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Abstract. This paper introduces a non-standard vehicle routing problem

(VRP) arising in the oil and gas industry. The problem involves multiple
offshore production facilities, each of which requires regular servicing by sup-

port vessels to replenish essential commodities such as food, water, fuel, and
chemicals. The support vessels are also required to assist with oil off-takes, in

which oil stored at a production facility is transported via hose to a waiting

tanker. The problem is to schedule a series of round trips for the support ves-
sels so that all servicing and off-take requirements are fulfilled, and total cost is

minimized. Other constraints that must be considered include vessel suitabil-

ity constraints (not every vessel is suitable for every facility), depot opening
constraints (base servicing can only occur during specified opening periods),

and off-take equipment constraints (the equipment needed for off-take support

can only be deployed after certain commodities have been offloaded). Because
of these additional constraints, the scheduling problem under consideration is

far more difficult than the standard VRP. We formulate a mixed-integer linear

programming (MILP) model for determining the optimal vessel schedule. We
then verify the model theoretically and show how to compute the vessel utiliza-

tion ratios for any feasible schedule. Finally, simulation results are reported for

a real case study commissioned by Woodside Energy Ltd, Australia’s largest
dedicated oil and gas company.

1. Introduction. The vehicle routing problem (VRP) is a classic problem in oper-
ations research. The basic framework of the VRP involves a single depot, multiple
customers, and multiple vehicles of identical type. The vehicles are used to trans-
port a certain commodity from the depot to the customers, and both the capacity
of each vehicle (in terms of how much commodity it can carry) and the demand
of each customer (in terms of how much commodity it requires) are known. The
problem is to find a set of closed routes (one for each vehicle) so that total distance
is minimized subject to the following constraints:

(a) Each route starts and ends at the depot.
(b) Each customer is visited by precisely one vehicle.
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(c) The total demand of customers along each route should not exceed the vehicle
capacity.

This paper considers a variation of the standard VRP described above. Specifically,
we consider a real scheduling scenario faced by Woodside Energy Ltd (Woodside),
one of Australia’s largest companies with a market capitalization of around $18 bil-
lion US dollars (as at April 2016). The problem involves scheduling a fleet of support
vessels to service Woodside’s offshore oil and gas facilities. Before describing Wood-
side’s problem in detail, we give a brief review of the relevant literature on the VRP
and its variants.

1.1. Literature review. Various mathematical formulations for the VRP have
been presented in the literature. For a thorough review of these different formu-
lations, we refer the reader to [18]. Common variations of the standard VRP in-
clude the site-dependent VRP (there are multiple vehicle types and not all vehicles
are suitable for all customers), the multi-trip VRP (vehicles may perform multiple
trips), the periodic VRP (vehicles may perform multiple trips and customers must
be visited a prescribed number of times), the VRP with limited durations (route
durations cannot exceed a maximum time limit), and the VRP with time windows
(customers must be visited during specific time periods). The problem to be con-
sidered in this paper is a combination of the site-dependent VRP, the multi-trip
VRP, and the VRP with time windows.

The multi-trip VRP was first introduced by Fleischmann in 1990 [9]. Various
solution algorithms have since been proposed for solving the multi-trip VRP. These
include genetic algorithms [19], multi-phase algorithms [16], and algorithms based
on adaptive memory programming [15]; see reference [20] for a comprehensive sur-
vey. Reference [17] considers an interesting variant of the multi-trip VRP in which
cost penalties are imposed for route durations that exceed a given time limit. The
problem was solved via a population-based algorithm using the tabu search and bin
packing approaches. Incidentally, tabu search is also an effective tool for solving
periodic VRPs; see [2] for details.

The multi-trip VRP with time windows is considered in reference [5]. In this ref-
erence, a novel solution approach is proposed that involves decomposing the VRP
into two subproblems, each of which can be solved heuristically—the heuristic for
the first subproblem generates feasible routes; the heuristic for the second subprob-
lem solves a corresponding bin packing problem. These heuristics are called by
a master algorithm that implements a self-adaptive guidance strategy to ensure
the route heuristic only ever generates improved routes. Reference [7] considers
a variant of the multi-trip VRP with time windows in which the following addi-
tional features are incorporated: vehicles have heterogeneous capacities, access to
customers is restricted by certain rules, loading/unloading times are non-negligible,
extra vehicles can be hired when necessary, and the cost function incorporates trans-
port costs (including fuel and maintenance costs) and wages (including fixed wages
and overtime charges). The algorithm developed in [7] for solving this problem uses
a nearest neighbour and insertion procedure followed by tabu search.

For perishable commodities, route duration constraints are often required in the
VRP. Reference [3] considers a multi-trip VRP with time windows and route dura-
tion constraints (a combination of the multi-trip VRP, the VRP with time windows,
and the VRP with limited durations). This problem involves only a single vehicle
and can be solved using a two-phase exact method based on dynamic programming.
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In [4], the same problem is considered, but with a homogeneous fleet instead of a
single vehicle. Similar two-phase approaches for solving the multi-trip VRP with
time windows and route duration constraints are described in [11, 14].

1.2. Contribution of this paper. In this paper, we introduce a new variant of
the VRP that is based on a real scheduling problem faced by oil and gas company
Woodside in the management of its offshore oil and gas assets. The problem setting
is described as follows.

Woodside operates various oil and gas facilities situated in the Indian Ocean off
the coast of Western Australia. A dedicated fleet of support vessels is available
for servicing these facilities, and each support vessel has different characteristics
in terms of speed, deckspace, and carrying capacity for various commodities. The
offshore facilities require their commodity stocks (e.g., food, water, fuel, chemicals)
to be regularly replenished. In addition, the oil facilities require off-takes to be
performed at scheduled times. This involves moving oil from the facility to a waiting
tanker. Before the off-take can begin, a support vessel needs to connect a hose from
the oil facility to the tanker and only some support vessels have the equipment
needed to perform this connection. Moreover, on some vessels, the deck must be
completely clear before the off-take support equipment can be used. This means
that any cargo supplies stored on deck must be offloaded prior to assisting with
off-takes.

The aim of the problem is to determine an optimal series of trips for the support
vessels so that all cargo delivery and off-take support requirements are fulfilled over
a given planning horizon. This problem can be viewed as a type of multi-trip VRP
with time windows, in which the vehicles are support vessels, the customers are
offshore oil and gas facilities, and the depot is a supply base. Compared with other
VRPs studied in the literature, the VRP described above involves the following
non-standard features:

(a) The vessel fleet is heterogeneous.
(b) There are multiple commodities, not just one.
(c) Transport costs do not necessarily satisfy the triangle inequality.
(d) There are constraints on the types of vessels that can service each facility.
(e) Base servicing can only occur during specified opening times.
(f) Vessels cannot wait at an offshore facility for more than a maximum specified

time limit.
(g) Some commodities must be offloaded before off-take support can be provided.

Although some of these non-standard features have already been studied in the
literature, we are not aware of any work that considers all of them simultaneously.
Our goal in this paper is to present a mixed-integer linear programming (MILP)
model for this non-standard VRP. We validate the MILP model numerically using
real data provided by Woodside. We also develop a method for determining the
vessel utilization ratios corresponding to an optimal schedule. Such ratios are key
quantities used by Woodside to measure fleet efficiency in real operations.

2. Mathematical model. We consider a directed network in which the nodes
represent the facilities and the arcs represent the possible links between the different
facilities. Let N denote the set of nodes in the network and let A denote the set of
arcs. The node set N can be partitioned into two sets F and B, where F contains
nodes representing the offshore facilities and B contains nodes representing the
supply base.



1604 ELHAM MARDANEH, RYAN LOXTON, QUN LIN AND PHIL SCHMIDLI

The MILP model is based on the following assumptions.

• The time horizon is divided into multiple periods of equal duration.
• Vessel travel times are positive integer multiples of the period duration.
• Vessel travel times are constant throughout the planning horizon (i.e., travel

times are period-independent).
• Service durations are integer multiples of the period duration (unlike travel

times, service durations can be zero).
• Each vessel starts and ends the time horizon at the supply base.
• Base servicing is only required on intermediate visits to the base (vessels do

not require servicing at the start and end of their journeys).
• The service at each facility begins immediately upon vessel arrival (i.e., vessels

only wait at a facility after service completion, not before).
• Except for the supply base, each facility is open continuously (24 hours per

day) across the planning horizon.

The parameters in the model are defined below:

• T = number of periods in the planning horizon
• Qkr = storage limit (carrying capacity) of commodity r on vessel k
• τkij = travel time (in periods) for vessel k to traverse link (i, j)

• dkbase = service duration (in periods) for vessel k at the supply base
• αk

ij = fixed cost for vessel k across link (i, j)

• βkr
ij = variable cost (per unit of commodity r) for vessel k across link (i, j)

Let K denote the set of vessels, let R denote the set of commodities, and let
T = {1, . . . , T} denote the set of time periods. Some vessels cannot perform off-
take support while storing certain commodities due to the location of the off-take
support equipment (e.g., the equipment on some vessels cannot be deployed until
the deck is completely clear). Let Rk denote the set of commodities that must be
unloaded from vessel k before the vessel can assist with off-takes.

Recall that B contains nodes representing the supply base. The nodes in B serve
as start/end points for round trips undertaken by the support vessels. Thus, the
number of nodes in B is equal to the maximum number of round trips that can be
performed by a single vessel during the given time horizon. We choose a fixed node
b0 ∈ B to act as the designated start point for all vessels. Thus, each vessel begins
at b0 and ends at another node in B.

We are given a set Obase ⊂ T of allowable operating periods for the supply base;
the supply base is closed outside of these periods. Let δk(t) denote the total number
of full periods (working and non-working) required at the base if vessel k arrives
during period t. The value of δk(t) depends on both dkbase and Obase and can be
computed using Algorithm 1. For example, suppose dkbase = 3, Obase = {8, 10, 11},
and vessel k arrives at the base during period 5. Then vessel k must spend at least
the next 6 periods at the base to complete 3 working periods, and thus δk(5) = 6.
Note that δk(t) = +∞ if there are insufficient working periods in the time horizon
to conduct a full base service starting at time t. For example, a vessel arriving at
the final time t = T obviously has no time to complete a full base service, and thus
δk(T ) = +∞ for each vessel k ∈ K.

For each node i ∈ F , there is an ordered tuple (qri , t
min
i , tmax

i , dki , w
k
i , oi,Ki), where

• qri = amount of commodity r to be delivered to node i
• tmin

i = earliest period during which the service at node i can begin
• tmax

i = latest period during which the service at node i can begin
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Algorithm 1 Returns the value of δk(t)

Set t→ t′ . Initialization step; t′ is the period counter
Set 0→ d . Initialization step; d is the working period counter
while d < dkbase do . Iterate for dkbase working periods

Set t′ + 1→ t′ . Increment period counter
if t′ > T then

Set +∞→ δk(t) . Insufficient time to conduct base service
return δk(t)

else if t′ ∈ Obase then
Set d+ 1→ d . Increment working period counter if base is open

end if
end while
Set t′ − t→ δk(t) . Calculate δk(t)
return δk(t)

• dki = service duration (in periods) for vessel k at node i
• wk

i = maximum wait time (in periods) for vessel k after service completion
at node i

• oi = binary parameter indicating whether an off-take is required at node i
(oi = 1 if off-take required; oi = 0 otherwise)

• Ki = set of suitable vessels for conducting the service at node i

We define Ki = K for each i ∈ B since all vessels are suitable for the supply base.
Since each non-base node is associated with just a single service visit, if an offshore
facility requires multiple service visits, then duplicate nodes must be included for
this facility.

The decision variables in the model are defined below:

• xkijt = binary variable indicating whether vessel k arrives at node j along link

(i, j) during period t (xkijt = 1 if this occurs; xkijt = 0 otherwise)

• ykrijt = flow of commodity r arriving at node j along link (i, j) during period t
via vessel k

To build the MILP model, we use the convention that servicing always begins
in the first period after vessel arrival; see Figure 1 for an example. Similarly, after
service completion, the vessel must wait until the next period to depart. Based on
this convention, we define the set of valid arrival periods for node j along link (i, j)
via vessel k as follows:

T k
ij = { t ∈ T : max(tmin

j − 1, tmin
i + dki + τkij) ≤ t ≤ tmax

j − 1 },

where, for the supply base nodes,

tmin
b = 1, tmax

b = T + 1, dkb =

{
0, if b = b0

dkbase, if b 6= b0
b ∈ B.

This definition for T k
ij imposes the condition that, if necessary, vessel k will wait at

node i before departing for node j to ensure that it arrives at node j within the
required time window. Recall that waiting at facilities is allowed, provided that the
total wait time does not exceed the maximum specified waiting duration. When
counting wait times, we only count full periods to be consistent with our convention
for arrival/departure times. Hence, for the example in Figure 1, vessel departure
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Arrival

Service Valid Departure Periods

1 2 3 4 5 6 7 8 9 10

Figure 1. An example of our arrival/departure time convention:
if dki = 3, then a vessel arriving during period 2 and can depart
any time from period 6 onwards.

during period 6 will correspond to a wait time of 0, vessel departure during period 7
will correspond to a wait time of 1, and so on. Imposing a bound on the waiting time
is necessary to eliminate impractical schedules in which vessels spend an unrealistic
amount of time waiting at offshore facilities in an effort to avoid travel costs.

We now list the constraints in the MILP model.

• Each required service visit is performed by a suitable vessel during the given
time window: ∑

j: (j,i)∈A

∑
k∈Kj∩Ki

∑
t∈T k

ji

xkjit = 1, ∀i ∈ F . (1)

• Any vessel arriving at an offshore facility must leave that facility after service
completion:∑

j: (j,i)∈A

∑
t∈T k

ji

xkjit =
∑

j: (i,j)∈A

∑
t∈T k

ij

xkijt, ∀i ∈ F , ∀k ∈ Ki. (2)

• Each vessel starts from the designated start node b0:∑
j: (b0,j)∈A

∑
t∈T k

b0j

xkb0jt ≤ 1, ∀k ∈ K. (3)

• Each vessel never returns to the designated start node b0:∑
j: (j,b0)∈A

∑
t∈T k

jb0

xkjb0t = 0, ∀k ∈ K. (4)

• Each vessel visits each node in B \ {b0} at most once:∑
j: (j,i)∈A

∑
t∈T k

ji

xkjit ≤ 1, ∀i ∈ B \ {b0}, ∀k ∈ K. (5)

• Each vessel ends at a node in B \ {b0}:∑
j: (j,i)∈A

∑
t∈T k

ji

xkjit ≥
∑

j: (i,j)∈A

∑
t∈T k

ij

xkijt, ∀i ∈ B \ {b0}, ∀k ∈ K. (6)

• Time sequencing constraints (for offshore facilities):∑
j: (j,i)∈A

∑
k∈Kj∩Ki

∑
t∈T k

ji

(t+ dki + 1)xkjit

︸ ︷︷ ︸
Node i earliest departure period
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≤
∑

j: (i,j)∈A

∑
k∈Ki∩Kj

∑
t∈T k

ij

(t− τkij)xkijt

︸ ︷︷ ︸
Node i actual departure period

, ∀i ∈ F .
(7)

• Time sequencing constraints (for base nodes):∑
j: (j,i)∈A

∑
t∈T k

ji

(t+ δk(t) + 1)xkjit

︸ ︷︷ ︸
Node i earliest departure period

≤
∑

j: (i,j)∈A

∑
t∈T k

ij

(t− τkij)xkijt

︸ ︷︷ ︸
Node i actual departure period

+M

{
1−

∑
j: (i,j)∈A

∑
t∈T k

ij

xkijt

}
, ∀i ∈ B \ {b0}, ∀k ∈ K,

(8)

where M > 0 is a sufficiently large positive number.
• Waiting time constraints:∑
j: (i,j)∈A

∑
k∈Ki∩Kj

∑
t∈T k

ij

(t− τkij)xkijt

︸ ︷︷ ︸
Node i actual departure period

−
∑

j: (j,i)∈A

∑
k∈Kj∩Ki

∑
t∈T k

ji

(t+ dki + 1)xkjit

︸ ︷︷ ︸
Node i earliest departure period

≤
∑

j: (i,j)∈A

∑
k∈Ki∩Kj

∑
t∈T k

ij

wk
i x

k
ijt, ∀i ∈ F .

(9)

• Cargo delivery constraints:∑
j: (j,i)∈A

∑
k∈Kj∩Ki

∑
t∈T k

ji

ykrjit

︸ ︷︷ ︸
Flow of commodity r entering node i

−
∑

j: (i,j)∈A

∑
k∈Ki∩Kj

∑
t∈T k

ij

ykrijt

︸ ︷︷ ︸
Flow of commodity r leaving node i

= qri , ∀i ∈ F , ∀r ∈ R.
(10)

• Commodities in Rk must be cleared before off-take support can be provided:∑
j: (i,j)∈A

∑
k∈Ki∩Kj

∑
t∈T k

ij

∑
r∈Rk

oiy
kr
ijt = 0, ∀i ∈ F . (11)

• Vessel capacity constraints:∑
j: (i,j)∈A

∑
t∈T k

ij

ykrijt

︸ ︷︷ ︸
Outgoing flow

≤ Qkr, ∀i ∈ B, ∀k ∈ K, ∀r ∈ R. (12)

• Commodity flow between two facilities is zero if the corresponding link is not
traversed:

ykrijt ≤Mxkijt, ∀(i, j) ∈ A, ∀t ∈ T , ∀k ∈ K, ∀r ∈ R, (13)

where M > 0 is a sufficiently large positive number.
• Binary constraints:

xkijt ∈ {0, 1}, ∀(i, j) ∈ A, ∀t ∈ T , ∀k ∈ K. (14)

• Non-negativity constraints:

ykrijt ≥ 0, ∀(i, j) ∈ A, ∀t ∈ T , ∀k ∈ K, ∀r ∈ R. (15)
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Vessel travel costs can be decomposed into fixed travel costs (independent of
commodity flow) and variable travel costs (dependent on commodity flow). Thus,
the cost function can be expressed as follows:

Total Cost =
∑

(i,j)∈A

∑
t∈T

∑
k∈K

{
αk
ijx

k
ijt︸ ︷︷ ︸

Fixed cost

+
∑
r∈R

βkr
ij y

kr
ijt︸ ︷︷ ︸

Variable cost

}
. (16)

Our vessel scheduling problem can now be stated formally as the following MILP
model: minimize the cost function (16) subject to the constraints (1)-(15).

3. Model analysis and simplification. The MILP model in Section 2 is usually
massive for realistic problem instances. For example, the problems faced by Wood-
side typically involve well over one million decision variables. To reduce the size of
the model, the following variable assignments can be performed in a pre-processing
step to eliminate some of the decision variables.

• Vessels should not carry excess cargo back to the base:

ykrijt = 0, ∀i ∈ F , ∀j ∈ B, ∀t ∈ T , ∀k ∈ K, ∀r ∈ R.

• Vessels cannot travel directly between base nodes:

xkijt = 0, ∀i ∈ B, ∀j ∈ B, ∀t ∈ T , ∀k ∈ K,

ykrijt = 0, ∀i ∈ B, ∀j ∈ B, ∀t ∈ T , ∀k ∈ K, ∀r ∈ R.

• Vessels cannot return to the start node b0:

xkib0t = 0, ∀i ∈ N , ∀t ∈ T , ∀k ∈ K,

ykrib0t = 0, ∀i ∈ N , ∀t ∈ T , ∀k ∈ K, ∀r ∈ R.

• Vessels cannot visit unsuitable facilities:

xkijt = 0, ∀(i, j) ∈ A, ∀t ∈ T , ∀k /∈ Ki ∩ Kj ,

ykrijt = 0, ∀(i, j) ∈ A, ∀t ∈ T , ∀k /∈ Ki ∩ Kj , ∀r ∈ R.

• Vessels cannot arrive outside of valid arrival periods:

xkijt = 0, ∀(i, j) ∈ A, ∀t /∈ T k
ij , ∀k ∈ K,

ykrijt = 0, ∀(i, j) ∈ A, ∀t /∈ T k
ij , ∀k ∈ K, ∀r ∈ R.

• Vessels cannot visit consecutive facilities where the total cargo demand exceeds
vessel capacity:

xkijt = 0, ∀(i, j) ∈ F × F : { r ∈ R : qri + qrj > Qkr} 6= ∅,
∀t ∈ T , ∀k ∈ K,

ykrijt = 0, ∀(i, j) ∈ F × F : { r ∈ R : qri + qrj > Qkr} 6= ∅,
∀t ∈ T , ∀k ∈ K, ∀r ∈ R.
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• Vessels cannot deliver commodities in Rk after off-takes:

xkijt = 0, ∀(i, j) ∈ F × F : oi = 1, { r ∈ Rk : qrj > 0} 6= ∅,
∀t ∈ T , ∀k ∈ K,

ykrijt = 0, ∀(i, j) ∈ F × F : oi = 1, { r ∈ Rk : qrj > 0} 6= ∅,
∀t ∈ T , ∀k ∈ K, ∀r ∈ R,

ykrijt = 0, ∀i ∈ F : oi = 1, ∀j ∈ F , ∀t ∈ T , ∀k ∈ K, ∀r ∈ Rk.

Further reductions in the number of decision variables can be obtained by ex-
ploiting the following results.

Theorem 3.1. For any feasible vessel schedule,

xkijt = 0, ∀i ∈ F , ∀j ∈ N , ∀t < τkb0i + dki + τkij + 2, ∀k ∈ K,

ykrijt = 0, ∀i ∈ F , ∀j ∈ N , ∀t < τkb0i + dki + τkij + 2, ∀k ∈ K, ∀r ∈ R.

Proof. The earliest period during which vessel k can reach node i ∈ F is τkb0i + 1.

Thus, the earliest period during which vessel k can leave node i ∈ F is τkb0i +dki + 2.

It follows that vessel k cannot arrive at node j before period τkb0i + dki + τkij + 2.

Theorem 3.2. For any feasible vessel schedule,

xkijt = 0, ∀i ∈ B \ {b0}, ∀j ∈ F , ∀t < min
s∈Sk

i

{s+ δk(s) + τkij + 1}, ∀k ∈ K,

ykrijt = 0, ∀i ∈ B \ {b0}, ∀j ∈ F , ∀t < min
s∈Sk

i

{s+ δk(s) + τkij + 1},

∀k ∈ K, ∀r ∈ R,
where

Ski =
{
s ∈ T : s ≥ min

l∈F
{τkb0l + dkl + τkli + 2}

}
.

Proof. Vessel k must have visited at least one offshore node in F before reaching
base node i ∈ B \ {b0}. If vessel k first visits node l ∈ F , then the earliest period
during which it can arrive at node i ∈ B \ {b0} is τkb0l + dkl + τkli + 2. Hence, Ski
contains all potential arrival periods for vessel k at node i. If vessel k arrives at
node i during period s ∈ Ski , then the earliest period during which it can arrive at
node j is s+ δk(s) + τkij + 1. Taking the minimum of this quantity over all potential

arrival periods in Ski gives the earliest possible arrival period at node j.

Theorem 3.3. For any feasible vessel schedule,

xkijt = 0, ∀i ∈ N , ∀j ∈ F , ∀t > T − dkj − τkjb0 − 1, ∀k ∈ K,

ykrijt = 0, ∀i ∈ N , ∀j ∈ F , ∀t > T − dkj − τkjb0 − 1, ∀k ∈ K, ∀r ∈ R,

where τkjb0 is the travel time for vessel k from node j to the supply base.

Proof. If vessel k arrives at an offshore node j ∈ F during period t, then the earliest
period during which the vessel can reach the supply base is t + dkj + τkjb0 + 1. It

follows that any arrival periods t such that t + dkj + τkjb0 + 1 > T are invalid, as
there is insufficient time for the vessel to return to the base. Thus, the latest period
during which vessel k can arrive at node j is T − dkj − τkjb0 − 1.

Our final result guarantees that the MILP model in Section 2 is a valid repre-
sentation of the vessel scheduling problem.
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Theorem 3.4. Constraints (1)-(15) define a set of closed vessel tours, each starting
and ending at the supply base.

Proof. We first show that the time sequencing constraints in the MILP model
prevent subtours. Suppose, to the contrary, that vessel k performs a subtour
{i0, i1, . . . , ip}, where i0 = ip. Let tl denote the arrival period of vessel k at node
il, l = 0, . . . , p (constraints (1) and (5) ensure that there is only one arrival at each
node il). Then it follows from the time sequencing constraints (7) and (8) that

tl+1 − τkilil+1
≥

{
tl + dkil + 1, if il ∈ F ,
tl + δk(tl) + 1, if il ∈ B.

Therefore,

tl+1 ≥

{
tl + dkil + τkilil+1

+ 1, if il ∈ F ,
tl + δk(tl) + τkilil+1

+ 1, if il ∈ B.

This implies that tl+1 > tl for each l = 0, . . . , p − 1. Thus, t0 < tl for each
l = 1, . . . , p, and in particular, t0 < tp. But since ip = i0, this is a contradiction.
Thus, subtours are impossible with the time sequencing constraints (7) and (8).

Now, since there are no subtours, constraints (2)-(6) imply that each vessel starts
at b0 and ends at a node in B \ {b0}. This completes the proof.

4. Vessel utilization ratios. One way of assessing the efficiency of a vessel fleet
is to measure the utilization rate of each vessel in the fleet. A vessel’s utilization
rate can be calculated in terms of the time utilization (what proportion of time the
vessel is active) or the capacity utilization (what proportion of the vessel’s carrying
capacity is used). Support vessels in the oil and gas industry are expensive assets
and thus high vessel utilization rates are desirable. Low utilization rates are an
indication that the fleet contains excess capacity and can potentially be replaced
with a smaller, cheaper fleet.

For a given vessel schedule, the capacity utilization ratio for commodity type
r ∈ R on vessel k ∈ K is defined as the ratio of the total outgoing commodity flow
to the total available capacity. Mathematically,

ρkrcapacity =

{∑
i∈B

∑
j: (i,j)∈A

∑
t∈T k

ij

ykrijt

︸ ︷︷ ︸
Commodity flow

}
÷
{∑

i∈B

∑
j: (i,j)∈A

∑
t∈T k

ij

Qkrxkijt

︸ ︷︷ ︸
Available capacity

}
,

where ρkrcapacity is the capacity utilization ratio for commodity r on vessel k. Note

that ρkrcapacity is undefined if vessel k never leaves the base.
The time utilization ratio of vessel k ∈ K is defined as the ratio of the number

of active periods to the total number of periods. Mathematically,

ρktime =
ωk

travel + ωk
offshore + ωk

base

T
, (17)

where ρktime is the time utilization ratio of vessel k, T is the total number of periods,
ωk

travel is the number of travel periods for vessel k, ωk
offshore is the number of offshore

servicing periods for vessel k, and ωk
base is the number of base servicing periods for

vessel k.
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Base

Arrival

Base Service Wait Time

Base
Departure

Figure 2. An example of base servicing with dkbase = 2. Closed
periods are shaded in grey. After arriving at the base, the vessel
must stay for at least δk(t) = 5 periods to complete the service.
For option (i), ωk

base = 2 since the 3 closed periods during service
are not considered active periods. For option (ii), ωk

base = 5 since
the 3 closed periods are considered active periods.

Vessel k’s travel and offshore servicing periods can be computed, respectively,
using the following equations:

ωk
travel =

∑
(i,j)∈A

∑
t∈T k

ij

τkijx
k
ijt (18)

and

ωk
offshore =

∑
i∈F

∑
j: (j,i)∈A

∑
t∈T k

ji

dki x
k
jit. (19)

To compute the number of active periods at the base, there are two options:

(i) Count only open periods in Obase (each base service counts as dkbase active
periods).

(ii) Count both open and closed periods (each base service counts as δk(t) active
periods, where t is the arrival period).

The choice between options (i) and (ii) depends on whether vessels are considered
to be active during closed periods at the base. See Figure 2 for an example.

For option (i), the number of base servicing periods is given by

ωk
base =

∑
i∈B\{b0}

∑
j: (i,j)∈A

∑
t∈T k

ij

dkbasex
k
ijt. (20)

For option (ii), the number of base servicing periods is given by

ωk
base =

∑
i∈B\{b0}

{ ∑
j: (i,j)∈A

∑
t∈T k

ij

xkijt

}
·
{ ∑

j: (j,i)∈A

∑
t∈T k

ji

δk(t)xkjit

}
. (21)

Combining equations (17)-(20), we obtain the following expression for the time
utilization ratio of vessel k when vessels are considered to be inactive during base
closure periods:

ρktime =
∑

(i,j)∈A

∑
t∈T k

ij

τkij
T
xkijt

︸ ︷︷ ︸
Travel

+
∑
i∈F

∑
j: (j,i)∈A

∑
t∈T k

ji

dki
T
xkjit

︸ ︷︷ ︸
Offshore servicing
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+
∑

i∈B\{b0}

∑
j: (i,j)∈A

∑
t∈T k

ij

dkbase

T
xkijt

︸ ︷︷ ︸
Base servicing

.

Similarly, combining equations (17)-(19) and (21), we obtain the following expres-
sion for the time utilization ratio of vessel k when vessels are considered to be active
during base closure periods:

ρktime =
∑

(i,j)∈A

∑
t∈T k

ij

τkij
T
xkijt

︸ ︷︷ ︸
Travel

+
∑
i∈F

∑
j: (j,i)∈A

∑
t∈T k

ji

dki
T
xkjit

︸ ︷︷ ︸
Offshore servicing

+
∑

i∈B\{b0}

{ ∑
j: (i,j)∈A

∑
t∈T k

ij

xkijt

}
·
{ ∑

j: (j,i)∈A

∑
t∈T k

ji

δk(t)

T
xkjit

}
︸ ︷︷ ︸

Base servicing

.

5. Case study: Optimal vessel scheduling for Woodside. In this section, we
investigate a real vessel scheduling problem faced by Australian company Woodside
in oil and gas operations off the coast of Western Australia. This problem is a
special case of the MILP model described in Section 2.

5.1. Problem setting. We consider seven Woodside-operated oil and gas facilities
in the Indian Ocean off the coast of Western Australia: five in the North West Shelf
region (Angel, Goodwyn, North Rankin, Okha, Pluto) and two in the Carnarvon
Basin (Nganhurra, Ngujima-Yin). See Figure 3 for a map showing these facilities.
Angel, Goodwyn, North Rankin, and Pluto are platforms; the other facilities are
floating production, storage, and offloading (FPSO) facilities. Off-takes are only
required for the FPSOs.

The offshore facilities in Figure 3 are serviced by a fleet of support vessels based
in Karratha. The fleet consists of one platform supply vessel (PSV) and two off-take
support vessels (OSVs). The PSV is used for cargo delivery and the OSVs are used
for off-take support. The OSVs can also deliver cargo if required.

Both the PSV and the OSVs store cargo on deck, and the OSVs cannot assist
with off-take operations unless their decks are completely clear (this is due to the
location of the off-take support equipment on these vessels). In these numerical
simulations, cargo (measured in m2 of deck-space) is the only commodity of interest
and thus |R| = 1. The deck-space capacity of the PSV is 500 m2 and the deck-space
capacity of each OSV is 300 m2. Moreover, the fuel consumption rate of the PSV
is 54 L/NM and the fuel consumption rate of each OSV is 40 L/NM. All vessels
travel at a speed of 10 knots.

We consider a time horizon of three weeks decomposed into 1-hour time periods
(giving a total of T = 504 periods). Thus,

T = {1, . . . , 504}.
The distance between each pair of facilities is given in Table 1. Since each vessel
travels at a speed of 10 knots, the travel time between facilities i and j (rounded
up to the nearest period) can be computed as follows:

τkij =

⌈
θij
10

⌉
,
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Figure 3. Woodside’s offshore facilities in the North West Shelf
region and Carnarvon Basin.

Karratha Angel Goodwyn Nganhurra Ngujima-Yin North Rankin Okha Pluto
Karratha - 68.4 78.4 180.0 175.0 75.0 65.0 95.9

Angel 68.4 - 38.4 188.4 181.7 27.5 10.0 75.0
Goodwyn 78.4 38.4 - 155.0 155.9 12.5 30.0 38.4
Nganhurra 180.0 188.4 155.0 - 5.0 165.0 170.0 117.5

Ngujima-Yin 175.0 181.7 155.9 5.0 - 160.0 165.0 112.5
North Rankin 75.0 27.5 12.5 165.0 160.0 - 18.4 50.0

Okha 65.0 10.0 30.0 170.0 165.0 18.4 - 65.0
Pluto 95.9 75.0 38.4 117.5 112.5 50.0 65.0 -

Table 1. Distances (in nautical miles) between facilities.

where θij is the distance (in nautical miles) between facility i and facility j as
recorded in Table 1.

The opening hours for the base are 6am to 6pm every day including weekends.
Thus,

Obase =

20⋃
m=0

{24m+ 7, . . . , 24m+ 18}.

We considered four service scenarios corresponding to historical data provided by
Woodside. Each service scenario involves multiple service visits, and each service
visit is defined by a given cargo demand, service start time window, service duration,
and set of suitable vessels. This information is provided in Tables 2-5. In all
scenarios, the service duration for cargo delivery visits is dki = 3 hours and the
service duration for off-take visits is dki = 30 hours. In Scenario 1, the service
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Facility Day Demand Time Window Duration Suitable Vessels Off-take?

Ngujima-Yin 1 300 m2 0:00-24:00 30 hours OSV Yes

Goodwyn 2 100 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 2 200 m2 0:00-24:00 3 hours PSV, OSV No

Okha 3 100 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 6 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 6 250 m2 0:00-24:00 3 hours PSV, OSV No

Ngujima-Yin 8 300 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 9 100 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 9 200 m2 0:00-24:00 3 hours PSV, OSV No

Okha 9 100 m2 0:00-24:00 3 hours PSV, OSV No

Okha 10 100 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 16 250 m2 0:00-24:00 3 hours PSV, OSV No

Nganhurra 16 300 m2 0:00-24:00 30 hours OSV Yes

North Rankin 16 250 m2 0:00-24:00 3 hours PSV, OSV No

Pluto 17 100 m2 0:00-24:00 3 hours PSV, OSV No

Okha 19 200 m2 0:00-24:00 30 hours OSV Yes

Goodwyn 20 100 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 20 200 m2 0:00-24:00 3 hours PSV, OSV No

Table 2. Service requirements for Scenario 1.

duration at the base is dkbase = 21 hours for the PSV and dkbase = 11 hours for the
OSVs; for the other scenarios, dkbase = 11 hours for the PSV and dkbase = 8 hours
for the OSVs. The maximum wait time at each offshore facility is unlimited for
all scenarios (i.e., wk

i =∞). Off-take visits can only be performed by OSVs, while
cargo delivery visits can be performed by any vessel.

The fixed cost αk
ij is equal to the total fuel consumed while traversing link (i, j)

and the corresponding variable cost βkr
ij is zero. Thus, based on the speeds and fuel

consumption rates of the PSV and OSVs,

αk
ij =

{
540τkij , if vessel k is the PSV,

400τkij , if vessel k is an OSV.

Hence, the cost function is

Cost =
∑

(i,j)∈A

∑
t∈T

{
540τPSV

ij xPSV
ijt + 400τOSV1

ij xOSV1
ijt + 400τOSV2

ij xOSV2
ijt

}
, (22)

where A is the arc set of the network defined by the service visits in Tables 2-5 and
T = {1, . . . , 504} is the set of time periods.

The scheduling problem is to minimize (22) subject to constraints (1)-(15) de-
scribed in Section 2.

Since wk
i = ∞, the waiting time constraints (9) are essentially redundant here.

The reason we have ignored these constraints is that the service scenarios defined
in Tables 2-5 are extremely tight, and imposing waiting time constraints can lead
to infeasibility. We have tested the model on other service scenarios in which the
service requirements are less onerous and thus waiting time constraints are valid,
but we are unable to publish these results due to commercial confidentiality.

5.2. Solution procedure. We first attempted to solve the full MILP model (see
Section 2) using the CPLEX Optimization Package [12, 13] embedded within the
AIMMS modelling platform [1, 6]. For each scenario, CPLEX failed to find a feasible
solution for the full model after more than one day of computation.

We next applied the model reduction techniques described in Section 3. Table 6
shows the model dimensions before and after the model reduction process. As shown
in the table, model reduction eliminates around 92-93% of the variables and 86-88%
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Facility Day Demand Time Window Duration Suitable Vessels Off-take?

Goodwyn 1 200 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 2 200 m2 0:00-24:00 3 hours PSV, OSV No

Ngujima-Yin 3 200 m2 0:00-24:00 3 hours PSV, OSV No

Okha 4 100 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 5 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 5 150 m2 0:00-24:00 3 hours PSV, OSV No

Okha 5 100 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 6 150 m2 0:00-24:00 3 hours PSV, OSV No

Nganhurra 7 100 m2 0:00-24:00 3 hours PSV, OSV No

Ngujima-Yin 7 100 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 8 200 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 9 100 m2 0:00-24:00 3 hours PSV, OSV No

Ngujima-Yin 9 200 m2 0:00-24:00 30 hours OSV Yes

Okha 11 100 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 12 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 12 150 m2 0:00-24:00 3 hours PSV, OSV No

Okha 13 200 m2 0:00-24:00 30 hours OSV Yes

Goodwyn 14 250 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 15 250 m2 0:00-24:00 3 hours PSV, OSV No

Okha 18 100 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 19 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 19 150 m2 0:00-24:00 3 hours PSV, OSV No

Table 3. Service requirements for Scenario 2.

Facility Day Demand Time Window Duration Suitable Vessels Off-take?

Angel 1 200 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 1 250 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 1 250 m2 0:00-24:00 3 hours PSV, OSV No

Nganhurra 3 250 m2 0:00-24:00 3 hours PSV, OSV No

Ngujima-Yin 3 250 m2 0:00-24:00 3 hours PSV, OSV No

Angel 4 100 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 4 100 m2 0:00-24:00 3 hours PSV, OSV No

Okha 4 100 m2 0:00-24:00 30 hours OSV Yes

North Rankin 5 100 m2 0:00-24:00 3 hours PSV, OSV No

Okha 7 100 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 8 150 m2 0:00-24:00 3 hours PSV, OSV No

Ngujima-Yin 8 200 m2 0:00-24:00 30 hours OSV Yes

North Rankin 8 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 10 150 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 11 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 12 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 14 150 m2 0:00-24:00 3 hours PSV, OSV No

Okha 14 100 m2 0:00-24:00 3 hours PSV, OSV No

Pluto 14 300 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 15 150 m2 0:00-24:00 3 hours PSV, OSV No

Nganhurra 17 100 m2 0:00-24:00 3 hours PSV, OSV No

Ngujima-Yin 17 100 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 18 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 19 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 21 250 m2 0:00-24:00 3 hours PSV, OSV No

Okha 21 100 m2 0:00-24:00 3 hours PSV, OSV No

Table 4. Service requirements for Scenario 3.

of the constraints. In the original model, there is always one more continuous-
valued variable than binary variable because AIMMS treats the cost function as
an additional continuous-valued variable. Despite the massive reduction in model
dimension, the simplified MILP model still proved extremely difficult to solve.

To expedite the computation, we applied a greedy scheduling procedure to gen-
erate an initial feasible schedule for each problem scenario. The heuristic works by
choosing a sequence of suitable service visits for each vessel (starting with the PSV)
according to earliest arrival time and subject to the vessel’s deck-space capacity and
a constraint on the maximum waiting time at each facility. The heuristic repeats
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Facility Day Demand Time Window Duration Suitable Vessels Off-take?

Goodwyn 1 250 m2 0:00-24:00 3 hours PSV, OSV No

Nganhurra 1 250 m2 0:00-24:00 30 hours OSV Yes

North Rankin 1 250 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 3 150 m2 0:00-24:00 3 hours PSV, OSV No

Ngujima-Yin 3 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 3 150 m2 0:00-24:00 3 hours PSV, OSV No

Nganhurra 4 150 m2 0:00-24:00 3 hours PSV, OSV No

Ngujima-Yin 5 150 m2 0:00-24:00 30 hours OSV Yes

Goodwyn 7 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 7 150 m2 0:00-24:00 3 hours PSV, OSV No

Okha 8 200 m2 0:00-24:00 3 hours PSV, OSV No

Pluto 9 250 m2 0:00-24:00 3 hours PSV, OSV No

Ngujima-Yin 10 150 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 11 100 m2 0:00-24:00 3 hours PSV, OSV No

Nganhurra 11 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 11 100 m2 0:00-24:00 3 hours PSV, OSV No

Pluto 12 100 m2 0:00-24:00 3 hours PSV, OSV No

Okha 13 100 m2 0:00-24:00 30 hours OSV Yes

Goodwyn 14 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 14 150 m2 0:00-24:00 3 hours PSV, OSV No

Okha 15 200 m2 0:00-24:00 3 hours PSV, OSV No

Okha 16 200 m2 0:00-24:00 3 hours PSV, OSV No

Ngujima-Yin 17 150 m2 0:00-24:00 3 hours PSV, OSV No

Goodwyn 18 150 m2 0:00-24:00 3 hours PSV, OSV No

Nganhurra 18 150 m2 0:00-24:00 3 hours PSV, OSV No

North Rankin 18 150 m2 0:00-24:00 3 hours PSV, OSV No

Angel 21 300 m2 0:00-24:00 3 hours PSV, OSV No

Okha 21 100 m2 0:00-24:00 3 hours PSV, OSV No

Table 5. Service requirements for Scenario 4.

Original Model Simplified Model

BVs CVs Constraints BVs CVs Constraints

Scenario 1 1,646,568 1,646,569 1,646,870 206,868 20,571 207,167
Scenario 2 2,069,928 2,069,929 2,070,258 292,443 31,582 292,771
Scenario 3 2,541,672 2,541,673 2,542,030 322,105 35,540 322,461
Scenario 4 2,795,688 2,795,689 2,796,060 330,484 39,859 330,853

Table 6. Model dimensions in terms of binary variables (BVs),
continuous-valued variables (CVs), and constraints.

this process for a maximum waiting time of one day, two days, three days, and so
on, with the best solution selected as the initial schedule. In addition, any service
visits to North Rankin and Goodwyn on the same day are clustered into a single
visit, since this is what normally occurs in practice. This heuristic procedure can
generate decent feasible schedules in a matter of seconds. Substituting the initial
schedule into the linear programming softwares CPLEX [13] and Gurobi [10] allowed
us to solve the reduced model and obtain solutions for Scenarios 1-4.

5.3. Results. For each test scenario, we first applied the heuristic optimization
procedure described in Section 5.2 to generate an initial feasible schedule. We
then solved the reduced MILP model by running CPLEX and Gurobi consecutively
according to the following sequence: CPLEX for two hours, Gurobi for two hours,
CPLEX for two hours, Gurobi for two hours, and CPLEX for two hours. This took
a total of ten hours for each schedule.

The performance of our method (in terms of cost) is shown in Table 7, where
“Historical” refers to the historical schedule extracted from real data, “Initial”
refers to the initial schedule generated by the heuristic optimization procedure, and
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Total Fuel Use (L)

Historical Initial Optimized Improvement

Scenario 1 108,620 107,560 97,440 10.29%

Scenario 2 124,460 113,880 96,040 22.83%
Scenario 3 139,500 138,400 125,820 9.81%

Scenario 4 170,680 168,960 148,640 12.91%

Table 7. Optimal fuel consumption for Scenarios 1-4.

Deck-space Utilization Time Utilization

PSV OSV 1 OSV 2 PSV OSV 1 OSV 2

Scenario 1 100% 100% 100% 30% 37% 31%

Scenario 2 80% 88% 89% 26% 31% 31%

Scenario 3 100% 78% 83% 51% 33% 27%
Scenario 4 92% 96% 100% 45% 41% 43%

Table 8. Optimal vessel utilization for Scenarios 1-4.

“Optimized” refers to the best schedule obtained by CPLEX and Gurobi. As seen
from the table, the schedules obtained using our method are significantly better than
the historical schedules in terms of fuel cost. Table 8 reports the vessel utilization
ratios corresponding to the optimized schedules. Here, the time utilization ratios
are computed using the second measure of time utilization, where both open and
closed periods at the base are counted as active periods. The optimal schedules are
shown in Figures 4-7. The different colours in the figures represent the different
facilities, with white representing travel. The colours for the facilities are:

• Supply Base – Light Green;
• Angel – Bright Green;
• Goodwyn – Yellow;
• Nganhurra – Light Blue;
• Ngujima-Yin – Pink;
• North Rankin – Red;
• Okha – Bright Blue; and
• Pluto – Orange.

Note from Figures 4-7 that the optimization process has merged some service
visits to save fuel costs. For example, in Scenario 1, the cargo delivery visits to
Okha on days 9 and 10 have been combined into a single visit.

6. Conclusion. This paper has highlighted the potential of using linear program-
ming techniques for applications in the oil and gas industry. The research described
in this paper was initiated by Woodside’s Marine Division, which operates the com-
pany’s supply vessel fleet. As part of a review of its existing fleet, Woodside required
an optimization model for assessing different options for future fleet replacements.
The model described in this paper is an enhanced version of the original model used
by Woodside. Another version of the model is currently being developed for use in
a scheduling tool for operational decision support. Our future work will focus on a
more detailed comparison between the actual schedules performed in practice and
the optimized schedules defined by the MILP model, although direct comparisons
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Figure 4. Historical and optimized vessel schedules for Scenario 1.
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Figure 5. Historical and optimized vessel schedules for Scenario 2.
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Figure 6. Historical and optimized vessel schedules for Scenario 3.
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Figure 7. Historical and optimized vessel schedules for Scenario 4.
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are difficult due to limited data. We also plan to investigate methods for generating
lower bounds to verify schedule optimality.
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