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Abstract The study of the structural basis of gas exchange
function in the lung depends on the availability of quantitative
information that concerns the structures establishing contact
between the air in the alveoli and the blood in the alveolar
capillaries, which can be entered into physiological equations
for predicting oxygen uptake. This information is provided by
morphometric studies involving stereological methods and
allows estimates of the pulmonary diffusing capacity of the
human lung that agree, in experimental studies, with the max-
imal oxygen consumption. The basis for this Bmachine lung^
structure lies in the complex design of the cells building an
extensive air-blood barrier with minimal cell mass.

Keywords Lungmorphometry . Gas exchange . Alveolar
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Introduction: searching for the structural basis
of lung physiology

In 1956, the Nobel Prize for Physiology and Medicine was
awarded to André F. Cournand and Dickinson W. Richards,
together with Werner Forssmann, for their pioneering work
with cardiac catheterization, which had an enormous impact
on cardio-pulmonary physiology. Indeed, pulmonary physiol-
ogy was different after the work of Cournand and Richards if
only with regard to the new possibilities of sampling and
studing mixed venous blood by inserting a catheter into the

right auricle, thus allowing the chemical and physical study of
the blood flowing into the pulmonary gas exchanger for oxy-
gen uptake.

In his Nobel Lecture BRight heart catheterization^Richards
said (Richards 1957): BMeasurements made in this exact lo-
cation have provided a key to almost all the integrations that
we have attempted in elucidating the nature of cardiopulmo-
nary function.^ In his conclusions, he addressed the future of
research in his field and, in particular: B… (what) interests me
greatly would be an effort to bring together function and
structure, a reexamination of pulmonary anatomy by pathol-
ogists who are aware of functions and dysfunctions^.

When this was written, I was a young assistant in Zürich
studying the anatomy and histology of bronchial-pulmonary
arterial anastomoses, a hot topic in pulmonary pathology at
the time (Loring and Liebow 1954; Fritts et al. 1961), raising
questions as to their functional importance (Weibel 1958,
1959). In 1958, I was able to follow up this project as a post-
doctoral fellow in the group of the lung pathologist Averill
Liebow at Yale, during which time I was invited by
Cournand to give a seminar on my studies at Bellevue
Hospital in New York. After the seminar, Cournand and
Richards formally invited me to come and work with them
in their Cardio-Pulmonary Laboratory. When I asked what
they expected me to do, Cournand said simply: BDo anything
on the structure of the lung that is of interest for physiology ,̂
evidently Richards’ vision but quite a challenge for a young
Swiss anatomist. When they offered full support for the estab-
lishment of suitable laboratory facilities and to more than dou-
ble my modest fellowship, I accepted.

However, what have anatomists missed that their research
was not of sufficient interest to physiologists? This question
arose when I joined the Cardio-Pulmonary Laboratory at
Bellevue Hospital in September 1959. The answer soon be-
came apparent when I met Domingo M. Gomez, a Cuban
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cardiologist and Biomathematician who had fled the terror
reign of Fidel Castro and been given refuge by Cournand.
Over coffee, Gomez asked me questions, such as Bhow many
alveoli are there in the human lung?^ I had no real answers, as
the numbers in the literature ranged from 60 to several hun-
dred millions and the estimation methods used appeared to be
ill founded, one problem being that alveoli are Bseen^ in the
microscope only as two-dimensional profiles. Therefore, we
first developed a geometrically sound method for counting
such structures on two-dimensional sections (Weibel and
Gomez 1962b) obtaining some 300 million alveoli in adult
human lungs. This method held sway until 1984 when
Sterio (1984) introduced the disector method for counting
three-dimensional (3D) structures on sections and the
number estimate remained valid until Ochs et al. (2004) ap-
plied a variant of this procedure to human lungs, increasing
the now best estimate to 400 million.

Gomez turned out not to be really interested in knowing the
number of alveoli; he wanted to know this value only for
calculating the alveolar gas exchange surface area with a geo-
metric model. However, by now, it had become clear what I
was expected to add to the study of lung structure to make it
Bof interest for physiology ,̂ namely the quantification of all
the relevant structures that determine the gas exchange condi-
tions in the lung, from alveoli and capillaries to airways and
blood vessels, a quantitative aspect of lung architecture and
structure that we would then call Bmorphometry^ (Weibel and
Gomez 1962a; Weibel 1963).

Setting up quantitative structure-function
relationships

Gomez saw the importance of this approach in view of his two
major projects: the distribution of air flow in the airway tree
(Gomez 1963) and the importance of structural design in set-
ting up an efficient gas exchanger. I contributed to both
(Weibel 1963) but will discuss only the second project.

Modeling gas exchange in the human lung was a hot topic
at the time. The origin of the prevailing concept went back to
Christian Bohr (1909) who formulated, in 1909, the basic gas
exchange equation:

VO2 ¼ PAO2– PcO2ð Þ � DLO2 ð1Þ
where the difference between PO2 in alveolar gas and capil-
laries was the driving force for gas flow with a conductance
DLO2, called the diffusing capacity, as the modulator. Bohr
formulated this equation to find out whether O2 is taken up
by diffusion or by secretion, as was a prevailing opinion at the
time (Haldane and Smith 1897) but his two young collabora-
tors Marie and August Krogh soon established unambiguous-
ly that O2 uptake occurs by diffusion (Krogh and Krogh

1910). This concept clearly indicated that, based on Ohm’s
law, DLO2 must be proportional to the gas exchange surface
and inversely proportional to the tissue barrier thickness.

It took 50 years until Roughton and Forster (Roughton and
Forster 1957) showed, in 1957, that this model was too simple
and that the gas exchanger is made of two components that
affect the physics differently: in addition to the passive diffu-
sion barrier of the alveolar capillary membrane, the blood
plays a central role in the binding of O2, so that DLO2 is
determined by two serial resistances: the diffusion barrier
and the reactive erythrocytes in capillary blood. This now
had introduced, in a formal way, structural parameters in this
gas exchange equation and in 1959, Gomez wanted to take
this one step further by introducing all structural components,
accurately estimated, so that one could predict a theoretical
value of the diffusing capacity from first principles. This was
to be my challenge.

Exploring various model concepts (Weibel 1970; Weibel
et al. 1993), we formulated a structure-function model on the
basis of the equations of Bohr and of Roughton-Forster:

DLO2
‐1¼ DMO2

‐1þ DeO2
‐1 ð2Þ

where the serial conductances DMO2 and DeO2 of the barrier
and the blood, respectively, are of a highly different nature
(Fig. 1). DMO2 is the conductance of a diffusion barrier that
offers Bpassive^ resistance to diffusion driven by partial pres-
sure gradients and thus depends essentially on the material
properties of the barrier, as estimated by a diffusion coefficient
K and on the dimensions of the barrier: the larger the surface
area S and the thinner the barrier thickness τ, the greater
DMO2 . In contrast, DeO2 depends on the erythrocyte volume
in capillaries but is related to a complex physico-chemical
process that involves, in addition to diffusion, the binding rate
of O2 to hemoglobin (Roughton and Forster 1957; Holland
et al. 1985; Yamaguchi et al. 1985).

Membrane conductance (DMO2 ) The structural characteris-
tics of the membrane conductor are seen in Fig. 1. It is made
up of the two layers that separate the air in alveoli from the
erythrocytes in the capillary: namely the tissue barrier and the
layer of blood plasma (Fig. 1a). In addition, an alveolar lining
layer of variable thickness spreads over the epithelial surface
(Fig. 1b) and modulates surface texture (Bachofen and
Schurch 2001).

In the original model, the diffusion barrier was considered
to be composed of two (or three) resistances in series: tissue
(with the surface lining layer) and blood plasma (Weibel
1970). Even though the two layers of the barrier, namely tissue
and plasma, are different, this does not appear to be important
under normal conditions. For one thing, the flow velocity of
the plasma layer is much lower than the diffusion of O2, so
that plasma is quasi-static with respect to diffusion (Federspiel
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1989). Furthermore, under normal conditions, the surface
areas of alveoli, capillaries, and erythrocytes differ little and
the diffusion coefficients of tissue and plasma are also quite
similar and so we can more reasonably treat them as a single
barrier (Weibel et al. 1993). Accordingly, the membrane dif-
fusing capacity is the diffusion conductance from the alveolar
surface to the erythrocyte membrane (Fig. 1):

DMO2 ¼ Kb � S bð Þ = thb ¼ Kb � S Að Þ þ S cð Þð Þ=2 � τhb ð3Þ
where Kb is Krogh’s permeation coefficient estimated at 3.3 ·
10−8cm2 · min−1 · mmHg−1. S(b) is the surface area of the bar-
rier that we estimate as the mean of the alveolar and capillary
surface areas, whereas S(A) and S(c), respectively, are the two
most robust measures of the area of air-blood contact. The
effective mean barrier thickness is the harmonic mean τhb, the
mean of the reciprocals of the distance from the alveolar surface
to the nearest erythrocyte membrane. The harmonic mean is
chosen as a parameter for the diffusion resistance because the
local rate of O2 diffusion is inversely proportional to the diffu-
sion distance (Weibel and Knight 1964; Weibel et al. 1993).

Erythrocyte conductance (DeO2 ) The erythrocyte conduc-
tance for O2 is primarily determined by the capillary blood
volume and involves several coupled events: (1) the diffusion
of O2 through the erythrocyte membrane, (2) the diffusion of
molecular oxygen and oxyhemoglobin within the red blood
cell and (3) the non-linear chemical reaction of O2 with hemo-
globin, a reaction that depends on the degree of O2 saturation.
To account for this complexity, Roughton and Forster (1957)
introduced a coefficient θO2 , namely the rate of O2 fixation on
hemoglobin per unit of pressure and blood volume:

DeO2 ¼ θO2Vc ð4Þ
where Vc is the total capillary blood volume.

The specific conductance θO2 is a physico-chemical param-
eter estimated in vitro on whole blood. It is not a constant but
is affected by various blood properties such as hemoglobin
concentration and initial O2 saturation (Holland et al. 1977).
For normal human lungs and a hemoglobin content of 15 g/
100 ml of blood, the value θO2 = 1.8 mlO2 ml−1 min−1

mmHg−1 and is a reasonable estimate (Yamaguchi et al. 1985).

Lung structure serving gas exchange

This model analysis has now revealed the information from
lung structure considered of interest for physiology and
that we had previously failed to provide: the total surface
area of contact between air and capillary blood, the effec-
tive thickness of the diffusion barrier and the volume of
capillary blood and of erythrocytes. To obtain this infor-
mation required a new approach to the structural study of
the lung for two reasons (Weibel et al. 2007): (1) to study
lung fine structure requires microscopy because the active
regions, alveoli and capillaries, are very small but we had
to account for the large size of the organ and this called for
rigorous sampling procedures to ensure that the microscop-
ic measurements accurately represented the make-up of the
lung (Cruz-Orive and Weibel 1981; Weibel 1963; Weibel
et al. 2007; Hsia et al. 2010); (2) tissue samples for micros-
copy are thin sections and the image we can study is a two-
dimensional Bprofile^ whereas the structures of interest are
three-dimensional, so a method has to be found that relates
the 2D images to 3D structures. In 1959, the solution to
these problems was not immediately evident.

To satisfy the first requirement, the lung must be fixed and
prepared under standardized Bnear-physiological^ conditions.
In 1959, we fixed the lungs by formalin steam (Weibel and
Vidone 1961) to obtain specimens representing the physiolog-
ical conditions of controlled inflation and perfusion. This was
good for light microscopy but did not provide specimens suit-
ably fixed for high-resolution electronmicroscopy, as required
for the model analysis. Here, the solution was instillation

Fig. 1 a Electron micrograph of the alveolar capillary of instillation-
fixed human lung showing the structural definition of the parameters of
diffusing capacity DL) and its two components (DM, De): note the alve-
olar and capillary surface area (Sa, Sc), total barrier thickness (τb) and
tissue barrier thickness (τt). b Alveolar capillary (C) of perfusion-fixed
rabbit lung showing alveolar surface lining layer (sl) topped by fine sur-
factant film. Bars 2 μm
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fixation with glutaraldehyde under controlled pressure
(Fig. 1a); this retains the blood in capillaries (Vock and
Weibel 1993) and allows the measurement of the required
parameters. Unfortunately, it abolishes the surface lining layer
of alveoli with surfactant that can only be demonstrated by
vascular perfusion of the fixative (Weibel and Gil 1968;
Bachofen et al. 1982), which fixes the fine layer Bfrom
behind^ but removes the blood (Fig. 1b).

The second problem was finding a method with which to
obtain 3D parameters from measurements that we could only
carry out on 2D sections. Gomez wanted to calculate the sur-
face area from the number of alveoli with a geometric model.
However, we found that such approximate calculations were
not necessary, because of the availability of a method for es-
timating the 3D surface area of alveoli by measurements on
sections (Campbell and Tomkeieff 1952; Elze and Hennig
1956) by simply counting intersections of the surface with
random test lines placed on the section (Fig. 2). Moreover,
3D volumes can be estimated from sections by point counting
on random test point grids, a method long used in mineralogy
to determine the composition of rocks. These are the basic

methods of Bstereology ,̂ a set of mathematically based mi-
croscopic measuring methods that were developed just around
the time that we were engaging in these studies; the term
stereology was coined in 1961 (Weibel and Elias 1967) and
this would bring us a wealth of new methods by which to add
numbers to the study of fine structure extending way beyond
the lung (Weibel 2013a, b; Ochs 2006; Weibel 1979;
Baddeley and Jensen 2005; Pakkenberg and Gundersen
1995; Hsia et al. 2010).

Morphometry of human lung in relation to diffusing
capacity

With this model and these methods proceeding in hand, we
could, in principle, attempt to estimate a theoretical value of
the diffusing capacity of the human lung on the basis of mor-
phometric data but this was not as easy as it looked; it took
many years to assemble a set of normal human lungs, suitably
prepared post mortem to allow a study by electron microscop-
ic morphometry (Gehr et al. 1978; Weibel et al. 1993). The
data obtained from young adults of average body mass 70 kg
(Table 1) revealed the alveolar surface area to amount to
130 m2 and the capillary surface to be about 10 % smaller;
these values were higher than the older data from 1963
(Weibel 1963) as these had been derived from light micro-
scopic studies that did not adequately resolve the alveolar
surface texture. The mean thickness of the tissue barrier is
2.3 μm but the effective thickness for diffusion is the harmon-
ic mean thickness, which is 0.6μm, whereas the harmonic
mean total barrier thickness, measured from alveolar to red
cell surface (Fig. 1a), amounts to 1.11 μm. The capillary vol-
ume is estimated at about 200 mL. With these data, we calcu-
late DLO2 for the adult human lung to be about 150 mL O2 ·
min−1 · mmHg−1 (Weibel 2009; Hsia et al. 2016).

These morphometric estimates of the diffusing capacity are
based onmodel assumptions. The test of their validity must be
to compare them with physiological estimates. The standard
physiological value of DLO2 of a healthy adult at rest is about
30 ml O2/min-1/mmHg-1 but this is not a valid comparison.
The pulmonary capacity for diffusive O2 uptake must be
gauged to satisfy the largest achievable metabolic rate, be-
cause the structural features determining DLO2 cannot be in-
creased at short notice when demand imposed by the working
cells, for example, muscle, increases in physical activity. A
number of estimates have been made for DLO2 in exercising
humans and these have yielded values of the order of 100 ml
O2 · min−1 · mmHg−1 (Hammond and Hempleman 1987). The
fact that this is only about 50 % lower than the morphometric
estimate is not disturbing, for we do not know whether the
Btrue diffusing capacity^ is completely exploited, even in
heavy exercise. More informative may be comparative phys-
iology studies in which DL can be estimated both by

Fig. 2 a Light micrograph of human lung with test line system for
estimating alveolar surface area from intersection points, as used in
1959. b Same test system applied to electron micrograph of human
lung allowing the estimation of alveolar and capillary surface areas, Sa
and Sc and of capillary and tissue volumes by point counting, Pc and Pt.
Testlines used as bars 120 μm (a), 6 μm (b)
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morphometry and by physiological methods by using tracer
gases. One such set of studies is the assessment of the func-
tional loss of gas exchange capacity following the reduction of
the gas exchange structure by partial pneumonectomy in dogs
(Hsia 2006; Hsia et al. 1993). These studies have shown that
the functional estimate of DLCO under heavy exercise condi-
tions agrees with the morphometric estimate (Fig. 3). This
general finding has been confirmed in further studies (Hsia
2006) and so, we can accept the theoretical estimate of
DLO2 in general and for the human lung in particular as

reflecting the limit to O2 uptake imposed by the structural
parameters of the gas exchanger.

Biology behind a physi(ologi)cal gas exchanger

This attempt to make morphology useful for physiology re-
vealed that a simple combination of morphometric parameters
allows the prediction of the functional capacity of the lung: the
essential features of the lung for gas exchange are an aston-
ishingly large internal surface of nearly the size of a tennis
court in humans combined with an excessively thin tissue
barrier that must support the capillaries in air space, with
0.2 μm related to 130 m2 having a ratio of 8 orders of magni-
tude in linear dimensions.

This is certainly impressive but for a biologist, the reduc-
tion of the Bphysiologically relevant^ aspects of the lung to a
few numbers is not satisfactory. The questions are how has
this come about, how can this large surface become built into
the restricted space of the chest and, in particular, what cells
contribute to build and maintain the structure supporting this
large surface with so little tissue over a lifetime. The key to
these puzzles is lung development, which leads to a well-
structured hierarchical order in the elements building the lung.
The process is governed by the progressive dichotomous
branching of the airway tubes over 23 generations, on the
average, to build a space-filling system of airways from the
trachea to the terminal air sacs showing the characteristics of a
fractal tree (Weibel and Gomez 1962a, b; Weibel 2013a, b;
Weibel 1991). The first 15 generations provide conducting
airways, bronchi and bronchioles, whereas the last eight

Table 1 Morphometric estimate
of DLO2 for healthy adults of
70 kg body weight and measuring
175 cm in heighta

Measured parameter Mean ± 1 SE Unit

Morphometric data (mean ± 1 SE)

Total lung volume (60% TLC) 4340 ± 285 ml

Alveolar surface area 130 ± 12 m2

Capillary surface area 115 ± 12 m2

Capillary volume 194 ± 30 ml

Air-blood tissue barrier thickness

Arithmetic mean 2.20 ± 0.2 μm

Harmonic mean 0.62 ± 0.04 μm

Total barrier thickness

Harmonic mean 1.11 ± 0.1 μm

Conductances

Membrane, DMO2 332 - ml/min per mmHg

Erythrocytesb, DEO2 319 - ml/min per mmHg

Total, DLO2 163 - ml/min per mmHg

a From Gehr et al. (1978) and Weibel et al. (1993)
bWith θO2 = 1.5 ml/ml per min per mmHg (Holland et al. 1977)

Fig. 3 Physiological estimates of DLCO by rebreathing in exercising
dogs reach the morphometric estimate when blood flow reaches its
maximum at top running speed. Data from Carlin et al. (1991) and Hsia
et al. (1993)
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generations become transformed into the gas exchanging
modules, the acini, when the smooth walls of air ducts form
septa thus building a sleeve of alveoli whose walls contain
single capillaries, a process called alveolarization, which in-
creases the alveolar surface area drastically in a short time
(Burri et al. 1974; Burri 2006).

In concert with the airways, the pulmonary arteries and
veins branch and finally form the capillary network within
the alveolar septa. As this happens, the loose mesenchyme
gradually forms a fine coherent scaffold that extends from

the hilum all the way to the visceral pleura. It traverses the
alveolar septa as a fine fiber meshwork that supports the
capillary network (Fig. 4). These septal fibers are anchored
on two more robust fiber systems: (1) the axial fibers that
are part of the wall of airways and follow into the acinus as
the fiber network forming the alveolar entrance rings on
the alveolar ducts and (2) the peripheral fibers that pene-
trate into the acini from the pleura and the interlobular
septa (Fig. 4). An important consequence of this hierarchi-
cal structure is that the septal fiber strands that support the

Fig. 4 Model of the disposition
of axial, septal and peripheral
fibers in the acinar airway, with
the effect of surface forces being
indicated by arrows: these forces
are negative in the alveoli and
strongly positive on the free edge
of the alveolar septum. Reprinted
by permission from Weibel
(1984)

Fig. 5 Model of an alveolar
capillary network (red) with
interweaving connective tissue
fibers (green). Bar 5 μm
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capillaries (Fig. 5) can be rather short and therefore also
very thin, an important feature for keeping the barrier thin
in view of gas exchange.

What cells do to make a good lung—other insights
from morphometry

Even though the alveolar tissue is extraordinarily slim, it
is built by cells serving various functions, as shown in
Fig. 6. Two cells form the air-blood barrier, namely the
endothelial cell that lines the capillaries and the type 1
alveolar epithelial cell that forms the lining of the

alveolar space (Fig. 6b). The alveolar epithelium also
comprises the cuboidal type 2 cell that is the secretory
cell responsible for the formation of the surfactant lining
(Fig. 6a). The interstitial space between the epithelial and
endothelial cells, bounded by their basement membranes,
contains the fibroblasts responsible for the formation and
maintenance of the fiber system (Fig. 6a). The alveolar
macrophage (Fig. 6c) is loosely attached to the epithelial
surface and forms lamellipodia on its advancing edge
with which it moves over the surface and phagocytoses
foreign materials. It is by far the largest alveolar cell and
is a constituent of the alveolar surface lining layer
(Fig. 6c, inset).

Fig. 6 Cells of the alveolar region as seen in electron micrographs. a
Type 2 epithelial cell (Ep2) with lamellar bodies (lb) together with a
fibroblast (Fb) in human lung. b Capillary with endothelial cell (En)
and type 1 epithelial cell (Ep1) that constitute the diffusion barriers in a
dog lung. c Alveolar macrophage (Mph) in human lung is the largest cell

loosely attached to the epithelium and shows two lamellipodia on the
advancing edge to the left. d Advancing lamellipodia of a macrophage
in a perfusion-fixed rabbit lung are covered by the surface lining film
(arrowheads). Bars 2 μm (a–c), 0.2 μm (d)
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All these cells are, however, very rare as seen in an electron
micrograph of an alveolus of a dog lung (Fig. 7): in this image,
we find no more than two endothelial cells and one each of the
type 1 and 2 epithelial cells, plus one macrophage but no
fibroblasts; the largest part of the alveolar wall surface is built
only of the thin cytoplasmic extensions of endothelial and type
1 epithelial cells with a very thin interstitium separating them.
This is the reason that some prominent lung histologists long
believed that the alveolar surface was Bnaked like a wound^
(Eberth 1862; Policard 1929): the thin barrier parts measure
no more than 0.2 to 0.4 μm, which was just at the resolution
limit of the light microscope. It was the pioneer of lung elec-
tron microscopy Frank Low (1911–1998) who showed, in
1953, that the alveoli in mice and humans were lined by an
uninterrupted epithelium made of two cell types: a Blarge^
cuboidal cell with the features of a secretory cell and a Bsmall^
squamous cell that lined the capillaries with very thin cyto-
plasmic leaflets (Low 1953). We will see that the Blarge^ type
2 cell is indeed much smaller than the type 1 cell. This

discovery with the new tool electron microscope was soon
confirmed by one of the original proponents of the Bnaked^
view in a paper published in this journal (Policard et al. 1959).

This pictorial observation was corroborated by a mor-
phometric study of the cell population of the human alve-
olar region (Crapo et al. 1982). As shown in Table 2, each
of the 400 million alveoli is served by no more than 47
type 1 alveolar epithelial cells and 92 type 2 cells and is,
thus, a mosaic with a total of 140 epithelial cells, whereby
the type 1 cells cover 95 % of the surface of 220,000 μm2

of an average alveolus. Similarly, the capillaries in the al-
veolar walls are lined by 170 endothelial cells and one
finds 210 interstitial fibroblasts and no more than 57 mac-
rophages associated with these structures. This means that
each type 1 cell must cover a surface of 5098 μm2 of the
alveolar septum, a very large surface indeed compared with
less than 100 μm2 for a typical cuboidal epithelial cell.
Accordingly, the total cell volume of a type 1 cell is twice
as large as that of the Blarge^ type 2 cell, although it covers
a surface 30 times larger (Table 2).

Fig. 7 Low-power view of an alveolus of a dog lung showing very few
cell bodies: two endothelial cells (En) and one each of the epithelial cells
type 1 (Ep1) and type 2 (Ep2) and one macrophage (Mph). Bar 20 μm

Fig. 8 Diagram showing the ramified cytoplasmic extensions (red) of an
endothelial cell with one nucleus (blue) lining the capillary network. Bar
5 μm

Table 2 Number and size of
alveolar cells in human lung.
After Crapo et al. (1982)

Cells/structure n (total) Mean volume n/alveolus Mean S(basal)a Mean thickness
×109 μm3 μm2 μm

Alveolar epithelial cell type 1 19 1763 47 5098 0.36

Alveolar epithelial cell type 2 37 889 92 183 5.03

Endothelium 68 632 170 1353 0.48

Interstitial cells 84 637 210 – –

Macrophages 23 2491 57 – –

a Surface of basal cell membrane attached to basement membrane

420 Cell Tissue Res (2017) 367:413–426



Capillaries and interstitial cells

The alveolar capillaries are lined by a continuous endothelium
in the form of thin leaflets that emanate from the central cell
body with a nucleus (Fig. 6b), each cell having an expanse of
1350 μm2 on the capillary surface. Considering the geometry

of the alveolar capillary network (Fig. 8) with segments no
more than 6 μm in diameter and 8 μm long (Weibel 1963), we
must assume that the endothelial cell spreads its cytoplasmic
leaflets along the meshes of the capillary network in the form
of branched thin strips because, on cross-sections of capil-
laries, one usually finds two to three intercellular junctions
(Fig. 9a). This means that, generally, two endothelial cells par-
ticipate in lining a capillary tube. The capillary endothelium is
attached to a thin basement membrane; the rare pericytes
(Fig. 9a) are associated with the endothelial basement mem-
brane and are located on the surface facing the interstitial space.

The basement membranes of the endothelium and the al-
veolar epithelium form the boundary of the interstitial space
that contains the fiber system and the fibroblasts. Of particular
interest is that the interstitial space is obliterated over about
half of the capillary surface where the epithelial and endothe-
lial basement membranes are fused (Fig. 9a, inset) thus
forming the minimal gas exchange barrier (Figs. 1, 6a, 9a);
thicker barrier regions that contain the fibers and the fibro-
blasts are limited to the other half of the capillary surfaces
but this alternates sides as the fibers are interwoven with the
capillary network (Fig. 5).

The alveolar fibroblasts are particularly complex cells.
Their volume is about the same as that of endothelial cells
(Table 2) but it turns out that they are very heavily ramified
with extremely thin cytoplasmic strips (Fig. 9b) that enwrap
the fiber strands and form actomyosin bundles of the smooth
muscle type (Fig. 9a); these contractile elements give the fi-
broblast the quality of a Bmyofibroblast^ (Kapanci et al. 1974)
but, notably, their orientation is crosswise connecting the two
epithelial linings between capillary meshes (Fig. 9a); their
putative function is to serve as braces of the interstitial space.

Fig. 10 Scanning electron
micrograph of the alveolar surface
of a human lung showing
protruding capillaries and two
type 2 cells (Ep2) sitting in niches
and characterized by a rim of
microvilli. The small arrow
indicates the cell body of a type 1
cell (Ep1) that covers several
capillary meshes (yellow); the
boundary of its cytoplasmic
leaflet is marked by arrowheads
outlining a small lip of the cell
junction between adjoining cells
(inset). The surface area covered
by this cytoplasmic leaflet is
1300 mm2. Reproduced by
permission from Weibel (2015).
Bar 10 μm

Fig. 9 a Alveolar septum of human lung showing a capillary (C) with
two intercellular junctions of the endothelium (arrowheads) and a
pericyte process (pc), a type 1 epithelial cell (Ep1) and fine extensions
of a fibroblast (Fb) that is tightly related to fibers ( f ) and forms
myofibrils (mf) that span across the septum. The box marks the minimal
barrier whose structure is shown in the inset: the epithelium and
endothelium are joined by their fused basement membranes. b
Touched-up image of the fibroblast in Fig. 6a to show the very slim
cytoplasmic extensions (arrows). Bars 2 μm (a, b), 0.1 μm (inset)
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Alveolar epithelial cells—champion optimizers

The type 1 alveolar epithelial cell is twice as large in volume
as the Blarge^ type 2 cell (Table 2); the major part of this
volume is found in the thin cytoplasmic leaflets (Fig. 6b) that
spread over the basement membrane over an area of
5100 μm2, which is nearly four times larger than an endothe-
lial cell, even though the two lining cells cover the same area
and are extremely tightly associated by their fused basement
membranes over about half the surface (Fig. 9a). Scanning
electron micrographs of the alveolar surface (Fig. 10) show
the mosaic of the two epithelial cell types and reveal the out-
line of the cell boundaries by the terminal bars (Fig. 10).
Similar to the endothelial cell (Fig. 8), the type 1 epithelial
cell shown here covers several meshes of the capillary net-
work with its thin lamella but the cell area seen here is only
1300 μm2 and thus is only ¼ of the average cell surface area
found by morphometry. This is perplexing but is in agreement
with the observation by Albert Kölliker in 1881 that there
were many more cytoplasmic patches of the alveolar epitheli-
um than there were nuclei, an observation made by silver
staining the terminal bars (Kölliker 1881). Kölliker concluded
that the major part of the alveolar epithelium was made of
Bnon-nucleated cytoplasmic plates^, an alternative view to
the Bnaked^ alveolar surface discussed above.

It turns out that this was a correct observation but an erro-
neous conclusion (Weibel 1971, 2015). Type 1 cells are not
simple squamous cells as may appear in Btypical^ micro-
graphs such as Figs. 1, 6b, 9. As shown in Fig. 11, they can
be branched forming a broad cytoplasmic sheet on the top
surface of the alveolar wall but then extending across the
capillary mesh to the other side with a cytoplasmic stalk to
form another cytoplasmic sheet on the surface of the adjoining
alveolus, whereby each of these sheets is bounded by a termi-
nal bar or tight junction to the adjoining cell. Hence, this
makes two Bcytoplasmic plates^ of Kölliker but both are con-
nected to the nucleus and are therefore not Bnon-nucleated^.
Moreover, each type 1 cell can make several such branches
that cross over to the other side (Fig. 12). By means of this
arrangement, the type 1 cells can form leaflets only about
0.1 μm thick extending over 5000 μm2 with a single nucleus
as the metabolic center (Weibel 2015). However, this has se-
rious consequences: the architecture of the type 1 cell is now
characterized by having multiple apical membrane areas; ac-
cordingly, the cell has lost the typical polarity of epithelial
cells that extends between the well-matched apical and basal
membrane, a feature most important for orderly cell division
during mitosis. As a consequence, type 1 cells are unable to
divide and multiply mitotically, neither during repair when
they must be regenerated from stem cells, nor during

Fig. 11 Alveolar septum from
monkey lung showing a type 1
epithelial cell (Ep1) that forms the
lining of both sides of the septum
by extending with a cytoplasmic
stalk to the lower side (arrows).
Bar 5 μm

Fig. 12 Diagram of a section of an alveolar septum with the branched
type 1 cell (yellow) forming the cytoplasmic plates: f1 (comprising the
nucleus) and f2 plus f3 (connected with stalks to the nuclear area). The
apical cell membrane is shown in green and the basal membrane in red,

separated by the terminal bar (black dots terminal bar, En endothelial cell,
Ep1 type 1 epithelial cell, Ep2 type 2 epithelial cell, PK pore of Kohn).
Reproduced by permission from Weibel (2015)

422 Cell Tissue Res (2017) 367:413–426



development when the increasing alveolar surface needs more
cells: after mitotic division, some of the new type 2 cells
transform into the squamous type 1 cells (Kapanci et al.
1969; Kauffman et al. 1974; Evans et al. 1975).

The opportunity for establishing this complexity lies in
the design of the alveolar wall with its minimized intersti-
tial scaffold. This wall is characteristically perforated by
pores of Kohn that connect neighboring alveolar spaces
and are usually filled with alveolar lining fluid. This is
the place at which the alveolar epithelium can Bmove^
from one side to the other. Figure 13 shows such a pore
from a human lung; a type 1 cell extends its leaflet to the
other alveolus and a type 2 cell sits between the two alve-
oli. Remnants of alveolar lining fluid can be seen in the
pore.

This differentiation of alveolar epithelial cells is highly
conserved in mammalian species. The basal surface of type
1 cells is rather invariant, independent of body size, with 5320,
4004 and 5340 μm2 in humans, baboons, and rats, respective-
ly (Crapo et al. 1982) and with an average of 6000 μm2 across
10 species from the shrew at 3 g to the horse at 500 kg (Stone
et al. 1992). In the Etruscan shrew with its tiny alveoli and
high alveolar surface area (Gehr et al. 1980), the complexity of
type 1 cells is particularly high, suggesting that, in this animal
with its particularly high metabolic rate, the optimization of
gas exchanger structure has been pushed to extremes (Weibel
2015).

Separating barrier and secretory functions

Both the alveolar epithelium and the endotheliummust serve as
a minimal diffusion barrier and perform some secretory func-
tions.Whereas the design for the barrier functionminimizes the
depth of the cell lining in both cases, minimizing even the
perinuclear cytoplasm that contains a few organelles (Figs. 1,
6b, 9, 11), the secretory functions demand the activity of the
cytoplasmic organelle system for the synthesis, packaging and

storage of the secretory products; this must significantly in-
crease the bulk of the secretory cells. In the alveolar epithelium,

Fig. 13 Alveolar septum of
human lung showing a type 1
epithelial cell (Ep1) extending
across a pore of Kohn to a
junction on the lower surface
(arrowhead). The type 2 cell
(Ep2) is also related to both
alveoli. Note residual surfactant
material in the alveolar pore. Bar
5 μm

Fig. 14 a Endothelial cell (En(v)) of a small pulmonary venule (Ven)
containing several rod-shaped Weibel-Palade bodies (arrows) that store
vonWillebrand protein. b, c Longitudinal and transverse sections, respec-
tively, of the Weibel-Palade bodies at higher resolution to show the tubu-
lar structure formed by spiraled von Willebrand protein strands. Bars
1 μm (a), 0.1 μm (b, c)
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the secretory function is assigned exclusively to the type 2 cells
with their rich endowment of endoplasmic reticulum and Golgi
complex generating the lamellar bodies as storage organelles
for surfactant (Figs. 6a, 13; Mason and Shannon 1997; Ochs
et al. 2002; Ochs 2010). These bulky cells occupy no more
than 5 % of the alveolar surface area and are mostly tucked
away in niches or capillary meshes (Fig. 10); they thus
inhibit diffusion by their bulk insignificantly. The secreto-
ry functions of vascular endothelia are related to the con-
trol of clotting, primarily by the von Willebrand protein,
which is packed into rod-shaped secretory storage organ-
elles, the Weibel-Palade bodies (Fig. 14; Weibel 2012);
these organelles are assembled in the Golgi complex and
secreted in an emergency when the vascular wall is dam-
aged (Metcalf et al. 2008; Wagner and Frenette 2008). The
secretory activity of endothelial cells and the occurrence of
Weibel-Palade bodies are, however, limited to arterial and
venous vessels, both in the pulmonary and in the systemic
circulation; they are totally absent from capillary endothe-
lial cells (Fuchs and Weibel 1966; Weibel 2012) and thus,
the endothelial secretory function lies outside the diffusion
areas in the lung and in other organs. Capillary endothelia
represent a special phenotype of vascular endothelia and
this remarkable fact should be taken into consideration
when endothelial cells are used in synthetic lung models;
substitution by non-capillary endothelial cells such as
HUVEC (Ren et al. 2015) may not be adequate.

Concluding remarks

From the physiologist’s perspective, the design of the pulmo-
nary gas exchanger is a simple matter: a modest volume of
circulating blood exposed to air over a sufficiently large sur-
face and across an extremely thin tissue barrier. Morphometry
can provide this information, and it is, indeed, one of the
essential responsibilities of morphologists to ensure that such
information is based on sound morphology, with respect both
to the methods used (Hsia et al. 2010) and to the knowledge-
based interpretation of structure (Ochs 2010).

However, for a biologist, this purely quantitative or engi-
neering view is not satisfactory, because this Bmachine lung^
must be built and maintained by cells, be repaired from within
in case of damage and perhaps be adapted to different func-
tional demands or conditions. This, in fact, is the real chal-
lenge of lung design (Hsia et al. 2016). Here again morphom-
etry can make a significant contribution as evidenced by the
discovery of the unusual topology and size of all cells that
constitute the alveolar tissue, ensuring its integrity while
allowing a thin but extensive diffusion barrier to form. This
was discovered, in the first place, by estimating the number
and sizes as well as the volumes and surfaces of these cells in
the mature lung (Crapo et al. 1982; Stone et al. 1992) and,

then, by measuring the dimensional changes of lung cells
while the alveolar surface area grows exponentially in early
lung development (Burri et al. 1974; Kauffman et al. 1974).

When looking into the future, I like to paraphrase the plan
of Dickinson Richards (Richards 1957) that led to the devel-
opment of lung morphometry: B… what interests me greatly
would be an effort to bring together molecular cell biologists
with a sense for structure and morphologists with a sense for
function and dimensions to address and solve the question
how lung cells develop a complex shape to establish a large
surface with minimal cell mass.^ Such a plan must address the
transformation of alveolar epithelial cells, newly formed by
mitosis of type 2 cells during repair and development (Borok
et al. 2011; Rock and Hogan 2011), from a secretory cell to a
lining cell, switching off the secretory program in favor of one
for broad cytoplasmic extensions with an expanse that is in-
dependent of body size, even when the diameter of alveoli
varies between 50 and 500 μm between a shrew and a horse.
This challenge must extend morphometry to the subcellular
dimension and to higher complexities. Opportunities to
achieve this goal are offered by the new 3D electron micros-
copy methods such as serial-block-face scanning electron
micoscopy (SBF-SEM) or focused-ion-beam electron micros-
copy (Ochs et al. 2016), which produce large stacks of well-
matched serial sections at high resolution. These allow the
reconstruction of the 3D internal structures in great detail;
however, the major challenge will be to extract quantitative
information on these spatial complexities by using stereolog-
ical methods adapted to such imaging modalities (Vanhecke
et al. 2007).

Another major challenge for the further development of
functional morphology will be to identify morphometric char-
acteristics associated with the cellular biomarkers used for
genetic and systems analyses, so as to link these features to
the functional importance of cell and organ structure as a ma-
jor contribution to what has been called morphomics (Lucocq
et al. 2015; Mayhew and Lucocq 2015). This may be a con-
cept of particular importance in an organ such as the lung in
which the shape and dimensions of the cells are essential de-
terminants of functional capacity.
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