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A tabu search heuristic for a routing problem arising
in servicing of offshore oil and gas platforms
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This paper introduces a pickup and delivery problem encountered in servicing of offshore oil and gas platforms
in the Norwegian Sea. A single vessel must perform pickups and deliveries at several offshore platforms. All
delivery demands originate at a supply base and all pickup demands are also destined to the base. The vessel
capacity may never be exceeded along its route. In addition, the amount of space available for loading and
unloading operations is limited at each platform. The problem, called the Single Vehicle Pickup and Delivery
Problem with Capacitated Customers consists of designing a least cost vehicle (vessel) route starting and
ending at the depot (base), visiting each customer (platform), and such that there is always sufficient capacity
in the vehicle and at the customer location to perform the pickup and delivery operations. This paper describes
several construction heuristics as well as a tabu search algorithm. Computational results are presented.
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1. Introduction

This paper investigates a routing problem arising in the logis-
tics of offshore oil and gas platforms in the Norwegian Sea.
The problem consists of making deliveries and pickups at
several platforms at Haltebanken which is currently Norway’s
second largest oil and gas production area. These operations
are performed by vessels based at Kristiansund located on the
west coast of Norway. Large amounts of money are at stake
in offshore logistics, and it is therefore critical to plan oper-
ations as efficiently as possible. To illustrate the magnitude
of the costs involved, renting and operating a supply vessel
costs about 18 000 euros per day, while delaying a drilling
operation costs approximately 5000 euros per hour. The
supply base located at Kristiansund serves nine platforms at
Haltebanken: Draugen (DRU), Njord A (NJA), Njord B
(NJB), Aasgard A (ASA), Aasgard B (ASB), Heidrun (HEI),
West Alpha (WAL), Scarabeo 5 (SCA), and Transocean
Searcher (TRS) (see Figure 1). The distance between Kris-
tiansund and HEI is about 135 nautical miles, corresponding
to 11 h of travel time.

The platforms must be replenished regularly from the base.
The commodities they require come in various types, shapes,
sizes, weights and volumes. Similarly, platforms return vari-
ous objects to the base, namely waste, empty containers and
rented equipment. The total yearly amount transported from
and to Kristiansund is about 100 000 tons. In this paper we
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2110, N-6402, Molde, Norway.
E-mail: irina.gribkovskaia@himolde.no

consider only one type of commodity which can be measured
in numbers of average size containers.

Delivery and pickup operations are currently performed by
three supply vessels, each capable of serving from three to
six platforms on a single route, taking into account the vessel
capacity and speed limitations. Because planning is currently
done for one vessel at a time, this paper will focus on planning
the route of a single vessel. In addition to vessel capacities,
it is important to also consider platform available capacities.
A given platform can only accommodate a limited number of
containers because of physical limitations, and also because
an accumulation of material onboard a platform can hinder
the drilling operations. Capacities vary from one platform to
another. Part of the platform deck can be occupied by con-
tainers while some part is free space. When a platform places
an order it provides the size of its available storage capacity.
Whenever a vessel arrives at a platform, it can easily perform
its delivery operation provided there is sufficient capacity on
the platform. Otherwise, some of the return containers must
first be removed in order to create free space. This is only
possible if there is also some free space on the vessel. Further
details on this problem are provided in Aas et al (2007).

Our problem belongs to the class of single vehicle pickup
and delivery routing problems with combined demands. It is
frequently described as a one-to-many-to-one problem, be-
cause all deliveries originate at a common location called
the depot, and all pickups are sent back to the depot. The
relevant literature on this problem can be found in Gendreau
et al (1999), Nagy and Salhi (2005), Hoff and Løkketangen
(2006), and Gribkovskaia et al (2007). The latter paper con-
tains a classification and comparison of several solution types
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Figure 1 Installations and the supply base.

for the single vehicle one-to-many-to-one pickup and deliv-
ery problem. It shows that imposing an a priori shape on
the solution can be suboptimal. It proposes heuristics capa-
ble of generating general solutions, that is solutions in which
any customer can be visited once or twice. When a customer
is visited once, then a pickup and a delivery are performed
simultaneously; when a customer is visited twice, the de-
livery and pickup operations are performed separately. A
number of particular solution shapes are of interest. A lasso
solution consists of a spoke rooted at the depot and of a loop
incident to the end of the spoke. Customers on the spoke are
first visited for the deliveries as the vehicle travels from the
depot to the loop. Then all customers on the loop are vis-
ited once for the simultaneous pickup and delivery services.
Finally, the customers of the spoke are visited a second time
for pickups as the vehicle returns back to the depot. When the
spoke is empty, that is every customer is visited once, the so-
lution is Hamiltonian. When a lasso contains only the spoke,
the solution is called a double-path. In a double-path solu-
tion only the last customer on the spoke is visited once for a
simultaneous pickup and delivery. With respect to this class
of problems, the routing problem considered in this paper is
further constrained by the limited available capacity at cus-
tomer locations. In this context it is particularly important not
to impose a solution shape a priori because it would unduly
restrict the solution space and increase the risk of not identi-
fying a feasible solution or of reaching a suboptimal solution.

Our problem is called the single vehicle pickup and delivery
problem with capacitated customers (SVPDPCC). It is defined
on a graph G = (V, A), where V = {0, . . . , n} is the vertex
set and A = {(i, j) : i, j ∈ V, i �= j} is the arc set. Arc (i, j)
has a non-negative cost ci j representing the travel time from
i to j . Vertices from 1 to n correspond to customers, and

vertex 0 is the depot (supply base) at which a vehicle (vessel)
of capacity Q starts and ends its trip. Each vertex i ∈ V \{0}
has a non-negative pickup demand pi and a non-negative
delivery demand di , satisfying di + pi > 0. This means that
some vertices may have only delivery demands, some may
have only pickup demands, and some may have both. Each
vertex has a non-negative available capacity Ci at the start of
operations. We assume that Ci �di − pi for every vertex i ,
for otherwise the problem is infeasible. For the same reason,
we assume that

∑n
i=1di �Q and

∑n
i=1 pi �Q. We will not

consider the extreme case
∑n

i=1di =
∑n

i=1 pi = Q and Ci = 0
for all vertices, because it will then be practically impossible
to perform services when arriving at any vertex.

Vertices can be classified into three categories: category 0
vertices with di = pi and Ci = 0; category 1 vertices with
di >Ci ; category 2 vertices with di �Ci . Vertices of category
0 and 1 can only be visited once for a simultaneous pickup
and delivery, and those of category 0 can only be visited when
the vehicle is not fully laden. This is obvious because these
vertices do not have sufficient available capacity to accept
their delivery demand without their pickup demand being col-
lected. Vertices of category 2 can be visited twice on a route.
We further assume that neither the delivery demand nor the
pickup demand of any vertex can be split between two vis-
its. We denote by n0, n1 and n2 the number of vertices of
category 0, 1 and 2, respectively.

The SVPDCC consists of designing a least cost vehicle
route starting and ending at the depot, making all pickups
and deliveries, such that the vehicle load never exceeds the
vehicle capacity along the route, the available capacity at a
vertex is always sufficient to perform delivery or simultaneous
services, and a fully laden vehicle never arrives at a vertex
having zero capacity and equal pickup and delivery demands.

The aim of this paper is to develop a tabu search (TS)
heuristic for the SVPDCC. In order to better focus the problem
we first present a mathematical model. Construction heuristics
and a TS algorithm are described in the next two sections. This
is followed by computational experiments and conclusions.

2. Mathematical model

To model the SVPDPCC, we associate with each platform i
two vertices i and i + n (a copy). We set pi+n = pi . Two
visiting options are allowed for each platform i . The pickup
and delivery operations may be performed simultaneously, in
which case vertex i is visited and i + n is not visited. Other-
wise, platform i is visited twice: delivery is made at vertex i
and pickup at vertex i + n. To indicate which visiting option
is selected for platform i , a binary variable yi is used, taking
value 1 if pickup and delivery are performed simultaneously
at platform i in the optimal solution, and value 0 otherwise.
To describe in which sequence platforms (or their copies)
should be visited on a route, we use binary flow variables xi j
equal to 1 if and only if the vessel travels directly from vertex
i to vertex j in the optimal solution. Flow variables are not
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defined for arcs between vertices and their copies reflecting
the fact that the second visit at a platform is separated from
the first one. We also define a continuous variable ui equal to
an upper bound on the total pickup load in the vehicle upon
leaving vertex i and a continuous variable vi equal to an up-
per bound on the total delivery load in the vehicle upon leav-
ing vertex i . The model works with an extended cost matrix
C = (c̄i j )(2n+1)×(2n+1), where

c̄i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ci j if i�n, j�n

ci−n, j if i > n, j�n

ci, j−n if i�n, j > n

ci−n, j−n if i > n, j > n.

The model is then as follows:

minimize
2n∑
i=0

2n∑
j=0

c̄i j xi j (1)

subject to

2n∑
j=0

xi j = 1 (i = 0, . . . , n) (2)

2n∑
i=0

xi j = 1 ( j = 0, . . . , n) (3)

2n∑
j=0

xi j = 1 − yi−n (i = n + 1, . . . , 2n) (4)

2n∑
i=0

xi j = 1 − y j−n ( j = n + 1, . . . , 2n) (5)

u0 = 0 (6)

v0 =
n∑

i=1

di (7)

0�ui + vi �Q (i = 1, . . . , 2n) (8)

u j �ui + p j y j − (1 − xi j )Q

(i = 0, . . . , 2n; j = 1, . . . , n) (9)

u j �ui + p j (1 − y j−n) − (1 − xi j )Q

(i = 0, . . . , 2n; j = n + 1, . . . , 2n) (10)

v j �vi − d j − (1 − xi j )Q

(i = 0, . . . , 2n; j = 1, . . . , n) (11)

Ci �di − pi yi (i = 1, . . . , n) (12)

(Q − ui − vi ) + Ci �1 (i = 1, . . . , n) (13)

xi j ∈ {0, 1} (i, j = 0, . . . , 2n, i �= j; j �= i + n

if 1� i�n; j �= i − n if i > n) (14)

yi ∈ {0, 1} (i = 1, . . . , n) (15)

Table 1 Cost matrix

FBK NJA ASB ASC WAL

FBK 0 360 620 620 590
NJA 360 0 255 260 240
ASB 620 255 0 10 65
ASC 620 260 10 0 75
WAL 590 240 65 75 0

Table 2 Pickup and delivery demands, and available capacities

i pi di Ci

NJA 10 10 25
ASB 39 39 59
ASC 40 40 0
WAL 10 10 80

In this formulation constraints (2)–(5) are degree constraints.
Constraints (6) and (7) initialize the pickup and delivery loads.
Constraints (8) guarantee that the vessel load never exceeds
its capacity. Constraints (9)–(11) control the pickup and de-
livery load in the vessel after each customer location visit. As
in Desrochers and Laporte (1991), they also eliminate sub-
tours. Constraints (12) ensure that the platform capacities are
never exceeded. Constraints (13) prevent infeasible situations
in which the vessel would arrive fully laden at a location
with no free storage space, and the amounts to be picked up
and deliver would be the same. More specifically, these con-
straints state that the amount of free space on the vehicle,
Q − ui − vi , and at the customer location, Ci , cannot both be
zero. Constraints (14) and (15) force the xi j and yi variables
to be binary.

The following example based on the real instance of
Figure 1 illustrates how customer capacities can effect the
solution shape. The data, which are extracted from Aas et al
(2007), were provided by the Norwegian oil company Statoil.
There are four platforms with registered demands (identical
for pickup and delivery), and the vessel with the capacity of
99 containers. Tables 1 and 2 provide the cost matrix, the
demands and the available capacity at each platform. As can
be seen, the vessel is fully laden upon departure from the
depot located at Kristiansund (FBK).

If we disregard platform capacities and solve the prob-
lem as a pure Single Vehicle Routing Problem with Pickups
and Deliveries (Gribkovskaia et al, 2007), that is, with con-
straints (12) and (13) relaxed, we obtain the Hamiltonian so-
lution (FBK, NJA, ASC, ASB, WAL, FBK) with travel time
of 1285min. However, this solution is infeasible because on
arrival at platform ASC the vessel will be fully laden and there
will be no free space on the platform deck, making it impos-
sible to perform the services. Including constraints (12) and
(13) yields the non-Hamiltonian optimal solution (FBK, NJA,
ASB, ASC, ASB, WAL, FBK) with travel time of 1290min
(Figure 2). On this route the platform ASB is visited twice. At
the first visit to this platform only the delivery is performed,
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Figure 2 Optimal solution for the real instance depicted in
Figure 1, showing two visits at platform ASB. The depot is located
in Kristiansund.

thus creating free space for 39 containers on the vessel. When
ASC is visited next on the route, both services can now be
performed, leaving the same capacity for 39 containers on the
vessel. On the second visit to ASB the available space on the
vessel is used to collect the pickup demand at that location.

3. Construction heuristics

We have developed several construction heuristics for the
SVPDPCC. In what follows, a solution is load-feasible if the
vehicle capacity is never exceeded. It is storage-feasible if
none of the vertices belonging to categories 0 or 1 is visited
twice. It is operational-feasible if a fully laden vehicle never
serves a vertex with no available capacity (category 0 vertex).

3.1. Description of the construction heuristics

We now describe the construction heuristics we have develo-
ped for the SVPDPCC. Their aim is to provide a load-feasible
and storage-feasible initial solution for the TS heuristic. All
construction heuristics apply the same three basic steps.

Step 1: Construction of a spoke
Only consider the vertices that can be visited twice
(category 2). Start from the depot and connect these
using a nearest neighbour (NN) rule (Rosenkrantz
et al, 1977) or a cheapest insertion (CI) rule (Mole
and Jameson, 1976). Follow the path in the reverse
direction to obtain a spoke.

Step 2: Construction of a loop
Now consider the remaining single-visit vertices
(category 0 and 1) and construct a loop which will be
attached to the end vertex of the spoke generated in
Step 1. Two variants of this procedure were tested:

Single-visit node
Double-visit node

Depot

Figure 3 Shape of the initial solution (n0 + n1> 1 and n2> 0).
Four vertices are visited twice and six vertices are visited once.

(1) Start from the end vertex of the spoke. First,
insert all vertices with positive net delivery demand
di − pi ; then insert vertices of category 0; finally
insert vertices with negative net delivery demand.
This procedure can be based on the NN or on the CI
rule.
(2) Use Mosheiov’s (1994) PD�T algorithm: con-
struct, without considering the vehicle capacity, a
cycle including all single-visit vertices (categories 0
and 1) and the end vertex of the spoke, which is then
treated like an artificial depot, and reinsert it in this
cycle to make the route load-feasible.
The resulting solution will be a lasso. If n0 +n1�1,
it will be a double-path, and if n2 = 0 it will
be a Hamiltonian circuit. This solution is always
storage-feasible, but in a very extreme case it may
be operational-infeasible (see below). Figure 3 illus-
trates a solution obtained after executing Steps 1 and
2 on an artificial instance.

Step 3: Backward merging
Backwardmerging of vertices on the spoke is applied
in order to decrease the cost of the initial solution
while maintaining feasibility. Starting from the end
vertex of the spoke, we try to delete the second visit
to a current vertex and check whether this is load-
feasible and operational-feasible. If the deletion of
the second visit is load- and operational-feasible, we
perform it, and proceed towards the depot to the next
vertex on the spoke. An illustration of a route after
the backward merging is given in Figure 4.
Different versions of the construction heuristics can
be obtained: the spoke can be constructed with the
use of CI; the loop can be constructed by any of the
two variants described above, and in each of them we
can use NN or CI. We have programmed and tested
the three following versions: Con1: NN + 1NN +
B; Con2: NN + 2CI + B; Con3: CI + 2CI + B. The
two first letters stand for the ways of constructing
a spoke. In the next field, 1 corresponds to the first
procedure of loop construction, and 2 to the second
procedure; the two letters that follow indicate which
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Single-visit node
Double-visit node

Depot

Figure 4 Effects of backward merging using the graph of
Figure 3. Now only two vertices are visited twice. The dotted lines
correspond to the old route while the full lines correspond to the
new route.

heuristic rule is used for loop construction. The
final letter B stands for backward merging.
We emphasize the following properties of our con-
struction heuristics. If we use the first procedure
for the construction of a loop, we will always ob-
tain an operational-feasible solution assuming one
exists. This is so because category 0 vertices are
visited when the vehicle is least loaded. Therefore
there should be at least one unit of free capacity
on the vehicle, for otherwise the problem is infea-
sible. If we use the second procedure for loop con-
struction, an operational-infeasible solution may be
constructed. This can occur if n2 = 0 and n0 > 0.
Another extreme infeasible case arises when n2 > 0
but

∑
i∈V2

di = 0 or
∑

i∈V2
pi = 0 (where V 2 is the

set containing all category 2 vertices), and n0 > 0.
These two cases are very extreme, and we did
not consider such instances in our computational
experiments. We have therefore always generated
operational-feasible solutions.

4. TS heuristic

Once a solution has been constructed, we improve it using
TS, a method originally proposed by Glover (1986). TS is
a local search metaheuristic that explores the solution space
S by moving at each iteration from the current solution s of
cost c(s) to the best solution in a subset M(s) of its neigh-
bourhood N (s), defined as all solutions that can be reached
by applying a modification to solution s. Since the objective
function may deteriorate during the search, anti-cycling rules
must be implemented, that is forbidding moves that revoke
the effect of recent moves by declaring them tabu. The num-
ber of iterations for which a move is declared tabu is called
the tabu tenure. It can be fixed or modified dynamically
during the search process. An aspiration criterion is used to
allow tabu solutions that improve over the best known solu-
tion s∗. The most commonly used stopping criteria are: (1) a

fixed number of iterations (or a fixed amount of CPU time);
(2) a fixed number of iterations without improvement in the
objective function value; (3) when the objective reaches
a prespecified threshold value. Additional features have
to be included in the search strategy to make it fully
effective.

Our TS implementation modifies the algorithm developed
by Gribkovskaia et al (2007), which is based on the Unified
Tabu Search Algorithm (UTSA) of Cordeau et al (2001). This
algorithm has proved to be one of the most successful TS
algorithms for the Vehicle Routing Problem and some of its
variants. One important feature of UTSA is the consideration
of infeasible solutions during the search process. Solutions do
not have to satisfy capacity or route length restrictions, but
penalty terms for their violations are present in the objective
function which has the form: f (s) = c(s) + �q(s) + �d(s),
where c(s) is the routing cost of solution s, q(s) and d(s) are
total load and duration violations in this solution, and � and �
are positive parameters that dynamically self-adjust depend-
ing on the feasibility of previous solutions. Other important
features of UTSA are a continuous diversification mechanism,
and a route reoptimization procedure. These ideas are present
in our algorithm with some modifications. We now discuss
the main features of our TS algorithm.

Solution s: Each solution s represents a route in which
vertices are visited once or twice. It is important to temporarily
allow solutions to be load- or operational-infeasible.

Load feasibility violations: Load feasibility is checked
whenever a vertex is visited. The total load infeasibility of
a route is equal to the sum of load infeasibilities of all its
vertices.

Operational feasibility violations: Operational feasibility
means that vertices with zero capacity must not be visited by a
fully laden vehicle. The total operational feasibility violation
of a route is the number of such vertices.

Storage feasibility violations: We do not allow vertex ca-
pacity violations in our algorithm. Before solving an instance,
we identify vertices that can be visited only once (these are
not dependent on routing).

Penalized objective function: For a solution s ∈ S, let c(s)
denote the total routing cost, let q(s) denote the total load
feasibility violation of the route, and let z(s) denote the total
operational feasibility violation of the route. Solutions s ∈ S
are evaluated with the help of the penalized cost function
f (s)=c(s)+�q(s)+�z(s), where � and � are positive param-
eters. The value of the parameter � is dynamically adjusted
based on the recent history of the search. At each iteration,
the value of a � is modified by a factor (1+�)> 1, where � is
a positive parameter. If the current solution is load-feasible,
the value of � is divided by (1+�); otherwise, it is multiplied
by (1 + �). We use a similar rule for parameter �.

Attributes: Another useful ingredient of our TS algorithm
is the presence of attributes (i, v). Let v denote the number
of visits at vertex i . With each solution s is associated an
attribute set B(s) = {(i, v) : i = 1, . . . , n, v = 1, 2} which
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indicates how many times each vertex is visited. Attributes
are used to perform moves, control tabu status, and implement
a diversification technique.

Neighbourhood N (s) and definition of a move: The neigh-
bourhood N (s) of solution s is defined by all solutions that
can be reached from s by changing the number of visits
at one category 2 vertex. A transition from the current so-
lution s to the solution s ′ ∈ N (s) is called a move. The
move can be expressed by the removal of attribute (i, v) from
the set B(s) and the addition of attribute (i, v′) to B(s ′),
(v �= v′).

In our problem, some vertices can only be visited once a
priori (those that belong to categories 0 and 1). Therefore
moves can only be applied to some of the category 2 vertices.
We use the letter �i to define the status of vertex i , that is
the number of times it is visited in the current solution. There
are two types of moves because �i can change from 1 to 2
or from 2 to 1. Moves are performed as follows.

1. Insertion of the second visit at vertex i,�i = 1: Suppose
that in the solution s vertex i is visited once, that is (i, 1) ∈
B(s). The second visit to vertex i is inserted in the route
minimizing the increase in the penalized function f (s ′)=
c(s ′)+�q(s ′)+�z(s ′). Hence, (i, 2) ∈ B(s ′). The purpose
of visiting vertex i twice is to obtain a solution s ′ with lower
total load infeasibility than that of solution s. However,
visiting the same vertex twice entails a higher routing cost.
That is why the insertion of a second visit to vertex i is
based on the penalized function.

2. Deletion of the second visit at vertex i,�i =2: Suppose that
in the solution s vertex i is visited twice, that is (i, 2) ∈
B(s). A neighbour solution s ′ is obtained by deleting the
second visit to vertex i from the route maximizing the
decrease in f (s ′), and reconnecting its predecessor and
successor. The deletion of the second visit to i implies that
(i, 1) ∈ B(s ′). In solution s ′ the vertex i is visited in the
same order as its first visit in solution s: If costs satisfy the
triangle inequality, deleting the second visit at a vertex will
never yield a routing cost increase. However, it may lead
to an increase in load infeasibility or to an operational-
infeasible solution.

Tabu status of an attribute: We use the attributes to control
tabu statuses instead of maintaining an actual tabu list. If the
number of visits v at vertex i is changed to v′, reverting to v

visits at vertex i is forbidden for the next � iterations. This is
done by assigning a tabu status to the attribute (i, v) for the
next � iterations. The tabu tenure � is an integer randomly
selected at each iteration within the interval [1; �̄], where �̄
is a user-controlled parameter.

Aspiration criterion: The assignment of a tabu status to at-
tributes may sometimes be too restrictive, that is, good moves
can turn out to be forbidden. To rectify this, we introduce a
rule that a tabu status of an attribute (i, v) can be revoked if
this would lead to a feasible solution of a smaller cost than

that of the best known solution having that attribute. In other
words, this move has to result in a solution s ′ ∈ N (s) with
q(s ′)=0, z(s ′)=0 and c(s ′)<�iv , where �iv is an aspiration
level of attribute (i, v). The initial set of �iv is equal to c(s)
if (i, v) belongs to the attribute set of the feasible initial so-
lution and to ∞ otherwise. Every time a feasible solution s
is identified, the aspiration level of each of its attributes (i, v)
is updated to min{�iv, c(s)}.

Admissible subset M(s) of neighbour solutions: At each
iteration, the subset M(s) ⊆ N (s) is formed from solutions
s ′ ∈ N (s) for which the corresponding attribute {(i, v′) :
�i = 2} ∈ B(s ′)\B(s) is not tabu, or from solutions s ′ that
are feasible and for which the value of c(s ′) is less than the
aspiration level of attribute (i, v′).

Diversification: Without a diversification strategy, the eval-
uation of the best solution s ′ ∈ M(s) would be based on
the penalized function f . However, we wish to diversify the
search, that is, give a higher chance of being selected to so-
lutions s ′ ∈ M(s) having an attribute (i, v′) that has not been
frequently present in past solutions. The mechanism operates
as follows: any solution s ′ ∈ M(s) such that f (s ′)� f (s) is
penalized with a term p(s ′) proportional to the addition fre-
quency 	iv of the modified attribute, value of c(s), and param-
eter 
. Let 	iv denote number of times attribute (i, v) has been
added to the solution and let t denote tabu iteration counter,
where the parameter 
 is used to control the intensity of the
diversification. Then the penalty term is p(s ′) = 
c(s)	iv/t .
If f (s ′)< f (s), we assume that p(s ′)= 0. Finally, the selec-
tion of the best solution s ′ ∈ M(s) is based on a generalized
function g(s ′) = f (s ′) + p(s ′).

Intra-route reoptimization: One more valuable mechanism
incorporated in our search algorithm is an intra-route reop-
timization procedure which attempts to generate a better so-
lution by changing the sequence of vertices in the current
route without changing the statuses of vertices. The imple-
mentation of an intra-route reoptimization in our algorithm
is made through the following reinsertion procedure which
is applied to every vertex with the status one in the current
route:

Step 1: Delete the current vertex if this does not change
the number of visits to other vertices. The prede-
cessor and the successor of the deleted vertex are
connected together.

Step 2: Reinsert this vertex in the route minimizing the pe-
nalized function f , that is without requiring fea-
sibility of the resulting route. The vertex can be
reinserted in the same position from which it was
deleted.

Step 3: Consider another vertex on which this procedure
has not been applied yet, go to Step 1 and repeat
until all vertices are checked.

The intra-route reoptimization procedure is applied every time
a new best solution is found, or every �th iteration.
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Construction of an initial solution: The constructive heuris-
tics Con1, Con2 and Con3 described above were used for
the generation of the initial solutions for our TS algorithm.
We stress that these solutions are always load-feasible and
storage-feasible. In addition, Con1 guarantees the operational
feasibility of the initial solutions. If the construction heuris-
tic yields an operational-infeasible solution, it is possible
that operational feasibility will be restored during the tabu
iterations.

We now provide a detailed description of our TS
algorithm.

Notation used in the description of the tabu search
algorithm

(i, v) Attribute: number of visits v at
vertex i

�i Status of vertex i
B(s) Attribute set of solution s
c(s) Routing cost of solution s
f (s) Routing cost plus penalties for constraint violations

in solution s
g(s) Function f plus diversification

penalty term in solution s
q(s) Total load violation of solution s
z(s) Operational feasibility violation of solution s
N (s) Neighbourhood of solution s
M(s) An “admissible” subset of N (s)
s, s ′, s̃ Solutions
s0 Initial solution
s∗ Best solution identified
� Penalty factor for overload
� Parameter used to update �
� Penalty factor for operational infeasibility
�0 Initial value of �

 Factor used to adjust the intensity of diversification
� Total number of iterations to be performed
� Tabu tenure
�̄ Upper bound value for the tabu tenure
t Iteration counter
	iv Number of times attribute (i, v) has been added to

the solution
�iv Aspiration level of attribute (i, v)
iv Last iteration for which attribute (i, v) is declared

tabu
� Parameter used to adjust the intensity of intra-route

reoptimization

Our TS algorithm starts from an initial solution s0 obtained
with the use of one of our construction heuristics. The search
process is defined by six parameters �, 
, �̄,�, �,�, and
returns after execution the best feasible solution found s∗,
if any.

Step 1: Set s := s0, �=1. If s is operational-feasible (z(s)=
0), set s∗ := s.

Step 2: For every (i, v), do
• Set 	iv := 0, iv := 0.
• If (i, v) ∈ B(s) and s is feasible, set �iv := c(s);
else, set �iv := ∞.

Step 3: For t = 1, . . . , �, do
a. Update �, 
, �:

• � := random value from the interval (0, 1).
• 
 := random value from the interval (0, 1).
• � := random integer value from the interval

[1, �̄].
b. Set N (s) := ∅.
c. For each attribute (i, v′) /∈ B(s) such that �i = 2
do

• Create a solution s ′ applying a move definition:
replace the corresponding attribute (i, v) ∈
B(s) by attribute (i, v′), ie B(s) := B(s)\
{(i, v)} and B(s ′) := B(s) ∪ {(i, v′)}.

• Set N (s) := N (s) ∪ {s ′}.
d. Set M(s) := ∅.
e. For each s ′ ∈ N (s) do

• For (i, v) ∈ B(s ′)\B(s) such that iv < t or
such that c(s) + ( f (s ′) − f (s))<�iv , set
M(s) := M(s) ∪ {s ′}.

f. For each s ′ ∈ M(s), do
• If f (s ′)� f (s), set g(s ′) := f (s ′)+
c(s)	iv/t ;
else, set g(s ′) := f (s ′).

g. Identify a solution s ′ ∈ M(s) minimizing g(s ′).
h. For attribute (i, v) ∈ B(s ′)\B(s) do

• Set 	ik := 	ik + 1 and iv := t + �.
i. If s ′ is feasible (q(s ′) = 0 and z(s ′) = 0), do

• If c(s ′)< c(s∗), set s∗ := s ′.
• For each (i, v) ∈ B(s ′), set �iv := min{�iv,

c(s ′)}.
• Set � := �/(1 + �); else, set � := �(1 + �).

j. Set s := s ′.
k. If q(s) = 0 and z(s) = 0 and c(s) = c(s∗), or
t = k�, k=1, 2, . . . , do intra-route reoptimization:

• For each (i, 1) ∈ B(s) do
(i) Remove vertex i from its route in solution

s and reinsert vertex i in a route in solution
s̃ minimizing f (s̃) = c(s̃) + �q(s̃) + �z(s̃)
such that B(s) = B(s̃).

(ii) Set s := s̃.
• If both q(s)= 0 and z(s)= 0 and c(s)< c(s∗),
set s∗ := s.

l. Set t := t + 1.

5. Computational experiments

We have programmed our heuristics in Pelles C for Windows,
and run them on a PC with 1.6GHz Intel Centrino processor
and 248Mb RAM, running under Windows XP.
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Table 3 Characteristics of A-instances

Set � Average �

A1 2.2 86.4
A2 1.0 61.1
A3 0.7 40.4
A4 0.6 22.4

5.1. Test instances

We have generated 119 test instances: four sets of A-
instances, two sets of B-instances, and one set of C-
instances. Each set contains 17 instances of different
sizes. All instances are derived from the Capacitated Ve-
hicle Routing Problem (CVRP) instances of VRPLIB:
http://www.or.deis.unibo.it/research pages/ORinstances/VRP
LIB/VRPLIB.html. We have selected 17 CVRP instances
containing between 16 and 101 vertices: E-016-03, E-021-
04, E-022-04, E-023-03, E-026-08, E-030-03, E-031-09,
E-033-04, E-036-11, E-041-14, E-045-04, E-048-04, E-051-
05, E-072-04, E-076-07, E-101-08, E-101-10. The instances
are generated in the plane with Euclidian distances. Delivery
and pickup demands and the amount of available capacity
at vertices were generated in different ways, yielding the
following three major groups of instances.

5.1.1. A-instances. We have generated four sets of A-
instances, 17 in each, with different average percentage of
category 2 vertices. Delivery and pickup demands were gen-
erated as follows. Let qi be the demand of vertex i in the orig-
inal CVRP instance. We then set di = qi and pi = [(1−�)qi ]
if i is odd or pi = [(1 + �)qi ] if i is even, where 0��< 1.
We have selected � = 0.20. The amount of available capacity
at the vertices was generated as follows:

Ci = �[�(di + pi ) − max{0, di − pi }] + max{0, di − pi }
where 0��< 1 is a random number, and �> 0 is a user-
specified parameter. This generation process yields Ci values
within the interval [max{0, di − pi },�(di + pi )]. By using
different values for the coefficient �, four sets of instances
were obtained (Table 3). Let � be the percentage of category
2 vertices in an instance. We have generated A-instances to
investigate the difference in solution shapes between more
and less constrained instances.

5.1.2. B-instances. The B-instances have the same delivery
demands as the A-instances: di = qi for i = 1, . . . , n. To
generate the pickup demands, the vertices were first ranked
in increasing distance from the depot. For the first third of
vertices (region 1) we set pi = 1.2qi . For the second third
(region 2) pi was generated as for the A-instances. For the last
third (region 3) pi = 0.8qi . We have generated the amount of
available capacity at the vertices by using the same formula
as for the A-instances, but we have used two different ways
of choosing values for parameter � to obtain two sets of

Table 4 Characteristics of B-instances

�

Set Region 1 Region 2 Region 3 Average �

B1 2.2 2.2 2.2 86.3
B2 0.6 1.0 2.2 60.9

B-instances (Table 4). When generating B-instances, our idea
was that in set B1 there would be a higher likelihood of
obtaining more non-Hamiltonian solutions than, for example,
in set A1. In particular, we wanted to understand the impact
of having less available capacity at vertices. This is why we
have generated the set B2.

5.1.3. C-instances. We have generated one set of 17 highly
constrained C-instances. These have the same delivery
demands (one may be different, and this will be explained
below) as the A-instances: di = qi for i = 1, . . . , n. Pickup
demands are again generated with respect to vertex location.
We use the same partition of the vertices into three regions,
as for the B-instances. In region 1 we set pi = di and Ci = 0
for all vertices i . In regions 2 and 3 delivery and pickup
demands were generated as in the A-instances, and available
capacities at vertices were generated with the coefficient
�=2.2. It is important to note that in the C-instances we also
require that

∑n
i=1 pi = ∑n

i=1di . We achieve this by adjusting
the pickup or the delivery demand at the vertex most remote
from the depot: we compute the sum of delivery demands of
all other vertices, and compare it with that of their pickup
demands. If the former is larger, we assign the pickup de-
mand at this vertex to this difference, otherwise we set its
delivery demand equal to this difference. We have generated
C-instances in order to study the nature of operational infea-
sibility. These instances are very constrained and contain a
high proportion of category 0 vertices.

In all A-, B- and C-instances, we set Q = max{∑n
i=1 pi ,∑n

i=1di }. The test instances are available on the follow-
ing website: http://neumann.hec.ca/chairedistributique/data/
svpdpcc.

5.2. Fine tuning of the TS heuristic

In all tables that follow, the gap is measured with respect
to a lower bound. Let s∗ be the best solution found by the
algorithm, s be the solution of a Traveling Salesman Prob-
lem (TSP) defined on G, and c(s) be the value of solution
s. Then c(s)�c(s∗). The gap is the percentage ratio be-
tween c(s∗) and c(s) : gap = 100[c(s∗) − c(s)]/c(s). The
TSPs are solved by means of the Concorde solver available
at http://www.tsp.gatech.edu/concorde.html.

5.2.1. Initial solution. We have first compared the three
construction heuristics used to initialize the TS. The gap val-
ues obtained with our construction heuristics are given in
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Table 5 Average gap values obtained by three construction
procedures

Set Con1 Con2 Con3

A1 51.53 48.80 49.67
A2 70.98 54.83 61.05
A3 82.77 55.57 61.24
A4 84.18 50.77 59.42
Average A 72.37 52.49 57.85

B1 46.80 49.77 50.37
B2 59.39 48.22 55.49
Average B 53.09 49.00 52.93

C 66.83 53.24 60.26
Average 66.07 51.60 56.79

Table 5. Solution times are negligible. The Con2 heuristic is
the best but it is worth remembering that only Con1 guar-
antees operational-feasible solutions. However, even for the
most constrained C-instances none of our construction heuris-
tics yields an infeasible solution.

5.2.2. Search parameters. In our implementation of the TS
heuristic, we have randomly selected � and 
 in (0,1). These
values seem to be relatively stable irrespective of the appli-
cation (Cordeau et al, 2001). We have decided to concentrate
on finding good values for the intra-route reoptimization fre-
quency �, the maximal tabu tenure �̄, and the penalty factor
� for operational infeasibility.

Intra-route reoptimization frequency: In order to determine
the best intra-route reoptimization frequency, the TS algo-
rithm was initiated with Con2, as it gives the best initial
solutions out of the construction heuristics, the tabu tenure
was chosen randomly from the interval [1, [12 log n]], and
the operational-infeasibility penalty factor was fixed at value
� = c̄n, where c̄ is the average value of the cost matrix. All
the instances were run for 104 iterations.

We believe that the intra-route reoptimization frequency
has to be dependent on the percentage of category 2 vertices
in an instance. The reasoning is the following. Our TS algo-
rithm is able to perform moves (changing a number of visits)
only on category 2 vertices. If there are several of them in a
given instance, then the solution space is larger. The only way
to change the position of single-visit vertices is during the
intra-route optimization phase. Therefore, we have decided
to inversely relate intra-route reoptimization frequency to the
value of �.

We have compared several variants of intra-route reopti-
mization patterns. Five variants were defined by using dif-
ferent relationships between � and �. These are shown in
Table 6.

One can observe from this table that in variant 4 the value
of � is not dependent on �, but set equal to 10. We found
that variant 1 performs the best in terms of the average gap.
We also observed that in general, for the more constrained

Table 6 Relationship between � and � for five tested variants

�

� Variant 1 Variant 2 Variant 3 Variant 4 Variant 5

�95 5 10 20 10 10
�75 4 8 16 10 10
�55 3 6 12 10 8
�35 2 4 8 10 3
< 35 1 2 4 10 3

instances, the best solutions are more often produced during
the intra-route reoptimization phase, and not when performing
a tabu move. This is true even if � is constant (variant 4). This
in a way confirms our hypothesis that for more constrained
instances we should perform intra-route reoptimization more
frequently. However, variant 1 took on average longer than
the other variants. This behavior was expected since intra-
route reoptimization is performed a larger number of times in
variant 1 than in the other variants.

Tabu tenure: Having decided to use Con2 to initialize the
search and variant 1 for the dependence of � over �, we have
attempted to select the best tabu tenure in the interval [1, �̄].
We have experimented with several values of �̄: [12 log n],
[8 log n2], [12 log n2], [18 log n2], [25 log n2]. The last value
was not tested for 104 iterations, but for 105 iterations. We
also attempted a different approach, as proposed in Hoff et
al (2006), and we selected the tabu tenure from intervals
[n/8, n/4] and [n2/8, n2/4]. The best value of average gap
among the variants tested for 104 iterations is obtained with
�̄ = [18 log n2].

Value of the parameter �: To determine the best value of
� we again use Con2 to generate initial solutions, variant 1
for the dependency of � over w, and �̄ = [18 log n2]. In the
previous tests, we were using a static value c̄n for parameter
�, which was the best one among the static values. We have
also applied to � the same adjustment mechanism as for �. We
then tested a dynamic self-adjustment mechanism, initiated
from �0 = c̄n, which proved to perform better.

5.3. Test results

In Table 7 we provide the results of the execution of our TS
algorithm with the best identified parameters, starting from
different initial solutions. These results indicate that Con2
is better for A-instances, but Con3 is better for B- and C-
instances. The final tests were carried out with Con2 which is
the overall best initialization procedure. The average compu-
tation time over all instances was 46 s (48 s for A-instances,
42 s for B-instances, 47 s for C-instances). Computation time
is proportional to the number of iterations.

The average gap values observed are reasonably small con-
sidering the fact that TSP optimal solution value underesti-
mates that of the SVPDPCC. In fact, the optimal TSP solution
is often infeasible for the SVPDPCC: this occurred 64.7% of
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Table 7 Average gap values obtained by TS algorithm with
three initialization procedures

Set Con1 Con2 Con3

A1 4.43 4.40 3.65
A2 7.35 4.22 5.69
A3 7.43 5.25 5.08
A4 8.25 5.31 7.62
Average A 6.86 4.80 5.51

B1 5.27 5.65 5.31
B2 5.49 5.69 5.33
Average B 5.38 5.67 5.32

C 13.29 13.36 12.33
Average 7.36 6.27 6.43

Table 8 Percentage of non-Hamiltonian solutions found for
each instance set

Instance set A1 A2 A3 A4 B1 B2 C

Percentage of
non-Hamiltonian
solutions

11.8 17.6 17.6 17.6 47.1 17.6 35.3

the time for A-instances, 88.2% of the time for B-instances
and for all C-instances.

Finally, we have analysed the shapes of solutions obtained
with our TS heuristic. Table 8 gives for each instance set
the percentage of non-Hamiltonian solutions among the best
solutions generated by the heuristic.

Looking at A-instances, one can observe that, contrary
to what could have been expected, the proportion of non-
Hamiltonian solutions is not dependent on how constrained
an instance is. The proportion of non-Hamiltonian solutions
in A-instances is, in general, relatively small because it is of-
ten possible to perform a simultaneous pickup and delivery at
all vertices. In contrast, in B-instances, vertices located close
to the depot have large pickup demand compared to their de-
livery demand which means that these two operations may
not be performed during the same visit. In this respect, the
set B2 differs drastically from B1. In B2, the instances are
more constrained and contain fewer vertices that can be vis-
ited twice. But what is more important is where vertices with
limited available capacity are located. On purpose we have
put less capacity at vertices most likely be visited twice, that
is those vertices located close to the depot and having large
pickup and small delivery demands. By so doing, we have
reduced the likelihood of generating non-Hamiltonian solu-
tions. This is confirmed by our results: in B1 the proportion
of non-Hamiltonian solutions is 47.1% while in B2 it is only
17.6%.

Our expectations also came true regarding C-instances. We
have identified a high proportion of non-Hamiltonian solu-
tions among the best ones. We have on purpose constructed

C-instances with several vertices that cannot be visited with
a fully laden vehicle, located close to the depot, and a vehicle
leaving with a full load. As a result, the vehicle cannot go to
any of these vertices just after leaving the depot. And we have
also imposed that the sum of delivery demands be equal to
the sum of pickup demands, so that the vehicle would be very
likely to come back to the region close to the depot (region 1)
with a maximum load. In order to obtain a feasible solution,
the vehicle first has to go to a vertex where it can free some
space onboard, then service vertices with no available capac-
ity, and then probably come back to the first vertex of its route
to make a pickup if only a delivery was performed in the first
visit.

6. Conclusions

We have introduced the SVPDPCC, a problem encountered
in the servicing of offshore oil and gas platforms. We have
developed several construction heuristics as well as a TS al-
gorithm for this problem. Our best heuristic consists of apply-
ing TS starting with an initial solution generated with Con2
which combines NN, CI and backward merging procedures.
The solutions produced by our algorithm may be Hamilto-
nian or not, depending partly on vertex demands and relative
locations.
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