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A B S T R A C T

Maize is one of the most significant grains cultivated all over the world. Doubled-haploid is an important
technique in terms of advanced maize breeding, modern crop improvement and genetic programs, since this
technique shortens the breeding period and increases breeding efficiency. However, the selection of the haploid
seeds is a major problem of this breeding technique. This process is frequently conducted manually, and this
unreliable situation leads to loss of time and labor. Inspired by the recent successes of deep transfer learning, in
this study, we approached this problem as a computer vision task to provide a nondestructive, rapid and low-cost
model. To achieve this objective, we adopted convolutional neural networks (CNNs) to recognize haploid and
diploid maize seeds automatically through a transfer learning approach. More specifically, AlexNet, VVGNet,
GoogLeNet, and ResNet were applied for this specific task. The experimental study was carried out using a new
dataset consisting of 1230 haploid and 1770 diploid maize seed images. The samples in the dataset were clas-
sified considering a marker-assisted selection, known as the R1-nj anthocyanin marker. To measure the success of
the CNN models, we utilized several performance metrics, such as accuracy, sensitivity, specificity, quality
index, and F-score derived from the confusion matrix and receiver operating characteristic curves. According to
the experimental results, the CNN models ensured promising results, and we achieved the most efficient results
via VGG-19. The accuracy, sensitivity, specificity, quality index, and F-score of VGG-19 were 94.22%, 94.58%,
93.97%, 94.27%, and 93.07%, respectively. Consequently, the experimental results proved that CNN models can
be a useful tool in recognizing haploid maize seeds. Furthermore, we conclude that this approach is significantly
superior to machine learning-based methods and conventional manual selection.

1. Introduction

Maize (Zea mays L.) is one of the most significant agricultural pro-
ducts used as human food, animal feed and industrial raw materials
(Cerit et al., 2016). A growing world population and climate change
make it necessary to develop new maize varieties that are high-yield
and resistant to biotic and abiotic stress conditions like all other culti-
vated plants. Achieving this goal is only possible through maize
breeding programs. The first stage in maize breeding programs is to
develop homozygote lines that will be parents to hybrid varieties (Cerit
et al., 2016). Normally, the acquisition of homozygote lines takes a long
time, approximately five to eight generations of self-cross mating by
conventional methods, whereas this process can be achieved in about
two to three generations in one year through the use of haploids
(Prasanna et al., 2012). Haploids and doubled haploids (DH) have high

importance in modern maize breeding, since this technique accelerates
the breeding period and increases breeding efficiency (Chase and
Nanda, 1969). These advantages of DH have led to increased interest in
maize breeding and genetics in the last 20 years (Geiger, 2009).

A DH is a completely homozygous line produced by doubling the
haploid chromosomes (Prasanna et al., 2012). Haploids are found in
nature at a very small frequency of 0.1% (Geiger et al., 2013); there-
fore, they are not suitable for practical use (Charity et al., 2017).
Haploids can be obtained at higher rates by using either in vitro or in
vivo techniques. Most commercially available DH maize lines are ob-
tained through the haploid technique in vivo while other techniques are
reported to be less effective in the development of DH lines (Geiger,
2009). In vivo maternal haploid induction uses special genotypes, called
inducers, as pollinators to obtain haploids at higher rates and has be-
come the standard method (Charity et al., 2017). Due to currently
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available inducers, the DH rate has been observed to be approximately
8% or higher (Melchinger et al., 2014). In vivo maternal haploid in-
duction consists of four stages: (i) haploid induction, (ii) haploid
identification, (iii) chromosome doubling and (iv) self-pollination to
generate the final DH line.

Among the induced seeds before chromosome doubling, the hap-
loids, which are a small proportion, need to be separated from the di-
ploids because only haploids are used in chromosome doubling. This
reality emphasizes the importance of the selection of haploid seeds
quickly and precisely (Geiger et al., 2013). Although there are alter-
native selectable markers, such as the differences between the embryo
weights (Smelser et al., 2014), the oil content levels (Melchinger et al.,
2014) and red root (Chaikam et al., 2016), the most commonly and
successfully used selectable marker is R1-Navajo (R1-nj) (Nanda and
Chase, 1966). Dominant R1-nj gene expression leads to purple colora-
tion of the aleurone and scutellum due to anthocyanin pigmentation
(Melchinger et al., 2014). The different levels of R1-nj expression in the
embryo and endosperm allow visual classification of haploid and di-
ploid maize seeds as illustrated in Fig. 1. The seeds with red-purple
coloration on both the embryo and endosperm are called diploids. Since
these diploids contain chromosomes of both the source genotype and
the inducer line, they have n2 chromosomes. Although R1-nj staining
occurs on endosperms, seeds with colorless embryos are called hap-
loids. Genetically, these seeds carry only the chromosomes of the donor
plant and have a single n chromosome (Geiger, 2009). The selection of
haploid and diploid seeds on the basis of R1-nj marker gene expression
works well for most dent germplasms (Melchinger et al., 2014).
Nonetheless, the expression of R1-nj varies from a small point to the
entire seed. In addition, the darkness of R1-nj expression changes from
very light to dark. This diversity in R1-nj expression leads to a high
error rate in conventional manual selection. In addition, manual se-
lection of haploids is a labor-intensive process that takes time. There-
fore, there is a need for a system to automatically perform the identi-
fication of haploid seeds (Melchinger et al., 2013).

A sorting system of maize haploid seeds consisting of seed trans-
mission, image acquisition and processing, sorting-unloading and a
system control unit has been designed. This specific process has been
realized considering the color features of maize embryos and the top of
the maize endosperm. The system achieved a sorting speed of 500 seeds
per minute (Song et al., 2010).

A method based on the least square error has been suggested to
separate haploid from diploid maize seeds considering the oil content of
the seeds measured using a nuclear magnetic resonance (NMR) ana-
lyzer. According to the results of the model, the least square error can
quickly determine the thresholding value of oil content between hap-
loid and diploid with a low number of samples (Li et al., 2016).

As a pattern recognition method, support vector machine (SVM) and
visible spectroscopy (Vis) have been utilized for identifying maize

haploid seeds. An experiment has been conducted on a balanced da-
taset, which consisted of 141 haploids and 141 hybrid kernels from nine
genotypes. The authors have reported promising results (Liu et al.,
2015).

A combination of a near-infrared spectroscopy technology and su-
pervised virtual sample kernel locality preserving projection (SVSKLPP)
has been proposed to separate haploid seeds from the hybrid seeds (L.
Yu et al., 2018). The model ensured a strong classification performance
due to its nonlinear structure, and it is superior to linear methods, such
as principal component analysis, orthogonal linear discriminant ana-
lysis, and locality preserving projection.

In another work, the haploid and diploid maize seeds have been
classified using five features extracted from the embryo and endosperm
regions. The features were used to feed an SVM classifier. The average
accuracy of the proposed model was 81.36% (Altuntaş et al., 2018a,
2018b).

Haploid and diploid maize seeds have also been identified using
texture features obtained from a gray level co-occurrence matrix. These
features have been used as input to decision trees (DT), k-nearest
neighbors (kNN) and artificial neural networks (ANN) classifier. It was
reported that the best performance was measured in DT with a classi-
fication success rate of 84.48% (Altuntaş et al., 2018a, 2018b).

An automatic sorting system based on the color features of the en-
dosperm has been proposed to distinguish haploid maize seeds from
cross-breeding seeds with Navajo label (Song et al., 2018). Similarly, a
novel method using near-infrared hyperspectral imaging technology
has been introduced to overcome the limitations of current automated
haploid identification and to ensure more sensitive monitoring of
haploid (Wang et al., 2018). Haploid and diploid maize seeds were
sorted with the proposed fluorescence-based method. The authors have
reported that the accuracy of the proposed method is greater than 80%
in all seven genotypes used (Boote et al., 2016).

In another study conducted on six maize genotypes, the perfor-
mance of third-party software was evaluated in the discrimination of
haploid and diploid maize seeds via multispectral imaging. DNA mar-
kers were used to confirm the labels of the tested seeds. It was reported
that the accuracy was over 50% for the majority of genotypes used (De
La Fuente et al., 2017).

Recently, deep learning approaches are attracting more attention
due to their success in practical applications (Salaken et al., 2019). As a
kind of deep learning structure, convolutional neural networks (CNNs)
are developed to learn features from data that come in the form of
multiple arrays, such as images, video, text or sound (LeCun et al.,
2015). The CNN models have achieved serious success on numerous
practical applications, such as pattern recognition, image classification,
speech recognition, etc. (Tajbakhsh et al., 2016; H. Yu et al., 2018; Yu
et al., 2017). There are four key concepts under CNN models: local
connections, shared weights, pooling and the use of many layers.

Fig. 1. Visual classification of haploid and diploid maize seeds according to the R1-nj color marker.
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Various feature maps include distinctive motifs of the input data.
Sharing weights among units at different locations are inclined to
search the same pattern in different parts of the input data. Pooling
layer merges semantically similar features into one, decreases the di-
mension of the representation and prevents overfitting (Yu et al., 2017).
Due to the advances in deep learning algorithm, deeper models have
been introduced, such as AlexNet (Krizhevsky et al., 2012), VVGNet
(Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015),
and ResNet (He et al., 2016).

In this article, we introduce a new dataset including 1230 haploid
and 1770 diploid maize seed images. To ensure a novel haploid maize
seed recognition model, we used CNN models, which are AlexNet,
VVGNet, GoogLeNet, and ResNet and a transfer learning approach. The
CNN models yielded excellent results on the classification task when
compared to conventional machine learning-based methods.

The remainder of the paper is organized as follows: the materials
and methods are given in Section 2. The experimental results and dis-
cussion are presented in Section 3. Finally, concluding remarks are
given in Section 4.

2. Materials and methods

2.1. Description of the dataset

The haploid and diploid maize seeds used in this study were har-
vested in the summer of 2017 as part of a larger project carried out by
the Maize Research Institute in Sakarya (Turkey) with coordinates 40
degrees 43min 56 s North 30 degrees 22min 40 s East. The seeds in-
cluded a total of 3000 maize seeds as 1230 haploids and 1770 diploids
that were produced by crossing the maternal haploid inducers RWS/
RWK76 (Röber et al., 2005) with 107 source genotypes. The source
genotypes are in 450–700 (FAO) maturity groups, and these are yellow
dent and waxy grain types. The list of the genotypes can be found in the
supplementary material. The seeds were selected to reflect the different
expression levels of the R1-nj color marker (light-dark, dense-less).

Image Acquisition: An imaging system has been built for photo-
graphing maize seeds. A camera and a sufficient number of LEDs were
installed in the ceiling of the imaging system. All seeds were photo-
graphed as 20 seeds (4 rows, 5 columns) in each image with embryo-up
position and without contacting each other. A Sony SLT-A58 digital
camera and Sony SAL 100mm f/2.8 macro lens were used to capture
the images. The camera was connected to the computer via a USB port
and third-party software was used to capture the images. All images
were taken in ‘M’ mode, with 100 ISO, 1/125 s shutter speed, f/9
aperture, 150mm focal length, and 55 cm camera distance. The image
format was JPEG and the resolution was 5456-by-3632 pixels.

Seed Segmentation: Since each image contained 20 maize seeds, as
the first task, the maize seeds were segmented from the original images.
For this task, maize seeds and background color distributions in the
original images were examined in red (R), green (G), and blue (B) color
channels. Fig. 2 shows the R, G and B color histograms of a sample

maize seed. As can be understood from the histograms, the 140–160
value range in the B channel seems to be ideal for the segmentation
process. The appropriate threshold value was searched in this range. It
was observed that some embryos were segmented as background under
the 150 threshold value, especially in haploid maize seeds. In addition,
it was observed that, in some cases, the background pixels caused the
noise around the maize seeds to be above the 150 threshold value.
Therefore, the threshold value was empirically adjusted to 150.

According to Eq. (1), a binary image was obtained in which ‘1′ re-
presents the maize seed and ‘0′ represents the background. Each pixel
with its Blue component smaller than the threshold value has been
designated as a maize seed and the remaining pixels were background.

= ⎧
⎨⎩

<
pixel

maizeseed B threshold
background otherwise

,
,i j

i j
,

,

(1)

In this equation, pixeli j, represents the value of the ith and jth pixel
of the binary image. The Bi j, parameter corresponds to the value of the
ith and jth pixel of the Blue channel of the original image.

Since some embryo pixels are threshed as background, a filling
morphological process was applied to the obtained binary images.
Then, a 9×9 median filter was used to reduce the noise. Boundary
boxes were calculated by using the contour lines of the maize seeds.
Each maize seed was stored as a separate image after removing its
background. While the 150 original images were 424MB in size, the
3000 segmented images were 48.9 MB in size. The process steps are
shown in Fig. 3.

Image Resizing: The resolutions of the images in the dataset varied
between 300-by-289 pixels and 610-by-637 pixels depending on the
sizes of the seeds. The images were resized as 227-by-227 pixels re-
solution for AlexNet and 224-by-224 pixels resolution for the other CNN
models. The bicubic interpolation method was applied to the long edge
of the images for this process. Blank pixels were added to both sides of
the short edge of the images to prevent distortion of the aspect ratio.

Maize Seeds Labeling: The maize seeds were labeled according to
the R1-nj color marker in two stages, before and after the image ac-
quisition process, by two field experts. Although a rigorous study has
been conducted in the process of labeling maize seeds, it should not be
overlooked that there may be mislabeled seeds in the dataset.

2.2. Convolutional neural networks

A CNN model is a deep learning architecture that consists of a set of
successive layers, such as convolution, pooling, dropout, and fully
connected layers that have different tasks in the architecture. The most
basic layer in these architectures is the convolution layers providing
local discriminative features by connecting each node to a small subset
of spatially connected neurons in the input image channels (Tajbakhsh
et al., 2016). The connection weights are shared among the nodes in the
convolutional layers to allow searching for the same discriminative
feature throughout the input channels. Each set of shared weights ex-
plains a convolution kernel. In this manner, a convolutional layer with
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Fig. 2. R, G, and B color histograms of a sample maize seed.
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nkernels can learn to recognize n local discriminative features that are
visible in the resulting n feature maps. To decrease the computational
complexity, prevent overfitting and ensure a hierarchical set of image
features, each sequence of convolution layers is followed by a pooling
layer. The main task of the pooling layer is to simplify the spatial di-
mensions of the information derived from the feature maps. For this
particular purpose, average pooling, L2-norm pooling, and especially
max-pooling were utilized due to their speed and improved con-
vergence (Traore et al., 2018). CNN models typically include the fully
connected layer that desires a vector of numbers as input to connect
each of them to outputs. Frequently, this is the last layer, after the last
pooling layer in the CNN process. However, the number of fully con-
nected layers may vary according to the networks’ architecture. Finally,
a softmax or regression layer is used to produce the desired outputs in
the CNN architecture.

Back-propagation algorithms are frequently used in training CNNs
in order to minimize the cost function in respect to the unknown
weights as described below:

∑= −
X

ln p y X1
| |

( ( | ))
i

X
i i

| |

�

(2)

Herein, X| | shows the number of training images, X i shows the ith

training image with the corresponding label yi, and p y X( | )i i shows the
probability by which X i is accurately matched. Normally, stochastic
gradient descent (SGD) or stochastic gradient descent with momentum
(SGDM) algorithms are utilized for minimizing this cost function
(Cömert and Kocamaz, 2017). Let us assume that Wl

t shows the weights
in the lth convolutional layer at iteration t , and� indicates the cost over
a mini-batch of size N , and then the equations given below are followed
to update the weights of the CNN model for the next iteration:

Step 5: Achieving separated seeds

Fig. 3. The segmentation steps.
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where αl stands for the learning rate of the lth layer, μ stands for the
momentum that displays the contribution of the previous weight update
in the current iteration, and γ stands for the scheduling rate used to
reduce α at the end of each epoch.

So far, we have tried to summarize the common structures of CNN
models. In the remainder of this section, we present an overview of the
well-known CNN models.

AlexNet is one of the pioneering deep CNN algorithms that was
introduced in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC-2012), and it achieved a TOP-5 test accuracy of 84.6%
(Krizhevsky et al., 2012). AlexNet has a simple architecture that con-
sists of five convolution layers, some of which are followed by rectified
linear unit (ReLU), norm, and the pooling layers as shown in Fig. 4.
Additionally, there are three fully connected layers in the architecture
(Cömert and Kocamaz, 2019).

VGG networks are one of the widely used CNN models. The main
aim of this model is to investigate the effect of the convolutional net-
work depth over its accuracy in large-scale image recognition setting.
The model possesses two keywords that are design and its depth. The
model provides a significant improvement by pushing the depth to
16–19wt layers (Simonyan and Zisserman, 2014). The architecture of
the VGG network is illustrated in Fig. 5.

Another notable deep CNN model is GoogLeNet introduced by
Szegedy et al. in the ILSVRC-2014 challenge (Szegedy et al., 2015). The
greatest hallmark of this architecture is a new block codenamed “in-
ception module” that consists of a shortcut branch and a few deeper
branches. The inception module ensures the improved utilization of the
computing resources inside the network. The inception module with
dimensionality reduction is shown in Fig. 6. Another noteworthy factor
is that this network increases the depth and width of the architecture
while keeping the computational cost constant. More specifically,
GoogLeNet consists of 22 layers and has 7 million computational
parameters. This means that this network uses 12 times fewer para-
meters compared to AlexNet and exhibits a higher performance (Garcia-
Garcia et al., 2018).

The ResNet model puts forward a residual learning framework to
ease the training of the networks. The focus of the model is the

degradation problem (Lin et al., 2013). The novelty of the model arises
with residual blocks and depth in its architecture. In a conventional
deep learning model, stacked layers fit a desired underlying mapping,
whereas the ResNet model permits these layers to fit a residual mapping
(He et al., 2016).

Let us assume that a desired underlying mapping is shown x( )� .
ResNet lets the stacked nonlinear layers fit another mapping of

= −x x x( ): ( )� � . The original mapping is recast into = +x x x( ): ( )� � .
This hypothesis can be tested by feedforward neural networks with
shortcut connections as shown in Fig. 7. In short, the intuitive idea
under the model is that the sequential layer learns something new and
different from what the input has already encoded (Garcia-Garcia et al.,
2018).

As mentioned above, the CNNs have a deep architecture, and this
architecture leads to a serious complexity and computational cost. The
well-known CNN models are summarized with their properties in
Table 1. As inferred from Table 1, AlexNet is the pioneer in this field
due to its sample and base architecture. VGGNet has a deeper structure
compared to AlexNet, and it has more than 2 times more computation
parameters in its architecture. GoogLeNet ensures a proper training
time and effective memory usage due to use of the inception module.
Compared to the other CNNs, the number of computation parameters in
this network is minimal. More and deeper architecture has come up
with ResNet by introducing the residual learning strategy.

2.3. Transfer learning and fine-tuning

The CNN models ensure significant facilities by eliminating manual
feature extraction, yielding state-of-the-art recognition results, and re-
training for new specific tasks. These factors have made these models
rather useful. There are two basic approaches for training a CNN model:
(1) from scratch and (2) transfer learning. Furthermore, the features
obtained from activation maps can also be used to feed machine-
learning algorithms (Razavian et al., 2014). It is a fact that if large-scale
data resources are available, CNN models can achieve easily general-
izable results. However, in real-world applications, achieving large-
scale labeled databases is a challenge, sometimes even impossible.
Training a CNN model from scratch requires many samples of the ob-
jects to reveal the discriminative features. Although this approach gives
us the most control over the network, the training times last too long. In
addition, overfitting and convergence issues are the potential problems
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Fig. 4. The architecture of AlexNet.
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Fig. 5. The architecture of VGG networks.
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that may be faced in this process (Penatti et al., 2015).
To address these issues, CNN models can be retrained by using fine-

tuning, and this approach is called transfer learning. Transfer learning
is a quite convenient and effective method for knowledge adaptation

(Salaken et al., 2019). In a common transfer learning approach, con-
volutional layers are used as fixed features extractors, and only fully
connected layers are set for a new specific task (Mazo et al., 2018). The
fine-tuning starts by transferring the weights from a pretrained network
to a new network that we want to train. First, the last layers, including
the fully connected, softmax and classification layers of the networks
are frequently separated from the network. Then, a new configuration is

1x1

5x5

3x3

1x1

3x3 Max
Pooling

Previous
layer

Filter
Concatenate

Fig. 6. Inception module with dimensionality reductione.

weight layer

weight layer

+

x

x
identityF(x)

F(x) +x

ReLU

ReLU

Fig. 7. Residual learning: a building block.

Table 1
The pretrained CNN models with properties.

Network Depth Parameters
(Millions)

Image Input
Size

AlexNet (Krizhevsky et al., 2012) 8 61 227-by-227
VGG-16 (Simonyan and

Zisserman, 2014)
16 138 224-by-224

VGG-19 (Simonyan and
Zisserman, 2014)

19 144 224-by-224

GoogLeNet (Szegedy et al., 2015) 22 7 224-by-224
ResNet-18 (He et al., 2016) 18 11.7 224-by-224
ResNet-50 (He et al., 2016) 50 25.6 224-by-224
ResNet-101(He et al., 2016) 101 44.6 224-by-224

Table 2
The parameters for fine-tuning the weights of the pretrained
CNN models.

Parameters Values

Max Epochs 64
Mini Batch Size 64
Initial Learn Rate 0.0001
Momentum 0.95
Weight Learn Rate Factor 10
Bias Learn Rate Factor 10
Learn Rate Schedule Piecewise
Learn Rate Drop Factor 0.1
Learn Rate Drop Period 16

TP FP

FN TN

+P

-P

+R -R

TP+FN FP+TN

TP+FP

FN+TN

N

Fig. 8. Confusion matrix.

Table 3
The performance metrics for measuring the performance of the CNN models.

Metrics Formulation Short Description

Accuracy (Acc) +
+ + +

TP TN
TP FP FN TN

The overall efficiency of a model

Sensitivity (Se)
+
TP

TP FN
The efficiency of a model on positive
samples.

Specificity (Sp)
+

TN
TN FP

The efficiency of a model on negative
samples.

Quality Index
(QI)

∗Se Sp The geometric mean of Se and Sp.

F-score ∗
∗ + +

TP
TP FP FN

(2 )
(2 )

The harmonic mean between
precision and recall.

AUC +
+ +( )TP

TP FN
TN

TN FP
1
2

The models’ power to prevent
misclassification.

Table 4
Data for training and testing.

Training set Testing set

Haploid Diploid Haploid Diploid

861 1239 369 531
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realized considering the structure of the new specific task (Salaken
et al., 2019). In this study, we focused on haploid and diploid maize
seeds (binary classification), so we had only two classes. For this reason,
the new fully connected layer had two neurons. The details of the
parameters used in the fine-tuning process are presented in Table 2.

The maximum number of epochs corresponds to a limit value for
minimizing the loss function that depends on the minibatch size. The
minibatch size is a subset of the training set that is used to evaluate the
loss function gradient as well as to update the network weights. The

network starts to update the weight with the initial learning rate. The
learning rate schedule ensures decreasing the learning rate, and this
depends on a certain number of drop periods and drop factors. In this
manner, the training of the network is faster and more proper training
time is ensured.

Fig. 9. (a) Training accuracy over the epochs of the CNN models. (b) Training loss over the epochs of the CNN models. (c) Validation accuracy over the iterations of
the CNN models. (d) Validation loss over the iterations of the CNN models.

Table 5
The confusion matrices of the CNN models.

AlexNet VGG-16 VGG-19 GoogLeNet ResNet-18 ResNet-50 ResNet-101

348a 45b 344a 40b 349a 32b 329a 42b 346a 45b 344a 57b 330a 41b

21c 486d 25c 491d 20c 499d 40c 489d 23c 486d 25c 474d 39c 490d

a TP – True Positive.
b FP – False Positive.
c False Negative.
d True Negative.
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3. Results and discussion

3.1. Performance metrics

In this study, first a confusion matrix was utilized for predicting the
performance of the CNN models. For a binary classification task, the
confusion matrix included four indices that are true positive (TP), true
negative (TN), false positive (FP) and false negative (FN) as shown in
Fig. 8. In our case, the TP and TN matched the number of haploid and
diploid maize seeds recognized correctly, whereas the FP and FN mat-
ched the number of haploid and diploid maize seeds recognized in-
correctly. The number of real haploid and diploid maize seeds corre-
spond to + +R TP FN( ) and − +R FP TN( ), respectively, whereas the

number of predicted haploid and diploid maize seeds correspond to
+ +P TP FP( ) and − +P FN TN( ), respectively. Finally, N represents
the total number of recordings.

Several performance metrics, such as accuracy (Acc), sensitivity (Se,
recall), specificity (Sp), quality index (QI), and F-score, can be derived
from the confusion matrix. The formulation of the performance metrics
and their short descriptions are represented in Table 3. It should be
noted that the importance of the QI and F-score increases in terms of a
more true performance interpretation if the number of recordings
among the classes is not equal (Cömert et al., 2018).

Receiver operating characteristic (ROC) curves are also a useful tool
for measuring a model performance without considering class dis-
tribution or error costs. An ROC curve is generated by drawing all
specific values versus correspondent sensitivity values (Cömert and
Kocamaz, 2018). In this scope, the area under the curve (AUC) is a
suitable metric for measuring the binary class tasks. It is desirable that
the AUC value is as close to one as possible.

3.2. Experimental results

The experiments were implemented on MATLAB (R2018b) with a
single NVIDIA Quadro P6000 GPU. The dataset was divided randomly
into two parts as training and testing sets in the performance calcula-
tion of each CNN model. The rates of training and test sets were kept at
70% and 30%, respectively. The detailed settings are given in Table 4.

As mentioned before, we preferred to use the transfer learning ap-
proach with the given parameters in Table 2. The accuracy and loss
over epochs are illustrated in Fig. 9 for the training and validation sets.
We tested several experimental settings to find the most efficient
parameters for all CNN models. As inferred from Fig. 9, all CNN models
achieved high accuracy in the training phase. In addition, the models
completed the process of convergence in approximately 20 epoch.

After completion of the training processes, the confusion matrices of
the test sets of the CNN models were obtained as in Table 5. Ad-
ditionally, the performance metrics derived from the confusion ma-
trices are reported in Table 6. All CNN models could distinguish the
haploid and diploid maize seeds with an accuracy of over 90%. In
particular, the VGG-19 model ensured the best Se and Sp with 94.58%
and 93.97%, respectively. In our case, the most important performance
metric is Se because this metric represents the model success in re-
cognizing haploid maize seeds. The best and worst sensitivity values
were achieved by VGG-19 (Se=94.58%) and GoogLeNet
(Se=89.16%). As mentioned before, a total of 369 haploid and 531
diploid seeds were used in the test set and VGG-19 could recognize 349
haploid and 499 diploids maize seeds correctly.

Due to the imbalanced data distribution among the classes, the ROC
curves, QI, and F-score metrics become more significant. From this
aspect, VGG-16 has the best values for the mentioned metrics.
Furthermore, the AUCs were equal to 0.9758, 0.9793, 0.9852, 0.9699,
0.9795, 0.9718, and 0.9750 for AlexNet, VGG-16, VGG-19, GoogLeNet,
ResNet-18, ResNet-50, and ResNet-101, respectively. The ROC curves of
the CNN models are shown in Fig. 10.

Fig. 11 presents the comparison of the CNN model testing perfor-
mances. As displayed in Fig. 11, the VGG-19 obtained the maximum
performance of classification with respect to the others ignoring the
consumed time for the training. AlexNet required the shortest training
time (19.82 min), while ResNet-101 took the longest time for training
(110.13min). It should be noted that the training times of the networks
depend on the hardware resources. Using advanced GPUs can ensure
shorter training times for the CNNs.

3.3. Discussion

A one-to-one comparison among the related papers is not feasible
due to the use of different methods, datasets, and division criterion.
Nevertheless, we present a comparison in Table 7 considering several

Table 6
The classification results of the CNN models.

Acc (%) Se (%) Sp(%) QI(%) F-score
(%)

AUC Error Rate

AlexNet 92.67 94.31 91.53 92.91 91.33 0.9758 0.2352
VGG-16 92.78 93.23 92.47 92.85 91.37 0.9793 0.2800
VGG-19 94.22 94.58 93.97 94.27 93.07 0.9852 0.2477
GoogLeNet 90.89 89.16 92.09 90.61 88.92 0.9699 0.2170
ResNet-18 92.44 93.77 91.53 92.64 91.05 0.9795 0.2007
ResNet-50 90.89 93.23 89.27 91.22 89.35 0.9718 0.2160
ResNet-101 91.11 89.43 92.28 90.84 89.19 0.9750 0.2198

Fig. 10. (a) ROC curves of the CNN models. (b) The differences in the AUCs in
the range of 0 and 0.2 false positive rates for all CNN models.
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criteria, such as the number of genotypes, the number of samples,
distribution of the samples among the classes, imaging methods, the
methods used, and finally, the performance metrics.

While only a small number of source genotypes were used in similar
studies, 107 source genotypes, which are yellow dent and waxy grain
types, were used in this study. This high number of source genotypes is
intended to increase the overall validity of the proposed method.

As the imaging equipment, associated studies have often used ex-
pensive devices, such as near-infrared spectroscopy (NIR), multispectral
imaging (MDI), hyperspectral imaging (HIS) and fluorescence imaging
(FI) hardware. In the proposed method, a low-cost digital camera was
used. Thus, in terms of the aspect of the cost, a highly effective system
has been developed.

The number of data are very variable in related studies as seen in

Table 7. A low amount of data makes the reliability of the studies un-
reliable. As seen in Table 7, the total amount of data used in this study
was almost 3 times higher than the highest amount of data used in the
literature. In this case, the reliability level of the proposed study has
been increased.

As we mentioned before, the seeds were labeled as haploid or di-
ploid by two field experts according to their R1-nj expression. Although
a rigorous study was carried out, there may be mislabeled seeds in the
dataset. Although all CNN models yielded excellent results, possible
mislabeled samples in the dataset may have negatively affected the
learning of the CNN networks.

In previous studies, methods, such as thresholding and conventional
machine learning, were used for the classification of maize seeds. In this
study, a CNN method that does not need feature extraction with a high

Fig. 11. (a) The performances of the respective CNN models. (b) The consumed time for training.

Table 7
Comparison of the proposed model and the related studies.

Author(s) #G Training set Test set Imaging method (sensor type) Methods Acc Se Sp

#H #D #H #D

Boote et al. (2016) 7 – – 59 N/A Fluorescence imaging Thresholding N/A 93.2* N/A
De La Fuente et al. (2017) 6 600 600 60 60 Multispectral imaging 3th party software 85.8* 76.6* 95.0*

Altuntaş et al. (2018a, 2018b) 150 87 326 87 326 Digital camera SVM 81.3 94.2 77.9
Altuntaş et al. (2018a, 2018b) 150 87 326 87 326 Digital camera DT, kNN, ANN 84.5 63.2 90.3
L. Yu et al. (2018) 1 100 100 100 100 Near-infrared spectroscopy SVSKLPP 97.1 98.8 95.4
Song et al. (2018) 4 314 736 314 736 Digital camera Thresholding 92.0* 91.4* 92.2*

Wang et al. (2018) 2 100 100 100 100 Hyperspectral imaging BPR N/A N/A N/A
This study 107 861 1239 369 531 Digital camera CNN 93.4 95.1 92.2

#G: the number of genotypes, #H: the number of haploid seeds, #D: the number of diploid seeds. N/A: Information not available. BPR: Biomimetic pattern
recognition.
* The metrics derived from the information given in the papers.
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classification ability has been used. In this method, in cases of sufficient
data, classification performance can be increased to a high level.

4. Conclusion

In this paper, we adopted CNN models to recognize haploid and
diploid maize seeds automatically through a transfer learning approach.
Seven well-known CNNs architectures were trained to classify visual
objects on natural images and were fitted to this specific task. Our
transfer learning strategy relied on keeping and freezing the convolu-
tional layers and updating the fully connected layers to recognize
haploid and diploid maize seeds. Although training a deep CNN model
needs a large-scale resource, we achieved excellent results on the
identification of the haploid and diploid maize seeds using a transfer
learning approach. Our approach was able to recognize approximately
nine out of every ten maize seeds correctly using CNN models. This
outcome emphasizes the major superiority of transfer learning and its
ability to use the potential of deep learning on domains with a reduced
number of training samples. Furthermore, we exploited the end-to-end
learning advantages of the CNN models by eliminating the tedious
manual feature extraction task. The experimental results prove that the
CNN models ensure a new opportunity for distinguishing haploid maize
seeds from diploids nondestructively, rapidly and at a low cost.
Although all CNN models ensured promising results, the most effective
model was determined to be VGG-19 for this particular task. Acc, Se,
Sp, QI and F-score performance metrics of VGG-19 were achieved as
94.22%, 94.58%, 93.97%, 94.27%, and 93.07%, respectively. In addi-
tion, VGG-19 achieved a 0.9852 AUC value. Furthermore, we have
introduced a new publicly available haploid and diploid maize seeds
dataset consisting of 1230 haploid and 1770 diploid maize seed images.
Finally, we conclude that the CNN model is significantly superior to
machine learning-based methods and traditional manual selection. The
results demonstrate that the use of CNN models in haploid and diploid
maize recognition is a nondestructive, rapid and low-cost solution.

In the future, we will investigate the use of activation maps as a
feature set for feeding shallow networks. In addition, a machine using
deep CNN models will be designed in order to transfer the experimental
knowledge to the field.
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