v ij
þ rj

� �
3.2. Time indexed model for scheduling parallel machines (M1)

In a time indexed model formulation, a time horizon is discretized
into time periods 1, . . . , l, where l is an upper bound of the last job’s
completion time (i.e., makespan). Let binary variable vt

ij ¼ 1 if job
j 2 J starts processing on machine i 2 lat time t 2 s; otherwise,vt

ij ¼ 0.

3.2.1. Model M1 constraints
Constraint set (1) ensures that each job starts processing on only

one machine at only one point in time, while constraint set (2) allows
at most one job to be processed at any time on any machine.

X
i2l

Xl�1

t¼0

vt
ij ¼ 1 j 2 J ð1Þ

X
j2J

Xt�1

h¼max 0;t�pi
j

� �vh
ij 6 1 i 2 l; t ¼ 1; . . . ; l ð2Þ

Job j’s completion time Cj is given by constraint set (3):

Cj P
X
i2l

Xl�1

t¼0

t þ pi
j

� �
vt

ij j 2 J ð3Þ

We previously define job processing time pi
j so as to take care of all

three parallel machine environments. In model M1, pi
j denotes the

processing time of job j on machine i. If identical parallel machines
are present (Pm), then all pi

j parameters are equal for each machine
and every job. In the Qm environment, all pi

j parameters are deter-
mined by machine speed vi. Finally, pi

j values are a function of mij

(i.e., both machine speed and job) in the Rm environment.

3.2.2. Model M1 for different objective functions

Total weighted completion time: min
P

j2JwjCj, subject to (1)–(3)
Total weighted tardiness: min

P
j2JwjTj, subject to (1)–(4):

total number of tardy jobs:
P

j2JUj
Tj P Cj � dj j 2 J ð4Þ
Maximum lateness: minLmax, subject to (1)–(3) and (5):
Lmax P Cj � dj j 2 J ð5Þ
Total number of tardy jobs: min
P

i2l
P

j2J

Pl�1
t¼0

max½0;t�djþpj �
max½1;t�djþpj �

vt
ij

subject to (1) and (2).
3.2.3. Incorporating ready times in model M1
It should be noted that job release dates can be incorporated

into model M1, regardless of the objective function of interest, by
adding the following constraint set:
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X
i2l

Xrj�1

t¼0

vt
ij ¼ 0 j 2 J ð6Þ
3.3. Network model for scheduling parallel machines (M2)

Network-based model formulations have proven quite useful
for modeling a great variety of problems. While the network model
for the single machine scheduling problem can be regarded as a
TSP, parallel machine scheduling problems relate to the capaci-
tated vehicle routing problem (CVRP) when (1) the jobs to be
scheduled are modeled as customers (nodes) and (2) the machines
represent the vehicles being routed. In this regard, the capacity of
each vehicle can be a surrogate measure for an upper bound on the
completion time of the last job processed on each machine. Each
‘‘route” defines a machine’s schedule, with a dummy node being
added to designate the starting and ending node of each vehicle’s
route (machine’s sequence). As the dummy job is scheduled twice
on the machine (i.e., at the head and tail of the job sequence), its
processing time is set to 0. Further, employing network formula-
tions for machine scheduling problems allows for taking advantage
of recent research advances by adding polyhedral cuts to the model
originally derived for the TSP to improve model tractability.

In order to develop a network model for the general parallel
machine scheduling problem, we extend the formulation of Cakici
and Mason (2007) to the Qm and Rm environments. Let binary var-
iable xi

ij ¼ 1 if job i is processed immediately before job j on ma-
chine i; otherwise, xi

ij ¼ 0.

3.3.1. Model M2 constraints
Constraint sets (8) and (9) ensure that at most one job is sched-

uled just before and after dummy job 0, respectively.X
i2l

xi
i0 6 1 i 2 J : i – 0 ð7Þ

X
i2l

xi
0j 6 1 j 2 J : j – 0 ð8Þ

Constraint sets (10) and (11) guarantee that all jobs are scheduled
on a machine.X
i2J

X
i2l

xi
ij ¼ 1 j 2 J : j – 0; i – j ð9Þ

X
j2J

X
i2l

xi
ij ¼ 1 i 2 J : j – 0; i – j ð10Þ

Constraint set (12) ensures that each job, except the dummy job,
has exactly one predecessor and one successor, thereby imposing
flow continuity and connectivity at every node for each tour.X
i2J:i–j

xi
ij �

X
i2J:i–j

xi
ji ¼ 0 j 2 J : j – 0; i 2 l ð11Þ

Constraint sets (8)–(12) are the degree constraints presented in
most node-based network formulations prior to the specification
of sub-tour elimination constraints.

The bookkeeping constraint sets that calculate job completion
times and eliminate any possibility of sub-tours can be constructed
based on sub-tour elimination constraints developed for the CVRP.
The following sub-tour elimination constraint set is based on con-
straints proposed by Kulkarni and Bhave (1985) (later corrected by
Kara, Laporte, & Bektas (2004)) which are extensions of the original
TSP sub-tour elimination constraints formulated by Miller et al.
(1960):

Ci�CjþðM� rjÞxi
ij6M� rjþpi

j

� �
8i2 J;8j2 J : j – 0; i– j; i2l

ð12Þ
Note that this sub-tour elimination constraint set determines job
completion times on each machine.

3.3.2. Model M2 for different objective functions

Total weighted completion time: min
P

j2JwjCj, subject to (7)–(12)
Total weighted tardiness: min

P
j2JwjTj, subject to (4), and (7)–

(12)
Maximum lateness: minLmax, subject to (5), and (7)–(12)
Total number of tardy jobs: min

P
j2JUj, subject to (7)–(13):
Cj 6 dj þMUj j 2 J ð13Þ
3.3.3. Valid inequalities for model M2
In order to improve model tractability, the following constraint

sets can be added to the network formulation model M2 for all
three parallel machine environments:

Ci P riþ
X
j2J

pi
iþmax 0;rjþpi

j� ri

� �� �
xi

ji j2 J : j – 0; i– j; i2l ð14Þ

Ci6M�
X
j2J

X
i2l

pi
jx

i
ij i2 J : i– 0; i– j ð15Þ
3.4. Assignment and positional date model for scheduling parallel
machines (M3)

In an assignment and positional date model, decision variables
are defined based on the notion that each machine has a fixed
number of positions or slots into which jobs can be assigned. These
positions by construction specify a job’s relative position to all
other jobs processed on the same machine and therefore, the job
sequence on the machine. Let binary variables ui

j‘ ¼ 1 if job j is as-
signed to position ‘ on machine i; otherwise, ui

j‘ ¼ 0. Additionally,
let non-negative positional date variable ci

‘ denote the completion
time of the job at position ‘ on machine i.

3.4.1. Model M3 constraints
Constraint set (16) ensures that all jobs are assigned to exactly

one position on only one machine.X
i2l

X
‘2J

ui
j‘ ¼ 1 j 2 J ð16Þ

Constraint set (17) guarantees that each position on every machine
contains at most one job.X
j2J

ui
j‘ 6 1 ‘ 2 J; i 2 l ð17Þ

The completion time of the job at position ‘ on each machine is
determined by constraint sets (18) and (19).

ci
1 P

X
j2J

pi
ju

i
j1 i 2 l ð18Þ

ci
‘ P ci

‘�1 þ
X
j2J

pi
ju

i
j‘ i 2 l; ‘ 2 J : ‘ P 2 ð19Þ

Finally, the completion time of job j (regardless of its position) is gi-
ven by constraint set (20).

Cj P ci
‘ �M 1� ui

j‘

� �
j 2 J; ‘ 2 J; i 2 l ð20Þ

The above constraint sets are extended from the original single
machine formulation of Lasserre and Queyranne (1992). Queyr-
anne and Schulz (1994) later studied the polyhedral structure
of the single machine formulation, while Keha et al. (2009) pro-
pose two additional valid inequalities for the single machine
case.
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3.4.2. Model M3 for different objective functions

Total weighted completion time: min
P

j2JwjCj, subject to (16)–
(20)
Total weighted tardiness: min

P
j2JwjTj, subject to (4), and (16)–

(20)
Maximum lateness: minLmax, subject to (5), and (16)–(20)
Total number of tardy jobs: min

P
j2JUj, subject to (13), and (16)–

(20)
3.4.3. Incorporating ready times in model M3
Job release dates are incorporated into model M3 by adding the

following constraint set:

ci
‘ P

X
j2J

pi
j þ rj

� �
ui

j‘ i 2 l; ‘ 2 J ð21Þ
3.5. Linear ordering model for scheduling parallel machines (M4)

The linear ordering model is based on binary linear ordering
variable dij which equals 1 whenever job i precedes job j; other-
wise, dij = 0. Note that job i is not necessarily positioned immedi-
ately before job j when dij = 1. Additionally, let binary variable
zii = 1 if job i is positioned on machine i (otherwise, zii = 0) and bin-
ary variable yij = 1 if jobs i and j are not scheduled on the same ma-
chine (otherwise, yij = 0).

3.5.1. Model M4 constraints
Constraint set (22) ensures that either job i is positioned before

job j or vice versa, provided the two jobs are scheduled on the same
machine.

dij þ dji þ yij ¼ 1 i 2 J; j 2 J; i < j ð22Þ

Constraint set (23) represents the transitivity constraints that en-
sure a linear order between three jobs.

dij þ djk þ dki 6 2 i 2 J; j 2 J; k 2 J; i < j < k ð23Þ

Next, constraint set (24) properly calculates variable yij.

zii þ zji þ yij 6 2 i 2 J; j 2 J; i < j; i 2 l ð24Þ

Constraint (25) ensures that each job is positioned on a machine.X
i

zii ¼ 1 i 2 J ð25Þ

Finally, job completion time (regardless of its position) is given by
constraint sets (26) and (27).

Cj P pi
jzji j 2 J; i 2 l ð26Þ

Cj P Ci þ pi
jðdij þ zii þ zji � 2Þ�Mð1� dijÞ i 2 J; j 2 J; i 2 l ð27Þ
3.5.2. Model M4 for different objective functions

Total weighted completion time: min
P

j2JwjCj, subject to (22)–
(27)
Total weighted tardiness: min

P
j2JwjTj, subject to (4), and (22)–

(27)
Maximum lateness: minLmax, subject to (5), and (22)–(27)
Total number of tardy jobs: min

P
j2JUj, subject to (13), and (22)–

(27)
3.5.3. Incorporating ready times in model M4
Job release dates are incorporated into model M4 by adding the

following constraint set:

Cj P rj þ pi
jzji j 2 J; i 2 l ð28Þ
4. Experimental study—identical parallel machine environment

The goal of this paper is to identify promising optimization for-
mulation paradigms for various types of parallel machine and objec-
tive function environments that can subsequently be used to either
(1) solve larger practical scheduling problems of interest to optimal-
ity and/or (2) be used to establish tighter lower solution bounds for
large scheduling problems under study. Towards this goal, we now
focus on the two and three identical parallel machine scheduling
problems. We generate a variety of test problems using appropri-
ately specified probability distributions to assess the performance
of the proposed MIP modeling paradigms for cases with and without
job ready time for both the total weighted completion time
P2jrjj

P
wjCj; P2k

P
wjCj; P3jrjj

P
wjCj; P3k

P
wjCj

� �
and make-

span objective functions ðP2jrjjC max; P2kC max; P3jrjjC max;
P3kC maxÞ individually.

In the experimental cases to be investigated, job processing
time pj is sampled from a discrete uniform (DU) distribution over
the range [1,pmax] where pmax 2 {20,100}. Each job’s weight
wj � DU[1,10] and job release date rj � DU 0; a2

P
pj

� 	
with

a 2 {0,1}. We investigate n 2 {20,50,100} jobs in each environment.
Finally, 10 replications are generated and analyzed for each of the
2(1)2(3) = 12 factor combinations. Therefore, a total of 12(10) =
120 problem instances are generated for each two and three identi-
cal machine environments. Each of the MIP modeling paradigms are
modeled in AMPL and analyzed for a maximum of 1 h by CPLEX
v10.1’s MIP solver using default CPLEX settings on a Windows-based
PC with a 3.4 GHz microprocessor and 2 GB of RAM.
4.1. Measures of MIP model efficacy

We use a number of measures to assess each MIP modeling par-
adigm’s efficacy. These measures include (1) the number of test in-
stances solved to optimality within the 1 h time limit, (2) the
average solution time for these optimally solved instances, (3)
the objective function value of each formulation paradigm’s linear
programming (LP) relaxation, (4) the number of branch and bound
nodes analyzed within 1 h, and (5) the average test instance opti-
mality gap for the test instances which could not be solved in
1 h. These performance measures are also studied by Keha et al.
(2009) in their single machine scheduling problem experiments.

We expect each formulation paradigm to produce different lev-
els of solution quality as n, m and pmax increase. This should be
especially true for the number of jobs n, as this adds complexity
to all formulation paradigms. Further, it is expected that the differ-
ent formulation paradigms will also experience different perfor-
mance results when job ready/release dates are added. As a point
of clarification, all experiments conducted with model M2 include
the addition of the valid inequalities.
4.2. Experimental results

4.2.1. Total weighted completion time results
For two identical machines case, the experimental results ob-

tained for the total weighted completion time (TWC) experiments
both with and without release dates are given in Tables 1 and 2,
respectively. Observing these output tables, the following com-
ments and results become evident. Model M1 is the only formula-
tion paradigm that CPLEX is capable of producing optimal solutions
in the TWC experiments with two identical machines case—CPLEX
produces feasible solutions for other formulation paradigms at
best. The main disadvantage with model M1 is that its LP relaxa-
tion is much harder to solve as compared to the other models when
the processing time increases. For example, model M1 is not able
to solve the LP relaxation for the test cases with 100 jobs and a



Table 1
Results for parallel machine total weighted completion time P2jrj j

P
wjCj .

Formulation N # of test cases solved to optimality
(avg. solution time in seconds)

# of test cases with some integer
solution (avg optimality gap)

Avg. # of nodes

pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100]

Time indexed variables (M1) 20 10 (1) 6 (237) 0 0 1 3346
Network variables (M2) 0 0 10 (7.13%) 10 (8.29%) 278,106 245,989
Assignment and positional date variables (M3) 0 0 10 (94.77%) 10 (95.92%) 467,793 492,569
Linear ordering variables (M4) 0 0 10 (6.41%) 10 (8.7%) 1,294,355 1,364,661

Time indexed variables (M1) 50 0 0 10 (0.03%) 10 (15.05%) 15,337 568
Network variables (M2) 0 0 10 (10.25%) 10 (10.10%) 28,972 26,047
Assignment and positional date variables (M3) 0 0 10 (100.00%) 10 (100.00%) 44,687 48,630
Linear ordering variables (M4) 0 0 10 (9.63%) 10 (9.51%) 12,188 11,772

Time indexed variables (M1) 100 0 0 10 (0.19%) 0 6194 –
Network variables (M2) 0 0 10 (21.27%) 10 (17.74%) 5033 6006
Assignment and positional date variables (M3) 0 0 10 (100.00%) 10 (100.00%) 110 88
Linear ordering variables (M4) 0 0 0 0 37 63

Table 2
Results for parallel machine total weighted completion time P2k

P
wjCj .

Formulation N # of test cases solved to optimality
(avg solution time in seconds)

# of test cases with some integer
solution (avg optimality gap)

Avg # of nodes

pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100]

Time indexed variables (M1) 20 10 (1) 10 (38) 0 0 0 0
Network variables (M2) 0 0 10 (68.82%) 10 (68.68%) 243,337 240,275
Assignment and positional date variables (M3) 0 0 10 (94.77%) 10 (95.92%) 1,226,793 1,158,985
Linear ordering variables (M4) 0 0 10 (70.18%) 10 (69.72%) 413,909 527,433

Time indexed variables (M1) 50 10 (42) 9 (2173) 0 1 (8.68%) 0 0
Network variables (M2) 0 0 10 (89.05%) 10 (90.82%) 30,711 21,097
Assignment and positional date variables (M3) 0 0 10 (100.00%) 10 (100.00%) 89,133 84,048
Linear ordering variables (M4) 0 0 3 (89.30%) 2 (89.90%) 6374 6789

Time indexed variables (M1) 100 10 (689) 0 0 0 2 –
Network variables (M2) 0 0 10 (95.35%) 9 (96.28%) 1696 763
Assignment and positional date variables (M3) 0 0 0 0 157 165
Linear ordering variables (M4) 0 0 0 0 56 36
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maximum processing time of 100 units. However, M1 yields the
best lower bounds among competing formulation paradigms when
it can solve the LP relaxation. In terms of the number of branch and
bound nodes explored, model M1 explores the least number of
nodes in all cases. When job release dates are not present (Table
2), M1 produces a greater number of optimal solutions than in
the cases with non-zero release dates. Even in the presence of re-
lease date, model M1 still produces the best lower bound estimates
among all the competing models.

As model M2’s valid inequalities are formulated based on job
release dates, model M2 produces much smaller optimality gaps
(i.e., better lower bound estimates) in the cases where job release
dates exist (Table 1). In the n = 100 case with job release dates,
model M2 produces the best lower bounds of all competing formu-
lations. In addition, the LP relaxation of model M2 is more tracta-
ble/more readily solved than the other formulations. M2 is the
only formulation that CPLEX is able to produce a lower bound for
all test instances. Although models M2 and M4 produce similar
lower bounds in cases where CPLEX produces a feasible solution
for M4, model M2 explores less branch and bound nodes than
M4 in the smaller number of jobs problem instances.

While model M3 is able to produce a lower bound estimate in
most experimental instances, its associated optimality gap is sig-
nificantly higher than the other competing formulation paradigms.
Although model M3 explores more branch and bound nodes when
compared to the other models when the number of jobs is small
and job release dates are not present, it does not appear to be a
promising formulation strategy for the TWC problems under study
with the current form.
Finally, although model M4 performs comparably to model M2,
CPLEX is not able to produce feasible solutions for all tests cases
when the number of jobs is increased. Model M4 explores more
branch and bound nodes than other formulations when the num-
ber of jobs is small and release dates are present. However, when
n is increased, the number of nodes explored decreases dramati-
cally. When release dates are added, model M4 produces slightly
better lower bounds than does model M2. However, CPLEX does
not produce any feasible solution for M4 when the number of jobs
increases.

For three identical machines case, the experimental results ob-
tained for the total weighted completion time (TWC) experiments
both with and without release dates are given in Tables 3 and 4,
respectively. The overall performance of the models with three ma-
chine case is superior to the two-machine case. Model M1 and M4
are the formulation paradigms capable of producing optimal solu-
tions in the TWC experiments in three machines case. In compare
to the machine environment with two identical machines case, M1
produces more optimal solutions in the case of three machines
environment for both zero and non-zero release dates. However,
M1 faces the similar difficulties when it comes to increasing n
and pmax. Notice that M1 is still not able to solve LP relations in
the cases n = 100 and pmax = 100 and explores the least number
of branch and bound nodes in 1 h time limit.

In three identical machines case, the performance of model M2
for n = 20 and n = 50 is superior to the case with two machines as it
produces better lower bounds. CPLEX is able to produce a feasible
solution for model M2 and M3 in all machine environment cases as
well. In three identical machines case, comparing M2 and M3 in



Table 3
Results for parallel machine total weighted completion time P3jrjj

P
wjCj .

Formulation N # of test cases solved to optimality
(avg solution time in seconds)

# of test cases with some integer
solution (avg optimality gap)

Avg # of nodes

pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100]

Time indexed variables (M1) 20 10 (1) 10 (24) 0 0 4 9
Network variables (M2) 0 0 10 (5.73%) 10 (7.14%) 87,631 87,247
Assignment and positional date variables (M3) 0 0 10 (91.35%) 10 (92.85%) 731,691 627,821
Linear ordering variables (M4) 1 (3284) 0 9 (1.15%) 10 (1.64%) 1,012,942 1,169,024

Time indexed variables (M1) 50 10 (6) 2 (128) 0 0 0 0
Network variables (M2) 0 0 10 (5.31%) 10 (4.60%) 11,821 8787
Assignment and positional date variables (M3) 0 0 10 (100.00%) 10 (100.00%) 39,009 46,178
Linear ordering variables (M4) 0 0 10 (1.85%) 10 (2.14%) 39,976 42,117

Time indexed variables (M1) 100 9 (381) 0 1 (0.01%) 0 736 –
Network variables (M2) 0 0 10 (45.16%) 10 (49.48%) 861 879
Assignment and positional date variables (M3) 0 0 10 (100.00%) 10 (100.00%) 24 38
Linear ordering variables (M4) 0 0 1 (7.00%) 3 (11.14%) 145 748

Table 4
Results for parallel machine total weighted completion time P3k

P
wjCj .

Formulation N # of test cases solved to optimality
(avg solution time in seconds)

# of test cases with some integer
solution (avg optimality gap)

Avg # of nodes

pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100]

Time indexed variables (M1) 20 10 (1) 10 (34) 0 0 0 0
Network variables (M2) 0 0 10 (71.94%) 10 (72.85%) 147,734 150,730
Assignment and positional date variables (M3) 0 0 10 (99.18%) 10 (96.48%) 1,487,495 1,491,230
Linear ordering variables (M4) 0 0 10 (59.05%) 10 (58.71%) 583,099 797,847

Time indexed variables (M1) 50 10 (43) 3 (1267) 0 0 0 0
Network variables (M2) 0 0 10 (91.37%) 10 (93.05%) 11,592 10,010
Assignment and positional date variables (M3) 0 0 10 (100.00%) 10 (100.00%) 108,129 112,171
Linear ordering variables (M4) 0 0 10 (84.61%) 10 (83.61%) 10,870 18,974

Time indexed variables (M1) 100 10 (707) 0 0 0 2 –
Network variables (M2) 0 0 8 (96.45%) 9 (96.83%) 283 33
Assignment and positional date variables (M3) 0 0 0 0 108 115
Linear ordering variables (M4) 0 0 0 0 0 2
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terms of optimality gaps, number of nodes explored and the value
of initial LP relaxation quality yields similar results as in two iden-
tical machines case. Among other formulation paradigms, model
M4 is the one that begins to give the best increased performance
results when the number of machines is increased to three. In three
identical machines case with non-zero release dates, it gives the
best lower bounds in the case n = 50, 100 and pmax = 100.

4.2.2. Makespan results
For two identical machines case, the experimental results ob-

tained for the makespan experiments both with and without release
Table 5
Results for parallel machine maximum completion time P2jrjjCmax.

Formulation N # of test cases solved to opti
(avg solution time in seconds

pj � U[1,20] pj � U[1,1

Time indexed variables (M1) 20 10 (29) 2 (124)
Network variables (M2) 1 (529) 0
Assignment and positional date variables (M3) 3 (1017) 0
Linear ordering variables (M4) 3 (370) 2 (420)

Time indexed variables (M1) 50 0 0
Network variables (M2) 0 0
Assignment and positional date variables (M3) 0 0
Linear ordering variables (M4) 0 0

Time indexed variables (M1) 100 0 0
Network variables (M2) 0 0
Assignment and positional date variables (M3) 0 0
Linear ordering variables (M4) 0 0
dates are given in Tables 5 and 6, respectively. All models produce at
least one optimal solution for the n = 20 test cases. From the results
tables, it appears that models M2, M3, and M4 do not produce opti-
mal solutions as frequently as model M1 does. While model solution
efficiency increases for most models when job release dates are pres-
ent (Table 6), results quality degrades sharply for the test cases with
no release dates. As was the case previously for TWC, CPLEX does not
produce even feasible solutions for the majority of the models when
the number of jobs and maximum job processing time are increased.

Model M1 gives good lower bound estimates for test cases with
small number of jobs and small maximum processing time. However,
mality
)

# of test cases with some integer
solution (avg optimality gap)

Avg # of nodes

00] pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100]

0 8 (7.36%) 429 16,884
9 (14.11%) 10 (15.92%) 853,142 637,504
7 (29.21%) 10 (36.52%) 334,915 512,942
7 (5.00%) 8 (5.45%) 966,274 991,029

10 (11.02%) 2 (46.12%) 19,813 2
10 (34.39%) 10 (28.79%) 194,206 190,297
10 (100.00%) 10 (96.65%) 92,392 98,998
10 (16.04%) 10 (17.17%) 34,725 15,110

10 (52.77%) 0 15 –
10 (36.55%) 10 (36.04%) 20,469 22,523
10 (100.00%) 10 (100.00%) 151 190
0 0 19 12



Table 6
Results for parallel machine maximum completion time P2kC max.

Formulation N # of test cases solved to optimality
(avg solution time in seconds)

# of test cases with some integer
solution (avg optimality gap)

Avg # of nodes

pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100]

Time indexed variables (M1) 20 10 (346) 0 0 10 (45.01%) 547 341
Network variables (M2) 0 0 10 (80.02%) 10 (79.87%) 175,302 247,960
Assignment and positional date variables (M3) 0 0 10 (88.70%) 10 (90.61%) 1,760,225 1,973,788
Linear ordering variables (M4) 0 0 10 (83.06%) 10 (80.70%) 772,598 654,053

Time indexed variables (M1) 50 0 0 10 (50.02%) 0 1135 0
Network variables (M2) 0 0 10 (92.30%) 10 (92.09%) 47,581 75,124
Assignment and positional date variables (M3) 0 0 10 (99.92%) 10 (100.00%) 81,930 151,627
Linear ordering variables (M4) 0 0 10 (93.71%) 10 (92.54%) 5367 8433

Time indexed variables (M1) 100 0 0 6 (74.80%) 0 334 –
Network variables (M2) 0 0 10 (96.46%) 10 (96.59%) 3607 590
Assignment and positional date variables (M3) 0 0 0 0 67 174
Linear ordering variables (M4) 0 0 0 0 0 0
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it is clear that better lower bound performance is produced by model
M4 than in M1 as the number of jobs and maximum processing time
increase. Model M1 is not able to solve the LP relaxation for test cases
with n = 100 jobs and maximum processing time pmax = 100. Adding
job release dates into the test cases (Table 5) improves model M1’s
performance more advantageously as compared to the other models
performance improvement. Finally, model M1 explores the least
number of branch and bound nodes among all competing formula-
tions in all test cases but one (i.e., 100 jobs, no release dates). Model
M2 is the only formulation paradigm that CPLEX is able to produce
integer solutions for all test cases. In terms of lower bound perfor-
mance, the performance of model M2 increases (as expected) when
job release dates are added. For the test instances with release dates,
model M2 provides the best lower bounds in the n = 100 job cases
while exploring the largest number of branch and bound nodes.

Model M3 is able to provide a feasible solution for most test
cases. However, its optimality gap remains between 80% and
100% (i.e., not very tight lower bounds). CPLEX is not able to find
a feasible solution for M3 in 1 h for the test cases with n = 100 jobs
when release dates are omitted. The number of branch and bound
nodes explored with model M3 drops as the number of jobs is in-
creased, as it becomes harder to solve the LP relaxation of this
model. Model M4 is able to provide optimal solutions more fre-
quently than models M2 and M3. Further, in the case where release
dates are non-zero, model M4 produces much tighter lower
bounds compared to the other competing models for the test cases
with n = 20 and n = 50 jobs with pmax = 100. However, model M4 is
not able to provide a feasible solution in 1 h for the test cases with
n = 100 jobs.
Table 7
Results for parallel machine maximum completion time P3jrjjCmax.

Formulation N # of test cases solved to opti
(avg solution time in seconds

pj � U[1,20] pj � U[1,1

Time indexed variables (M1) 20 10 (1) 10 (349)
Network variables (M2) 2 (2886) 3 (2593)
Assignment and positional date variables (M3) 6 (1935) 6 (1639)
Linear ordering variables (M4) 9 (483) 7 (1479)

Time indexed variables (M1) 50 5 (1823) 0
Network variables (M2) 0 0
Assignment and positional date variables (M3) 0 0
Linear ordering variables (M4) 0 0

Time indexed variables (M1) 100 4 (2524) 0
Network variables (M2) 0 0
Assignment and positional date variables (M3) 0 0
Linear ordering variables (M4) 0 0
For three identical machines case, the experimental results ob-
tained for the makespan experiments both with and without re-
lease dates are given in Tables 7 and 8, respectively. The overall
performance of the models with three machines case is superior
to the two-machine case both in terms of producing more optimal
solutions and giving better lower bounds. All models are capable of
producing optimal solutions in the makespan experiments for
some test instances with three machines and non-zero release
dates case. Among other formulation paradigms, model M1 is the
one that gives the best increased performance results when the
number of machines is increased to three. M1 consistently gives
the best lower bounds for all cases. However, increasing the num-
ber of jobs and the maximum processing times degrade the perfor-
mance of model M1, leaving unsolved LP relaxations for the case
n = 100 and pmax = 100.

Model M4 has the second most increased performance results
after model M1 when the number of identical machines is in-
creased to three. However, its performance sharply decreases in
the case n = 100 although CPLEX is still able to produce some fea-
sible solutions for some test instances. In three identical machines
case, models M2 and M3 give similar performance results in terms
of optimality gaps, number of nodes explored and the value of ini-
tial LP relaxation quality as in two identical machines case. Notice
that CPLEX consistently produces at least a feasible solution for
model M2 for all test problem instances in 1 h time limit.

Based on performance improvements observed through the
experiments for a three parallel machines case, we carry out addi-
tional experiments for both the total weighted completion time
and makespan objective functions by increasing the number of
mality
)

# of test cases with some integer
solution (avg optimality gap)

Avg # of nodes

00] pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100]

0 0 (0.31%) 4 3853
8 (6.63%) 7 (8.99%) 612,104 311,027
4 (8.77%) 4 (4.52%) 296,714 414,412
1 (0.26%) 3 (0.86%) 91,423 531,366

5 (1.23%) 0 15,488 0
10 (20.40%) 10 (21.55%) 50,025 49,934
10 (99.71%) 10 (98.58%) 48,537 42,914
10 (20.19%) 10 (20.38%) 8151 8222

6 (30.86%) 0 513 –
10 (38.48%) 10 (40.62%) 74 81
10 (100.00%) 10 (100.00%) 52 45
1 (46.99%) 1 (63.22%) 79 109



Table 8
Results for parallel machine maximum completion time P3kC max.

Formulation N # of test cases solv optimality (avg
solution time in seconds)

# of test cases with some integer
solution (avg optimality gap)

Avg # of nodes

pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100]

Time indexed variables (M1) 20 10 (225) 0 0 10 (41.17%) 550 126
Network variables (M2) 0 0 10 (71.11%) 10 (73.55%) 180,969 185,004
Assignment and positional date variables (M3) 0 0 10 (87.03%) 10 (88.37%) 1,431,147 1,790,910
Linear ordering variables (M4) 0 0 10 (72.29%) 10 (72.33%) 609,284 601,050

Time indexed variables (M1) 50 0 0 10 (61.15%) 0 162 0
Network variables (M2) 0 0 10 (90.49%) 10 (88.12%) 20,648 30,026
Assignment and positional date variables (M3) 0 0 10 (100.00%) 10 (100.00%) 88,318 138,125
Linear ordering variables (M4) 0 0 10 (90.48%) 10 (89.02%) 6801 4650

Time indexed variables (M1) 100 0 0 7 (82.92%) 0 0 –
Network variables (M2) 0 0 10 (96.85%) 10 (97.01%) 34 33
Assignment and positional date variables (M3) 0 0 0 0 131 180
Linear ordering variables (M4) 0 0 7 (97.60%) 4 (97.54%) 58 30
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machines to 5, 10, and 15. In this respect, we generated the same data
sets that were previously used for both the two and three parallel
machines cases. Each of the MIP modeling paradigms was tested
for one replication of each factor combination mentioned earlier.
Therefore, 12 instances were generated for each of 5, 10, and 15 iden-
tical machine environments. The same measures of MIP model effi-
cacy were monitored during the experiments. The experiment
results are as follows.
4.2.2.1. Total weighted completion time results. For the 5, 10, and 15
identical machines cases, the experimental results obtained for the
total weighted completion time (TWC) experiments both with and
without release dates are given in Tables 9 and 10, respectively.
The overall results indicate that the MIP modeling paradigms exhi-
bit different behaviors when considering more parallel machines.
The results show that the performance of the models is more or
less related to the ratio of the number of jobs to the number of ma-
chines (i.e., n/m). The best overall performance is observed by M1.
Model M1 continues to be the only formulation paradigm that
CPLEX is capable of producing optimal solutions in the TWC exper-
iments for five, ten, and fifteen identical machines cases—CPLEX
produces feasible solutions for other formulation paradigms at
best. Model M1 is able to solve all the test instances except the
cases where the LP relaxations cannot be solved in a 1-h time limit.
Increasing the number of machines also sharply decreases the
number of B&B nodes explored. Test instances turn out to be solved
at the root node. However, for a larger number of jobs, solving LP
relaxation becomes much harder for M1 when the maximum pro-
cessing time increases and the ratio of n/m decreases. Model M1 is
not able to solve the LP relaxation for the test cases with 50 and
100 jobs and a maximum processing time of 100 units.

The second best performance results are delivered by model M4 in
terms of yielding best lower bounds to the majority of the test in-
stances in the cases with non-zero release dates. The best overall per-
formance improvement can be well observed via M4 when the ratio of
n/m decreases. CPLEX is able to give a feasible solution in the 1-h time
limit for the cases for which no feasible solution was produced for the
counterparts of two and three identical parallel machines. In addition,
among other competing formulation paradigms, model M4 explores
the largest number of nodes for the majority of test instances.

The additional experimental results with more identical ma-
chines involved indicate that model M2 and M3 exhibit opposite
behavior as compared to M1 and M4. That is, the performance of
M2 and M3 degrades by yielding higher optimality gaps when the ra-
tio of n/m decreases. Although it was possible to have a feasible solu-
tion for the cases with two and three identical parallel machines,
CPLEX does not produce a feasible solution for M2 when the number
of machines is increased to 5, 10, or 15 for 100 jobs. In addition, the
number of B&B nodes explored decreases sharply when the ratio of
n/m decreases since solving LP relaxation becomes much harder.

4.2.2.2. Makespan results. For the 5, 10, and 15 identical machines
cases, the experimental results obtained makespan experiments
both with and without release dates are given in Tables 11 and
12, respectively. The MIP modeling paradigms give different results
with changes in the ratio of n/m. All models except M3 are capable
of producing optimal solutions in the makespan experiments for
some test instances with a non-zero release dates case. However,
increasing the number of machines degrades the performance of
all models for the case n = 100. CPLEX is not able to produce a fea-
sible solution for almost all the models for the case n = 100. Model
M1 gives the best lower bounds for the cases where CPLEX is able
to solve the LP relaxations. When the ratio of n/m decreases, the
performance of M1 improves for small numbers of jobs.

Model M4 is able to solve all the test instances for the cases with
non-zero release dates and n = 20 and 50. The best overall perfor-
mance improvement is demonstrated by M4 when the ratio of n/m
decreases except for the case n = 100. The performance of model
M2 and M3 degrades by yielding higher optimality gaps when the ra-
tio of n/m decreases. The number of B&B nodes explored in 1 h de-
creases sharply for M2. However, model M3 is able to explore the
largest number of B&B nodes for the cases with n = 20 and 50.

4.3. Discussion

4.3.1. Linear programming relaxation tractability
Linear programming (LP) relaxations play a very important role

in solving mixed integer programming problems. LP relaxations are
of interest in branch and bound (B&B) algorithms which partition
the whole solution space (branching) and develop lower bounds
for portions of the solution space (bounding). Although there are
a number of bounding techniques, LP relaxation is one of the best
known methods used for providing a lower bound for MIPs. In fact,
LP relaxation naturally provides a lower bound since the optimal
solution for the ‘‘relaxed” problem is always worse than (or equal
to) the integer optimal solution.

Tables 13 and 14 illustrate the average root bound percentages
for the TWC and makespan problem instances, respectively. Root
bound percentages are computed as the ratio of the initial LP relax-
ation solution to the optimal solution value (or best feasible solu-
tion found by any of the competing formulation paradigms).
Therefore, a ratio of 1.0 is the best possible outcome. The dashed
cells in these two tables refer to the test cases where the LP relax-
ations could not be solved. Further, we use N/A in cells for the cases



Table 9
Results for additional parallel machine total weighted completion time Pmjrjj

P
wjCj .

Formulation N Solution time in seconds Optimality gap # of nodes

m = 5 m = 10 m = 15 m = 5 m = 10 m = 15 m = 5 m = 10 m = 15

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]
(%)

pj �
[1,100]
(%)

pj �
[1,20]
(%)

pj �
[1,100]
(%)

pj �
[1,20]
(%)

pj �
[1,100]
(%)

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]

pj �
[1,100]

Time
indexed
variables
(M1)

20 1 41 2 5 3 132 0 0 0 0 0 0 0 0 0 0 0 0

Network
variables
(M2)

– – – – – – 7.86 9.81 9.08 9.17 12.61 10.27 264 52,000 34,402 30,002 10,992 7743

Assignment
and
positional
date
variables
(M3)

– – – – – – 94.24 87.51 91.98 88.20 93.53 96.27 725,401 1,173,801 747,901 857,001 549,101 303,301

Linear
ordering
variables
(M4)

– – – – – – 1.47 1.75 2.32 2.93 5.23 3.35 1,619,301 1,324,301 971,601 988,701 651,501 541,801

Time
indexed
variables
(M1)

50 5 – 10 – 13 – 0 – 0 – 0 – 0 – 0 – 0 –

Network
Variables
(M2)

– – – – – – 8.07 5.42 9.52 5.35 10.01 13.55 14,300 8500 3993 8634 5301 4620

Assignment
and
positional
date
variables
(M3)

– – – – – – 99.88 100 100 100 100 100 140,045 7829 10,275 8894 4694 1720

Linear
ordering
variables
(M4)

– – – – – – 2.54 2.86 4.19 3.37 4.61 4.11 302,351 147,701 104,101 100,101 135,201 50,901

Time
indexed
variables
(M1)

100 34 – 55 – 66 – 0 – 0 – 0 – 0 – 0 – 0 –

Network
variables
(M2)

– – – – – – 1 1 1 1 1 1 1068 1083 266 1699 780 320

Assignment
and
positional
date
variables
(M3)

– – – – – – 100 100 100 100 100 100 9 49 0 4 0 0

Linear
ordering
variables
(M4)

– – – – – – 9.02 5.21 3.75 2.82 3.09 3.12 11,374 11,248 11,301 23,901 11,501 8701
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Table 10
Results for additional parallel machine total weighted completion time Pmk

P
wjCj .

Formulation N Solution time in seconds Optimality gap # of nodes

m = 5 m = 10 m = 15 m = 5 m = 10 m = 15 m = 5 m = 10 m = 15

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]
(%)

pj �
[1,100]
(%)

pj �
[1,20]
(%)

pj �
[1,100]
(%)

pj �
[1,20]
(%)

pj �
[1,100]
(%)

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]

pj �
[1,100]

Time indexed variables
(M1)

20 1 46 1 29 1 124 0 0 0 0 0 0 0 0 0 0 0 0

Network Variables (M2) – – – – – – 75.59 75.01 76.93 78.74 83.08 83.17 134,208 97,500 30,806 21,903 7481 5383
Assignment and positional

date variables (M3)
– – – – – – 98.01 95.50 92.60 98.46 99.30 100 2,580,842 1,195,818 1,253,801 1,303,321 815,713 479,390

Linear ordering variables
(M4)

– – – – – – 44.43 40.92 19.77 25.86 19.66 23.06 1,803,701 1,353,977 994,762 1,052,301 691,501 591,811

Time indexed variables
(M1)

50 19 – 76 – 46 – 0 – 0 – 0 – 0 – 0 – 0 –

Network variables (M2) – – – – – – 94.47 94.80 95.42 94.68 96.02 96.19 11,585 3600 90 168 54 0
Assignment and positional

date variables (M3)
– – – – – – 100 100 100 100 100 100 258,487 153,946 92,101 89,911 86,898 19,314

Linear ordering variables
(M4)

– – – – – – 82.01 84.35 78.80 77.13 79.76 83.85 301,496 187,956 134,300 132,259 153,600 66,701

Time indexed variables
(M1)

100 3300 – 1413 – 934 – 0 – 0 – 0 – 0 – 0 – 0 –

Network variables (M2) – – – – – – 1 1 1 1 1 1 0 0 0 0 0 0
Assignment and positional

date variables (M3)
– – – – – – 1 1 1 1 1 1 169 197 785 911 555 2001

Linear ordering variables
(M4)

– – – – – – 97.46 96.69 94.31 95.44 95.44 95.23 0 696 1346 25,701 3679 19,301
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where CPLEX cannot produce a feasible solution for the corre-
sponding model within the allowed 1 h time budget.

Clearly, model M1 provides the best bounds among all formula-
tions. Regardless of whether or not job release dates are present,
model M1 consistently gives the best bounds for the cases wherein
the LP relaxation is solvable. The size of the time indexed model
plays a primary role regarding the difficulty in solving model
M1’s LP relaxation. In most experiments, model M1’s initial lower
bound estimate is equal to either the proven optimal solution or
the best feasible solution. In this sense, model M1 shows promise
for use as an approximation algorithm for parallel machine TWC
scheduling problems. This approach which is based on lower
bounding techniques has already been applied for single machine
scheduling (the reader is referred to Sousa (1989), Sousa and Wol-
sey (1992), Lee and Sherali (1994), Crama and Spieksma (1995),
and Van den Akker, Van Hoesel, et al. (1999) and Van den Akker,
Hoogeveen, van de Velde (1999)).

In cases where job release date is considered, the root bounds of
model M2 are 80–90%. Even though we increase the number of
jobs and the maximum processing times in our experiments, mod-
el M2 still generates LP relaxation values which are relatively close
to the optimal or best feasible values. However, the LP relaxation
performance of model M2 degrades in test cases where release
dates equal zero. This is mainly due to the fact that both sub-tour
elimination constraints and the proposed valid inequalities are
based on the existence of non-zero job release dates. Since model
M2 is based on network flow variables, it is possible that an adap-
tation of the lifting constraint approach by Desrochers and Laporte
(1991) can be employed in model M2 to strengthen this second
best formulation paradigm.

4.3.2. Model size
The size (memory requirements) of a MIP formulation is of

interest as it plays a significant role in defining the space required
to store and the time required to solve both LP relaxations and the
actual MIP model. The formulations developed in this paper result
in a polynomial number of model constraints and model variables.
We use different decision variable paradigms to create the four
MIP formulation paradigms in this paper. In order to analyze the
effect of variable selection on formulation size, Table 15 shows
the number of constraints and binary variables associated with
each formulation paradigm.

Let l, m, and n denote the upper bound of makespan, the number
of machines, and the number of jobs, respectively. As seen in Table
11, we describe the size of each formulation paradigm in terms of
these three parameters. Given its formulation size of O(l), one
might think model M1 would tend to result in a smaller number
of constraints and variables as compared to the other methods.
Unfortunately, the number of constraints and variables in model
M1 can be enormous, even for small instances, if job processing
times are relatively large.

This is the primary challenge in dealing with time indexed for-
mulations—it prohibitively increases storage requirements and
model solution times, even for a model’s LP relaxation. In this
sense, model M1 can have the largest formulation size of all the
options. In Van den Akker, Van Hoesel, et al. (1999) and Van den
Akker, Hoogeveen, et al. (1999), Dantzig-Wolfe decomposition
techniques are applied to alleviate the difficulties arising from
the problem size associated with time-indexed model formulation
for the single machine case. In their experiments, however, results
from this decomposition approach are only promising for small in-
stances of the single machine problem.

Although all other formulation paradigms’ sizes are O(n2), mod-
el M4 produces many more constraints than model M3 when the
number of jobs is large. While models M2 and M3 produce a sim-
ilar number of constraints, their overall size is smaller than the



Table 12
Results for additional parallel machines maximum completion time PmkC max.

Formulation N Solution time in seconds Optimality gap # of nodes

m = 5 m = 10 m = 15 m = 5 m = 10 m = 15 m = 5 m = 10 m = 15

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]
(%)

pj �
[1,100]
(%)

pj �
[1,20]
(%)

pj �
[1,100]
(%)

pj �
[1,20]
(%)

pj �
[1,100]
(%)

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]

pj �
[1,100]

pj �
[1,20]

pj�[1,100]

Time indexed variables
(M1)

20 76 – 4 – 3 142 0 33.52 0 7.71 0 0 575 351 866 27,113 0 0

Network variables (M2) – – 402 – 48 50 60.82 52.63 0 15.32 0 0 168,442 233,488 41,126 246,247 0 0
Assignment and

positional date
variables (M3)

– – – – – – 83.72 90.11 85 90.29 85.00 62.00 2,572,355 1,800,512 1,071,771 1,788,111 885,235 634,435

Linear ordering variables
(M4)

– – 1543 – 3 62 53.48 45.90 0 8.74 0 0 1,743,301 1,374,701 594,131 1,234,401 0 11,000

Time indexed variables
(M1)

50 – 63 – – 332 – 44.86 0 48.79 – 0 – 1463 0 133 – 0 –

Network variables (M2) – – – – – – 93.96 94.44 95.15 95.88 1 1 17,712 140 39 183 12 0
Assignment and

positional date
variables (M3)

– – – – – – 99.03 100 100 100 100 100 310,221 154,501 87,101 96,001 102,755 19,314

Linear ordering variables
(M4)

– – – – – – 84.85 85.69 69.69 62.11 48.72 43.55 41,700 13,793 30,820 20,371 79,413 66,701

Time indexed variables
(M1)

100 – – – – – – 89.36 – 1 – 1 – 0 – 0 – 0 –

Network variables (M2) – – – – – – 97.27 1 1 1 1 1 62 0 0 0 0 0
Assignment and

positional date
variables (M3)

– – – – – – 1 1 1 1 1 1 0 610 1117 738 1192 689

Linear ordering variables
(M4)

– – – – – – 1 1 92.48 1 1 1 547 0 329 0 0 0
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Table 14
Average root bound percentages for makespan cases.

Formulation n
rj � 0;

P
pj

2


 �
rj = 0

pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100]

Time
indexed
variables
(M1)

20 0.94 0.93 0.56 0.57
50 0.84 0.83 0.53 0.53

100 0.74 – 0.48 –

Network
variables
(M2)

20 0.88 0.86 0.09 0.10
50 0.82 0.81 0.04 0.04

100 0.73 0.70 0.02 N/A

Assignment
and positional
date variables
(M3)

20 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00

100 0.00 0.00 0.00 N/A

Linear
ordering
variables
(M4)

20 0.88 0.86 0.09 0.09
50 0.82 0.81 0.04 0.04

100 0.73 0.70 0.02 N/A

Table 13
Average root bound percentages for TWC cases.

Formulation n
rj � 0;

P
pj

2


 �
rj = 0

pj � U[1,20] pj � U[1,100] pj � U[1,20] pj � U[1,100]

Time
indexed
variables
(M1)

20 1.00 1.00 1.00 1.00
50 1.00 0.85 1.00 0.92

100 1.00 – 1.00 –

Network
variables
(M2)

20 0.91 0.90 0.22 0.23
50 0.89 0.87 0.08 0.08

100 0.88 0.85 0.03 0.03

Assignment
and
positional
date
variables
(M3)

20 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00

100 0.00 0.00 N/A N/A

Linear
ordering
variables
(M4)

20 0.86 0.83 0.15 0.15
50 0.86 0.88 0.08 0.05

100 0.83 0.01 0.06 0.01
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other formulations—the LP relaxation of these two formulations
are solved more rapidly than the other approaches. All formula-
tions except model M1 produce a similar number of binary
variables. This is not necessarily a disadvantage, however, as a
compact formulation may have a weak LP relaxation (e.g., models
M2 and M3), while the relaxation of a model containing a large
number of variables (such as M1) can be tight (Savelsbergh,
2001; Nemhauser, 2002).

Pursuing strong bounds for the LP relaxation gives rise to the
technique known as column generation, which reveals quite favor-
able computational results for a variety of parallel machine sched-
uling problems. Van den Akker, Van Hoesel, et al. (1999) and Van
Table 15
Model size for each formulation paradigm.

Formulation Number of constraints

Time indexed variables (M1) m(l + 1) + 3n
Network variables (M2) mn2 + 2mn + 2m + 3n
Assignment and positional date variables (M3) mn2 + 3mn + n
Linear ordering variables (M4) Pn�1

i¼2
ðn�iÞðn�iþ1Þ

2 þ n2 þmn
den Akker, Hoogeveen, et al. (1999) demonstrated the computa-
tional results of applying column generation to the identical paral-
lel machine scheduling problem with the objective of minimizing
total weighted completion time. Chan, Muriel, Simchi-Levi (1998)
and Chan, Kaminsky, et al. (1995) analyzed the column generation
technique for the same problem by emphasizing on the worst-case
performance and probabilistic analysis. On the other hand, Chen
and Powell (1999a) showed the computational results of applying
column generation techniques to the objectives of minimizing total
weighted completion time and weighted number of tardy jobs for
the identical, non-identical, and unrelated parallel machine envi-
ronments. Chen and Powell (1999b) also applied the technique to
the objective of minimizing total weighted earliness and tardiness
for identical parallel machines problem. In addition, the objective
of minimizing maximum lateness for identical parallel machine
problems was analyzed by Van den Akker, Hoogeveen, and Van
Kempen (2006) in the framework of applying column generation
techniques. An overview related to applying column generation
techniques to machine scheduling problems with a sum type crite-
rion (e.g., total weighted completion time) can be obtained in Van
den Akker, Hoogeveen, and van de Velde (2005).

4.3.3. Disjunctive and conjunctive constraints
The constraints of a mathematical program can be classified as

either conjunctive or disjunctive. While conjunctive constraints
must be satisfied (i.e., the ‘‘and” condition), only one constraint
within a set of disjunction constraints must hold (i.e., the ‘‘or” con-
dition). For example, consider model M2. Degree constraint sets
(7)–(11) are conjunctive constraints that must all be satisfied,
while the sub-tour elimination constraint set (12) contains dis-
junctive constraints of which one must be satisfied.

Although disjunctive constraints are useful in many contexts,
such as in linearizing previously non-linear constraints, their pri-
mary drawback is their impact on LP relaxations. Models M2–M4
require sufficiently large big-M values in order to result in valid
MIP formulations. Unfortunately, tighter LP relaxations result
when smaller (if not the feasibly smallest) big-M values are used,
assuming that a big-M is required in the formulation paradigm.
In this paper, a number of approaches were used to set the value
of parameter big-M as small as possible. In addition, valid inequal-
ities (14) and (15) are added to M2 in order to further reduce the
solution space, given the fact that big-M constraints exist.
5. Conclusions and future work

In this paper, four different MIP formulation paradigms based
on four different types of decision variables are presented for
Pm-, Qm-, and Rm-type parallel machine scheduling problems for
total weighted completion time, makespan, maximum lateness, to-
tal weighted tardiness and total number of tardy jobs performance
measures. In addition, these models can easily be adapted to most
other objective functions of interest, as all formulations contain job
completion time variables.

Computational results for the different numbers of identical
machines operating in parallel demonstrate the wide range of effec-
tiveness of the formulation paradigms studied in the environments
Number of binary variables Formulation size

(l + 1)mn O(l)
mn(n + 1) O(n2)
mn(n + 1) O(n2)

2 þ 2mn 2n2 + mn-2n O(n2)
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of both zero and non-zero job release dates. For the test instances
solved to optimality, each model’s computation time increases
exponentially as the number of jobs and processing times increase.
The least computation time is delivered by model M1 for almost all
optimally solved cases. However, model M1’s computation time
most suffers from large processing times. Model M4 provides much
better computation time as compared to models M2 and M3. Fur-
ther, the computation times provided by models M2 and M3 are of-
ten higher than M1 and M4, while M2 delivers a relatively lower
computation time than model M3. At a high level, while experimen-
tal results suggest that most paradigms can find the optimal solu-
tion to at least a single problem instance, model M1 is able to
provide optimal solutions more frequently than the other models.
Further, model M1 also yields tight lower bounds for the problem
instance cases wherein the optimal solution is not reached within
the allowed 1 h time limit. However, it is very hard to solve the LP
relaxation of model M1, especially in the cases where the number
of jobs and the maximum processing time are increased.

In cases where non-zero job release dates exist, the best perfor-
mance results are delivered by model M1 in terms of yielding bet-
ter lower bounds. That is due to the fact that the binary variables
are set to zero by constraint (7), which facilitates the branch and
bound solution procedure. Model M2 has the second best perfor-
mance for the cases with non-zero job release dates—this is due
in part to the fact that model M2’s valid inequalities take advan-
tage of job release dates. The LP relaxation of this formulation is
solved much faster than the other competitors. In fact, CPLEX pro-
duces feasible solutions for model M2 for cases with which the
other models are not able to do so. Since model M2 is based on net-
work flow variables, one potential direction of future research
could be to improve the model’s sub-tour elimination constraints
by employing a lifting approach. Model M3 remains the loosest for-
mulations in our experiments by producing optimality gaps in ex-
cess of 90% in most cases. However, it is observed during the
experiments that the feasible solutions obtained by model M3
are very close to the optimal or best feasible solutions for most
of the test cases. That is due to the fact that the lower bound ob-
tained by the LP relaxation of M3 is so loose that it is not able to
converge an optimal solution in 1 h time limit, which is a natural
result of disjunctive constraints in the model. A set of valid
inequalities could be a proper approach to improve the quality of
lower bound obtained by M3. Although model M4 gives good low-
er bounds for small number of jobs instances, its performance de-
grades in larger cases.

Based on the experimental findings, it is recommended to use
model M1 for P2 scheduling problems when job processing time
is small; otherwise, model M2 is recommended when either job
processing times are large and/or non-zero job release dates exist.
Additional future work is to explore the possibility of developing
valid inequalities for models in order to remove or alleviate the
presence of the disjunctive constraints that cause huge optimality
gaps. Since the formulations developed in this paper afford the
opportunity to conduct experiments over a variety of machine
scheduling environments, our additional future work is to compare
the formulations for different types of objective functions
ðmin

P
j2JwjTj; min Lmax and min

P
j2JUjÞ in different job processing

both identical and non-identical machine environments (Pm,Qm
and Rm).
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